Журнал входит в перечень периодических научных изданий РФ, рекомендованных для публикации основных результатов диссертаций на соискание ученой степени кандидата и доктора медицинских наук

Modern Rheumatology Journal

СОВРЕМЕННАЯ РЕВМАТОЛОГИЯ

НАУЧНО-ПРАКТИЧЕСКИЙ РЕЦЕНЗИРУЕМЫЙ ЖУРНАЛ Издается с 2007 г.

Журнал включен

в реферативную

базу SCOPUS

Журнал издается при научной поддержке ФГБНУ «Научно- исследовательский институт ревматологии им. В.А. Насоновой»

ГЛАВНЫЙ РЕДАКТОР

А.М. Лила, д.м.н., профессор, член-корр. РАН, директор ФГБНУ «Научноисследовательский институт ревматологии им. В.А. Насоновой», заведующий кафедрой ревматологии ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва

ЗАМЕСТИТЕЛЬ ГЛАВНОГО РЕДАКТОРА

Д.А. Сычев, д.м.н., профессор, профессор РАН, академик РАН, научный руководитель Центра геномных исследований мирового уровня «Центр предиктивной генетики, фармакогенетики и персонализированной терапии» ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского»; заведующий кафедрой клинической фармакологии и терапии им. Б.Е. Вотчала ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва

Ответственный секретарь

О.Н. Егорова, д.м.н., ведущий научный сотрудник лаборатории тромбовоспаления ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва

Научный редактор

Ю.А. Олюнин, д.м.н., ведущий научный сотрудник лаборатории эволюции ревматоидных артритов ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

- Е.И. Алексеева, д.м.н., член-корр. РАН, профессор, заведующая ревматологическим отделением ФГБНУ «Научный центр здоровья детей», заведующая кафедрой педиатрии и детской ревматологии педиатрического факультета ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова»» Минздрава России (Сеченовский Университет), Москва
- Л.И. Алексеева, д.м.н., начальник отдела метаболических заболеваний костей и суставов ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», профессор кафедры ревматологии терапевтического факультета ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России (РМАНПО Минздрава России), Москва
- Б.С. Белов, д.м.н., заведующий лабораторией коморбидных инфекций и вакцинопрофилактики отдела воспалительных заболеваний суставов ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва
- Е.И. Бялик, д.м.н., травматолог-ортопед, врач высшей категории, ведущий научный сотрудник лаборатории ревмоортопедии и реабилитации ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва
- А.И. Дубиков, д.м.н., профессор, заведующий ревматологическим отделением Городской клинической больницы №2 Владивостока, заведующий кафедрой внутренних болезней ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России, главный внештатный специалист ревматолог Приморского края, Владивосток
- **И.А. Зборовская**, д.м.н., профессор, директор ФГБНУ «Научно-исследовательский институт клинической и экспериментальной ревматологии им. А.Б. Зборовского» Минобрнауки России, Волгоград
- А.Е. Каратеев, д.м.н., начальник отдела воспалительных заболеваний суставов, заведующий лабораторией патофизиологии боли и клинического полиморфизма ревматических заболеваний ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва

2025;19(5)

- **Т.В. Коротаева,** д.м.н., начальник отдела спондилоартритов, заведующая лабораторией псориатического артрита ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва
- М.М. Костик, д.м.н., профессор кафедры госпитальной педиатрии ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России, Санкт-Петрербург
- С.В. Лапин, к.м.н., заведующий лабораторией диагностики аутоиммунных заболеваний Научнометодического центра по молекулярной медицине Минздрава России, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова», Санкт-Петербург
- Г.В. Лукина, д.м.н., руководитель отдела ревматологии ГБУЗ г. Москвы «Московский клинический научный центр им. А.С. Логинова» Департамента здравоохранения г. Москвы, Москва
- Т.А. Раскина, д.м.н., профессор, заведующая кафедрой пропедевтики внутренних болезней ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России, Кемерово
- А.П. Ребров, д.м.н., профессор, заведующий кафедрой госпитальной терапии ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России, Саратов
- С.О. Салугина, д.м.н., ведущий научный сотрудник детского ревматологического отделения ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва
- E.A. Таскина, к.м.н., старший научный сотрудник лаборатории остеоартрита отдела метаболических заболеваний костей и суставов ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва
- **Н.В. Торопцова**, д.м.н., заведующая лабораторией остеопороза ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва
- П.А. Шестерня, д.м.н., профессор, проректор по научной работе, заведующий кафедрой пропедевтики внутренних болезней и терапии с курсом последипломного образования ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России, Красноярск
- **Н.А. Шостак**, д.м.н., профессор, заведующая кафедрой факультетской терапии им. акад. А.И. Нестерова ГБОУ ВПО «Российский национальный исследовательский университет им. Н.И. Пирогова» Минздрава России, Москва

ИНОСТРАННЫЕ ЧЛЕНЫ РЕДКОЛЛЕГИИ

- Г. Амитал, профессор, медицинский факультет имени Саклера, Тель-Авивский университет, Рамат-Авив, Израиль
- А. Баланеску, профессор, Госпиталь Св. Марии, Университет медицины и фармации «Карол Лавила». Бухарест. Румыния
- Л. Гроппа, д.м.н., профессор, заведующая кафедрой ревматологии Государственного университета медицины и фармакологии им. Н. Тестемицану, председатель Ассоциации ревматологов Республики Молдова, Кишинев, Молдова
- E. Кухарж, профессор, кафедра внутренних болезней и ревматологии Медицинского университета Силезии, Катовице, Польша
- М. Матуччи-Церинич, профессор, Университет Флоренции, Флоренция, Италия
- К. Селми, профессор, Университет Милана, Милан, Италия
- Г. Тогизбаев, д.м.н, профессор, главный внештатный специалист по постдипломному образованию Министерства здравоохранения Республики Казахстан, председатель ОО «Казахская коллегия ревматологов», заведующий отделением терапии №2 (ревматологии) НИИ Кардиологии и внутренних болезней, Алматы, Республика Казахстан

Предпечатная подготовка ООО «ИМА-ПРЕСС»

Адрес редакции: 115093, Москва, Партийный пер., д. 1, корп. 58, оф. 45,

> **Телефон:** (495) 926-78-14 e-mail: info@ima-press.net; podpiska@ima-press.net

При перепечатке материалов ссылка на журнал обязательна. Мнение редакции может не совпадать с точкой зрения авторов публикуемых материалов. Ответственность за содержание рекламы несут рекламодатели.

Журнал зарегистрирован Федеральной службой по надзору в сфере массовых коммуникаций, связи и охраны культурного наследия. ПИ № ФС 77-28 869 от 25 июля 2007 г.

Современная ревматология. 2025;19(5):1-138

Подписано в печать 16.10.2025 Отпечатано в типографии «БИпринт»

Тираж 3000 экз.

Подписной индекс в объединенном каталоге «Пресса России» — 70678 https://www.pressa-rf.ru/cat/1/edition/f14098/ The journal is included in the list of scientific periodicals of the Russian Federation, which are recommended for publishing the main results of dissertations on the scientific degree of Candidate of Science and on the degree of Doctor of Science

MODERN RHEUMATOLOGY J O U R N A L

IT IS A PEER-REVIEWED SCIENTIFIC AND PRACTICAL JOURNAL Published since 2007

The journal is included in the S C O P U S a b s t r a c t d a t a b a s e

EDITOR-IN-CHIEF

Professor A.M. Lila, MD, PhD, Corresponding Member of the Russian Academy of Sciences, Director V.A. Nasonova Research Institute of Rheumatology; Head, Department of Rheumatology, Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow

DEPUTY EDITOR-IN-CHIEF

D.A. Sychev, MD, Professor, Professor of the Russian Academy of Sciences, Academician of the Russian Academy of Sciences, Scientific Director of the World-Class Genomic Research Center "Center for Predictive Genetics, Pharmacogenetics and Personalized Therapy", B.V. Petrovsky Russian Research Center of Surgery; Head of the Department of Clinical Pharmacology and Therapy named after B.E. Votchal, Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow

Executive Secretary

O.N. Egorova, MD, PhD, Leading Researcher, Laboratory of Thromboinflammation, V.A. Nasonova Research Institute of Rheumatology, Moscow

Scientific Editor

Yu.A. Olyunin, MD, PhD, Leading Research Fellow, Laboratory of Evolution of Rheumatoid Arthritis, V.A. Nasonova Research Institute of Rheumatology, Moscow

EDITORIAL BOARD

E.I. Alekseeva, MD, PhD, Professor, Corresponding Member of the Russian Academy of Sciences, Head, Department of Rheumatology, Research Center for Children's Health; Head, Department of Pediatrics and Pediatric Rheumatology, Faculty of Pediatrics, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow

L.I. Alekseeva, MD, PhD, Head of the Department of Metabolic Diseases of Bones and Joints, V.A. Nasonova Research Institute of Rheumatology, professor, Department of Rheumatology, Therapeutic Faculty, Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia, Moscow

B.S. Belov, MD, PhD, Head of the Laboratory of Comorbid Infections and Vaccinal Prevention, Department of Inflammatory Joint Diseases, V.A. Nasonova Research Institute of Rheumatology, Moscow

E.I. Byalik, MD, PhD, Traumatologist/Orthopedist, Higher-Category Physician, Leading Researcher, Laboratory for Orthopedic Rheumatology and Rehabilitation, V.A. Nasonova Research Institute of Rheumatology, Moscow

A.I. Dubikov, MD, PhD, Professor, Department of Rheumatology, Vladivostok City Clinical Hospital Two; Head, Department of Internal Medicine, Pacific State Medical University, Ministry of Health of Russia; Principal Freelance Rheumatologist of the Primorsk Territory, Vladivostok

2025;19(5)

- I.A. Zborovskaya, MD, PhD, Professor, Director, A.B. Zborovsky Research Institute for Clinical and Experimental Rheumatology, Ministry of Education and Science of Russia, Volgograd
- **A.E. Karateev,** MD, PhD, Head of the Department of Inflammatory Joint Diseases, Head of the Laboratory of Pathophysiology of Pain and Clinical Polymorphism of Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Moscow
- T.V. Korotaeva, MD, PhD, Head of the Department of Spondyloarthritis, Head of the Laboratory of Psoriatic Arthritis, V.A. Nasonova Research Institute of Rheumatology, Moscow
- M.M. Kostik, MD, PhD, Professor, Department of Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia, Saint Petersburg
- S.V. Lapin, MD, PhD, Head, Laboratory for Diagnosis of Autoimmune Diseases, Research and Guidance Center for Molecular Medicine, Ministry of Health of Russia; Acad. I.P. Pavlov Saint Petersburg State Medical University, Saint Petersburg
- G.V. Lukina, MD, PhD, Head, Department of Rheumatology A.S. Loginov Moscow Clinical Research Center, Moscow
- T.A. Raskina, MD, PhD, Professor, Head, Department for Propaedeutics of Internal Diseases, Kemerovo State Medical University, Ministry of Health of Russia, Kemerovo
- A.P. Rebrov, MD, PhD, Professor, Head, Department of Hospital Therapy, V.I. Razumovsky Saratov State Medical University, Ministry of Health of Russia, Saratov
- S.O. Salugina, MD, Leading Researcher, Department of Pediatric Rheumatology, V.A. Nasonova Research Institute of Rheumatology, Moscow
- E.A. Taskina, MD, PhD, Senior Research Fellow, Laboratory of Osteoarthritis, Department of Metabolic Diseases of Bones and Joints, V.A. Nasonova Research Institute of Rheumatology, Moscow
- N.V. Toroptsova, MD, PhD, Head, Laboratory of Osteoporosis, V.A. Nasonova Research Institute of Rheumatology, Moscow
- **P.A. Shesternya**, MD, PhD, Professor, Vice-rector for Research, Head of the Department of Propaedeutics of Internal Diseases and Therapy with a Postgraduate Course, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of Russia, Krasnoyarsk
- N.A. Shostak, MD, PhD, Professor, Head, Acad. A.I. Nesterov Department of Intermediate Level Therapy, N.I. Pirogov Russian National Research University, Ministry of Health of Russia, Moscow

FOREIGN MEMBERS OF THE EDITORIAL BOARD

- **H. Amital**, MD, PhD, Professor, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- **A. Balanescu**, MD, PhD, Professor, St. Mary Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- L. Groppa, MD, PhD, Professor, Head, Department of Rheumatology, N. Testemitanu State University of Medicine and Pharmacology; Chairman, Association of Rheumatology of the Republic of Moldova, Chisinau, Moldova
- E. Kucharz, MD, PhD, Professor, Department of Internal Medicine and Rheumatology, Medical University of Silesia, Katowice, Poland
- M. Matucci-Cerinic, FRCP, FACR, FBSR, Hon Professor of Rheumatology, the University of Florenece, Florence, Italy
- C. Selmi, MD, PhD, Professor, University of Milan, Milan, Italy
- G. Togizbayev, MD, PhD, Professor, Chief Freelance Specialist in Postgraduate Education, Ministry of Health of the Republic of Kazakhstan; Chairman, Kazakh College of Rheumatology; Head, Therapy (Rheumatology) Department Two, Research Institute of Cardiology and Internal Medicine, Almaty, Republic of Kazakhstan

СОДЕРЖАНИЕ

Л	Ε	K	Ш	И	Я
•			-		

_	Гусева И.А., Болотбекова А.М., Егорова О.Н., Тарасова Г.М., Койлубаева Г.М., Чанышев М.Д., Самаркина Е.Ю.	
	ика васкулитов крупных сосудов. Сообщение 1. Эпидемиологические и молекулярно-генетические аспекты	7
артериита такаясу		/
	ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ	
CD0+CD20 T	Аболешина А.В., Алексанкин А.П., Зоткин Е.Г., Авдеева А.С., Мовсесян А.А., Молова К.М., Макоева М.А.	12
СD8+СD28- Т-лимфоц	иты как маркер иммунного старения у пациентов с началом ревматоидного артрита в пожилом возрасте	13
Гологини 1 2 и 0 у бол	Кондратьева Л.В., Панафидина Т.А., Горбунова Ю.Н., Попкова Т.В., Диатроптов М.Е., Авдеева А.С. пыных системной красной волчанкой: есть ли связь с активностью заболевания или клиническими проявлениями?	20
талектины 1, 3 и 9 у обл	•	20
	Егорова О.Н., Дацина А.В., Тарасова Г.М., Самаркина Е.Ю., Никишина Н.Ю., Глухова С.И., Диатроптов М.Е., Авдеева А.С., Лила А.М.	
Клиническое значение у	диатроптов М.Е., Авсеева А.С., Явла А.М. ровней растворимых рецепторов CD11b и CD163 в моче при АНЦА-ассоциированных васкулитах	26
	Хальметова А.Р., Лила А.М., Таскина Е.А., Алексеева Л.И., Савушкина Н.М., Кашеварова Н.Г.,	20
	Стребкова Е.А., Кудинский Д.М., Алексеева О.Г., Колесникова К.В.	
Остеоартрит коленных	суставов на ранней стадии: оценка структурных изменений с помощью инструментальных методов	34
	Мазуров В.И., Лила А.М., Эрдес Ш.Ф., Гайдукова И.З., Дубинина Т.В., Смирнов А.В., Пристром А.М., Кундер Е.В.,	
	Сорока Н.Ф., Кастанаян А.А., Поварова Т.В., Жугрова Е.С., Самигуллина Р.Р., Плаксина Т.В., Шестерня П.А.,	
	Кропотина Т.В., Антипова О.В., Смолярчук Е.А., Цюпа О.А., Абдулганиева Д.И., Лапшина С.А., Кречикова Д.Г.,	
	Гордеев И.Г., Несмеянова О.Б., Иливанова Е.П., Стрелкова А.В., Тыренко В.В., Линькова Ю.Н.,	
	Зинкина-Орихан А.В., Фокина Е.А., Еремеева А.В., Пухтинская П.С.	
	ования анкилозирующего спондилита на фоне долгосрочной терапии нетакимабом: результаты международного	41
многоцентрового рандо	мизированного двойного слепого клинического исследования III фазы BCD-085-5/ASTERA	41
П нито и ноо многоноитр	Таскина Е.А., Лила А.М., Раскина Т.А., Алексеева Л.И., Наумов А.В., Кашеварова Н.Г. овое наблюдательное исследование препарата Алфлутоп в России: применение	
	овое наолюдательное исследование препарата Алфлутоп в г оссии. применение озраста с остеоартритом различных локализаций (сообщение 5)	52
у национтов полиштого в	Василенко Е.А., Самигуллина Р.Р., Карибова А.К., Грабовецкая Ю.Ю., Мазуров В.И.	2
Эффективность и безоп	асность 24 недель терапии моноклональным антителом к TRBV9+ Т-лимфоцитам (сенипрутуг)	
	рующим спондилитом. Данные реальной клинической практики	62
	Фролов М.Ю., Лила А.М.	
	й анализ применения левилимаба для терапии ревматоидного артрита	
в условиях здравоохран	ения Российской Федерации	69
	Таскина Е.А., Лила А.М., Алексеева Л.И., Кашеварова Н.Г., Стребкова Е.А., Савушкина Н.М.,	
	Шарапова Е.П., Короткова Т.А., Хальметова А.Р.	
	нации глюкозамина и хондроитина сульфата, дополненной нативным (неденатурированным)	
	кстрактом имбиря, витаминами группы В, аскорбиновой кислотой, на клинические проявления	7.4
остеоартрита при разли	чных фенотипах заболевания	/4
Коппекция лефицита ви	Елисеев М.С., Желябина О.В., Кузьмина Я.И., Чикина М.Н. тамина D у пациентов с подагрой, принимающих фебуксостат (пилотное исследование)	84
коррекция дефицита ви		04
Госпитальная смертнос	Койлубаева Г.М., Асеева Е.А., Соловьев С.К., Лила А.М., Глухова С.И. гь в когорте кыргызских пациентов с системной красной волчанкой	90
тосинтальная смертнос		
	КЛИНИЧЕСКИЕ НАБЛЮДЕНИЯ	
	Асеева Е.А., Плетнёв Е.А., Покровский Н.С., Соловьев С.К., Николаева Е.В., Никишина Н.Ю.,	
Волионический со поитил	Абдуллин Е.Т., Бланк Л.М., Зоткин Е.Г., Лила А.М. ной плазмосорбции внеклеточной ДНК и NETs у пациентов с трудно поддающимся лечению	
	нои плазмосороции внеклеточнои дттк и INE 1s у пациентов с трудно поддающимся лечению и (первый опыт применения)	08
ревнатондным артритон		70
	0 Б 3 О Р Ы	
	Коротаева Т.В., Логинова Е.Ю., Лила А.М., Круглова Л.С.	
Современный взгляд на	проблему резистентности к терапии при псориатическом артрите: обзор литературы	106
T7	Шолкина П.А., Шумилова А.А., Решетняк Т.М.	
Концепция «Treat-to-Ta	rget» у пациентов с системной красной волчанкой и индексы активности	113
O6	Середавкина Н.В., Решетняк Т.М., Лила А.М.	110
Оолитерирующии тром	бангиит: взгляд с позиции ревматолога	119
Розможиваем	Алексеева Л.И., Раскина Т.А., Таскина Е.А., Лила А.М.	127
возможности применен	ия лорноксикама в лечении боли при ревматических заболеваниях	14/
Влидние масилу продуд	Желябина О.В., Елисеев М.С., Чикина М.Н., Кузьмина Я.И., Лила А.М. ктов на уровень мочевой кислоты и риск развития подагры: обзор современных данных. Часть 1	122
элимине миспых продуг		
	ЮБИЛЕЙ	137

	LECTURE	
	Guseva I.A., Bolotbekova A.M., Egorova O.N., Tarasova G.M., Koylubaeva G.M., Chanyshev M.D., Samarkina E.Yu.	
Epidemiology and genetics	s of large-vessel vasculitides. Report 1. Epidemiological and molecular genetic aspects of Takayasu arteritis	7
	ORIGINAL INVESTIGATIONS	
CD8+CD28- T lymphocy	Aboleshina A.V., Aleksankin A.P., Zotkin E.G., Avdeeva A.S., Movsesyan A.A., Molova K.M., Makoeva M.A. tes as a marker of immunosenescence in patients with late-onset rheumatoid arthritis	13
	Kondrateva L.V., Panafidina T.A., Gorbunova Yu.N., Popkova T.V., Diatroptov M.E., Avdeeva A.S.	
Galectins 1, 3 and 9 in pat	ients with systemic lupus erythematosus: is there an association with disease activity or clinical manifestations?	20
	Egorova O.N., Datsina A.V., Tarasova G.M., Samarkina E.Yu., Nikishina N.Yu.,	
Clinical significance of uri	Glukhova S.I., Diatroptov M.E., Avdeeva A.S., Lila A.M. nary soluble CD11b and CD163 receptor levels in ANCA-associated vasculitides	26
	Khalmetova A.R., Lila A.M., Taskina E.A., Alekseeva L.I., Savushkina N.M., Kashevarova N.G.,	
	Strebkova E.A., Kudinsky D.M., Alekseeva O.G., Kolesnikova K.V.	
Early-stage knee osteoart	hritis: assessment of structural changes using imaging methods	34
	Mazurov V.I., Lila A.M., Erdes Sh.F., Gaydukova I.Z., Dubinina T.V., Smirnov A.V., Pristrom A.M., Kunder E.V., Soroka N.F., Kastanayan A.A., Povarova T.V., Zhugrova E.S., Samigullina R.R., Plaksina T.V., Shesternya P.A., Kropotina T.V., Antipova O.V., Smolyarchuk E.A., Tsyupa O.A., Abdulganieva D.I., Lapshina S.A., Krechikova D.G., Gordeev I.G., Nesmeyanova O.B., Ilivanova E.P., Strelkova A.V., Tyrenko V.V., Lin'kova Yu.N., Zinkina-Orikhan A.V., Fokina E.A., Eremeeva A.V., Pukhtinskaia P.S.	
	f ankylosing spondylitis during long-term therapy with netakimab: results of the international puble-blind phase III clinical trial BCD-085-5/ASTERA	41
	Taskina E.A., Lila A.M., Raskina T.A., Alekseeva L.I., Naumov A.V., Kashevarova N.G. servational study of Alflutop in Russia: use in elderly patients with osteoarthritis at various sites (report 5)	
	Vasilenko E.A., Samigullina R.R., Karibova A.K., Grabovetskaya Yu.Yu., Mazurov V.I.	
•	week therapy with a monoclonal antibody to TRBV9+ T lymphocytes (seniprutug)	
in patients with ankylosing	s spondylitis: real-world data	62
Pharmacooconomic analy	Frolov M.Yu., Lila A.M. sis of levilimab use as rheumatoid arthritis therapy in the healthcare system of the Russian Federation	60
T nat macoeconomic analys	Taskina E.A., Lila A.M., Alekseeva L.I., Kashevarova N.G., Strebkova E.A., Savushkina N.M.,	09
	Sharapova E.P., Korotkova T.A., Khalmetova A.R. a combination of glucosamine and chondroitin sulfate supplemented with native (undenatured) tract, B vitamins, and ascorbic acid on the clinical manifestations of different phenotypes of osteoarthritis	74
	Eliseev M.S., Zhelyabina O.V., Kuzmina Ya.I., Chikina M.N.	0.4
Correction of vitamin D de	eficiency in patients with gout receiving febuxostat (pilot study)	84
Hospital mortality in a col	Koilubaeva G.M., Aseeva E.A., Soloviev S.K., Lila A.M., Glukhova S.I. hort of Kyrgyz patients with systemic lupus erythematosus	90
1103pitai mortanty m a con		
	CLINICAL OBSERVATIONS	
	Aseeva E.A., Pletnev E.A., Pokrovsky N.S., Soloviev S.K., Nikolaeva E.V., Nikishina N.Yu., Abdullin E.T., Blank L.M., Zotkin E.G., Lila A.M.	
Selective plasmosorption	of extracellular DNA and NETs in patients with difficult-to-treat rheumatoid arthritis (first clinical experience)	98
,	REVIEWS	
	Korotaeva T.V., Loginova E.Yu., Lila A.M., Kruglova L.S.	
Current view on therapy re	esistance in psoriatic arthritis: a literature review	106
Treat-to-target concept in	Sholkina P.A., Shumilova A.A., Reshetnyak T.M. patients with systemic lupus erythematosus and activity indices	113
Thromboong!!4!a abl!4	Seredavkina N.V., Reshetnyak T.M., Lila A.M.	110
i iiromdoangiitis odiiteran	s: a rheumatologist's perspective	119
Possibilities of using of lor	Alekseeva L.I., Raskina T.A., Taskina E.A., Lila A.M. noxicam in the treatment of pain in rheumatic diseases	127
	Zhelyabina O.V., Eliseev M.S., Chikina M.N., Kuzmina Ya.I., Lila A.M.	,
Impact of meat products of	on serum uric acid levels and risk of gout: a review of current evidence. Part 1	133
	ANNIVERSARY	137

Эпидемиология и генетика васкулитов крупных сосудов. Сообщение 1. Эпидемиологические и молекулярно-генетические аспекты артериита Такаясу

Гусева И.А.¹, Болотбекова А.М.², Егорова О.Н.^{1,3}, Тарасова Г.М.¹, Койлубаева Г.М.², Чанышев М.Д.⁴, Самаркина Е.Ю.¹

¹ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²Национальный центр кардиологии и терапии им. акад. Мирсаида Миррахимова при Министерстве здравоохранения Кыргызской республики, Бишкек; ³ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», Москва; ⁴ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Москва

¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Кыргызская Республика, 720040, Бишкек, ул. Тоголока Молдо, 3; ³Россия, 129110, Москва, ул. Щепкина, 61/2; ⁴Россия, 111123, Москва, ул. Новогиреевская, 3A

Артериит Такаясу (AT) — редкое системное заболевание, характеризующееся гранулематозным воспалением, которое поражает крупные артерии, преимущественно аорту и ее ветви. Впервые AT был описан в Японии, где наблюдается его высокая распространенность, позднее немногочисленные случаи AT были выявлены и в других этнических группах. Редкие случаи семейной агрегации заболевания позволили предположить вовлечение генетических факторов в патогенез AT. Почти за 45-летнюю историю изучения генетики AT не только установлена выраженная взаимосвязь заболевания с антигеном HLA-B5(52)/аллелем HLA-B*5201, но и определены другие HLA и не-HLA молекулярно-генетические маркеры.

Ключевые слова: артериит Такаясу; эпидемиология; HLA-B52; генетические полиморфизмы.

Контакты: Ирина Анатольевна Гусева; irrgus@yandex.ru

Для цитирования: Гусева ИА, Болотбекова АМ, Егорова ОН, Тарасова ГМ, Койлубаева ГМ, Чанышев МД, Самаркина ЕЮ. Эпидемиология и генетика васкулитов крупных сосудов. Сообщение 1. Эпидемиологические и молекулярно-генетические аспекты артериита Такаясу. Современная ревматология. 2025;19(5):7—12. https://doi.org/10.14412/1996-7012-2025-5-7-12

Epidemiology and genetics of large-vessel vasculitides. Report 1. Epidemiological and molecular genetic aspects of Takayasu arteritis

Guseva I.A.¹, Bolotbekova A.M.², Egorova O.N.^{1,3}, Tarasova G.M.¹, Koylubaeva G.M.², Chanyshev M.D.⁴, Samarkina E. Yu.¹

¹V.A. Nasonova Research Institute of Rheumatology, Moscow; ²National Center of Cardiology and Therapy named after academician Mirsaid Mirrahimov, Ministry of Health of Kyrgyz Republic, Bishkek; ³M.V. Vladimirsky Moscow Regional Research Clinical Institute, Moscow; ⁴Central Research Institute of Epidemiology, Moscow ¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²3, Togolok Moldo Street, Bishkek 720040, Kyrgyz Republic; ³61/2, Schepkina Street, Moscow 129110, Russia; ⁴3A, Novogireevskaya Street, Moscow 111123, Russia

Takayasu arteritis (TA) is a rare systemic disease characterized by granulomatous inflammation affecting large arteries, primarily the aorta and its branches. First described in Japan, where the disease has a high prevalence, TA was subsequently reported, though less frequently, in other ethnic groups. Rare cases of familial aggregation suggest the involvement of genetic factors in the pathogenesis of TA. During nearly 45 years of genetic research on TA, a strong association has been established with the HLA-B5(52) antigen/HLA-B*5201 allele, as well as with other HLA and non-HLA molecular genetic markers.

Keywords: Takayasu arteritis; epidemiology; HLA-B52; genetic polymorphisms.

Contact: Irina Anatolyevna Guseva; irrgus@yandex.ru

For citation: Guseva IA, Bolotbekova AM, Egorova ON, Tarasova GM, Koylubaeva GM, Chanyshev MD, Samarkina EYu. Epidemiology and genetics of large-vessel vasculitides. Report 1. Epidemiological and molecular genetic aspects of Takayasu arteritis. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):7–12 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-7-12

Согласно современной классификации системных васкулитов [1], артериит Такаясу (АТ) и гигантоклеточный артериит (ГКА) относятся к системным васкулитам крупных сосудов (ВКС), характеризующимся гранулематозным воспалением с преимущественным поражением аорты и ее основных ветвей. В последние 5 лет обсуждаются вопросы сходства и различия этих двух заболеваний [2—6]. В настоящее время эти васкулиты считаются двумя самостоятельными нозологиями, как это представлено в классификационных критериях АСR (American College of Rheumatology) 1990 г. [7—10].

В отличие от диагностических критериев, цель классификационных критериев заключается в обеспечении однородности выборок больных для включения в клинические испытания и другие исследования, например эпидемиологические [11, 12]. Более чем за 30 лет, прошедших со времени разработки критериев ACR 1990 г., благодаря прогрессу в области сосудистой визуализации и внедрению неинвазивных подходов в клиническую практику расширилось понимание клинической гетерогенности ВКС, особенно при сравнении этих заболеваний у пациентов различных рас и популяций. Заболевание экстракраниальных артерий все чаще распознается у пациентов с ГКА, что делает разграничение АТ и ГКА более сложным. Основным классификатором для дифференциации АТ и ГКА обычно служит возраст, однако конкретные возрастные пороги для определения каждого заболевания не стандартизированы. Так, в случае ВКС у пациента 40-50 лет не всегда ясно, вызвано ли поражение крупных сосудов поздним началом АТ или ранним началом ГКА. Предполагается, что внедрение новых классификационных критериев позволит более точно охарактеризовать распространенность и заболеваемость ВКС, особенно АТ.

И АТ, и ГКА являются иммуноопосредованными заболеваниями крупных сосудов, в генезе которых значительную роль играет совокупность генетических и внешнесредовых факторов. Отмечая сходство некоторых клинических проявлений АТ и ГКА, все авторы в то же время указывают на существенные эпидемиологические и молекулярно-генетические отличия этих двух васкулитов.

В настоящем обзоре будет представлена эпидемиологическая и молекулярно-генетическая характеристика АТ.

Эпидемиология

AT — редкий вариант ВКС, поэтому эпидемиологические данные ограниченны. История открытия этого заболевания,

начальные этапы генетических и эпидемиологических исследований увлекательно описаны в статье известного японского ученого F. Numano [13].

Диагностика АТ может быть сложной и отложенной во времени, поскольку течение заболевания может то усиливаться, то ослабевать, а сосудистые ишемические нарушения могут проявляться неспецифическими симптомами. Небольшое количество случаев АТ в сочетании с длительным временем его диагностики влияет на точность расчетов заболеваемости. Поэтому данные о распространенности и заболеваемости АТ, полученные в эпидемиологических исследованиях до внедрения таких методов неинвазивной визуализации сосудов, как компьютерная томография, магнитно-резонансная томография, позитронно-эмиссионная томография с фтордезоксиглюкозой, были не вполне точными. Это связано с тем, что, по данным японских авторов, у многих пациентов диагноз АТ был установлен через несколько лет или даже десятилетий после возникновения заболевания [14].

Известно, что самая высокая распространенность АТ регистрируется в Японии, а также в странах Восточной Азии, однако в последнее время в связи с миграционными процессами эти показатели возросли и в других странах [15, 16].

Метаанализ 11 исследований, проведенных в Турции, Дании, Норвегии, Польше, Австралии, Швеции, Израиле, Южной Корее, Испании и Великобритании, позволил определить усредненный показатель заболеваемости АТ как 1,11 на 1 млн человек в год [17]. Анализ выявил более высокие усредненные показатели заболеваемости у женщин (2 на 1 млн в год) по сравнению с таковыми у мужчин (0,28 на 1 млн в год). Только одно из включенных в анализ исследований было из Азии (Южная Корея), большая же часть данных поступила из Европы. При разделении по географическим регионам было обнаружено, что заболеваемость в европейских странах ниже, чем в «неевропейских» (соответственно 0,85 и 1,53 на 1 млн).

В недавних исследованиях, выполненных авторами из Швейцарии и Италии, установлено, что ежегодная заболеваемость в этих странах составляет 0,3 и 0,5 на 1 млн населения в год соответственно, что согласуется с более низкими показателями заболеваемости, наблюдаемыми в Европе [18, 19].

В табл. 1 приведены обобщенные данные о заболеваемости АТ в разных географических регионах [12, 17, 20, 21].

Самая высокая распространенность АТ (40 на 1 млн населения) отмечена в Японии, а самая низкая (0,9 на 1 млн) —

Таблица 1. Заболеваемость AT в разных регионах Table 1. Incidence of TA in different countries

Заболеваемость на 1 млн в год	Некоторые макрорегионы мира	Страны
1-2,4	Восточная Азия	Гонконг, Япония, Южная Корея, Китай
2,1-2,2	Ближний Восток	Турция, Израиль, Кувейт
2,6	Северная Америка	США (Аляска), Канада
0,94	Южная Америка	Бразилия
0,3-3,4	Южная Европа	Италия, Испания
0,4–1,5	Северная Европа	Норвегия, Великобритания, Дания, Швеция
0,4	Центральная Европа	Швейцария, Польша, Словения
0,4	Океания	Австралия, Новая Зеландия

в США. Вероятно, эти различия объясняются географическими и генетическими особенностями популяций.

Молекулярно-генетические маркеры

Впервые предположение о возможной аутоиммунной патологии, лежащей в основе поражения сосудов при АТ, высказано в 1962 г. в статье R.D. Judge и соавт. [22], однако в то время роль генетических факторов при АТ даже не обсуждалась, так как не было зарегистрировано семейных случаев заболевания. Поскольку наибольшая распространенность АТ наблюдалась в Японии, то закономерно, что первый случай семейной агрегации болезни также был выявлен и описан в этой стране. В конце прошлого столетия F. Numano и соавт. [23] и S. Enomoto и соавт. [24] сообщили об АТ у сестер-близнецов.

Впоследствии немногочисленные сообщения о семейной агрегации АТ (в связи с редкостью самого заболевания) и открытия в области «HLA и болезни» позволили предположить возможную роль генетических факторов в патогенезе АТ и выявить ассоциацию заболевания с антигеном HLA-B5 и его субтипом – HLA-B5(52) [25-27]. Данная взаимосвязь была подтверждена не только у японских пациентов, но и в других популяциях и этнических группах, особенно после внедрения молекулярных методов исследования [28–31]. Забегая немного вперед, следует подчеркнуть, что данная взаимосвязь была доказана во всех исследованиях, выполненных на больших выборках пациентов с контрольными группами при использовании полногеномных исследований ассоциаций (genome-wide association studies, GWAS) [32–36]. С прогрессом в области молекулярной генетики расширялись сведения и о взаимосвязи AT не только с аллелем HLA-B*52:01, но и с другими локусами системы HLA (A, C, DRB1, DQA1, DQB1), хотя эти ассоциации были выявлены в отдельных исследованиях и по силе связи оказались гораздо слабее связи с HLA-B52. Очень подробный перечень большого числа найденных ассоциаций полиморфизмов генов с АТ как в регионе HLA, так и в других генных локусах представлен в работах C. Terao [37] и Р. Renauer и А.Н. Sawalha [38].

Необходимо подчеркнуть, что ряд генетических исследований при АТ был проведен с использованием предвзятой стратегии гена-кандидата, когда изучаемые гены и их полиморфизмы выбирают на основе предшествующих знаний об их возможной связи с заболеванием или тем или иным его признаком (фенотипом). Как и при других аутоиммунных и иммуновоспалительных заболеваниях, большинство исследований генов-кандидатов при АТ были сосредоточены либо на регионе *HLA*, либо на генах, связанных с иммунным ответом: *IL2*, *IL6*, *TNFA*, *IL12*, *IL18* [39–42].

Последующие крупномасштабные генетические исследования (GWAS), обеспечили беспристрастный подход и значительно расширили понимание генетической основы АТ (табл. 2).

Первые два GWAS при АТ были опубликованы в 2013 г. [32, 33]. Одно из этих исследований [32] включало пациентов с АТ и контрольную группу, в которую вошли турки и американцы европейского происхождения. Локусы со значимыми ассоциациями ($p<5\cdot10^{-8}$) были идентифицированы в регионе HLA, а также в регионах, включающих гены FCGR2A и FCGR3A (члены семейства рецепторов иммуноглобулина Fc), и IL12B, который кодирует субъединицу p40 интерлейкина (ИЛ) 12 и ИЛ23. Ассоциация, описанная в регионе HLA, соответствовала

двум независимым локусам, расположенным в HLA-B/MICA и HLA-DQB1/HLA-DRB1. Анализ классических аллелей HLA подтвердил надежную ассоциацию с HLA-B*52:01. Второе исследование GWAS, опубликованное в 2013 г., было проведено в японской популяции [33]. Самая сильная ассоциация обнаружена в регионе HLA, соответствующем HLA-B*52:01, что подтверждает связь этого классического аллеля с AT. За пределами региона HLA исследование также выявило генетическую связь с полиморфизмами гена IL12B при уровне значимости для $GWAS p < 5 \cdot 10^{-8}$.

Технологический прогресс в области генотипирования массивов исследуемой ДНК и внедрение в практику анализа импутации данных позволили идентифицировать большее число генетических ассоциаций при иммуноопосредованных заболеваниях. Последующее GWAS выиграло от этих улучшений и наряду с увеличением размера выборки привело к идентификации новых локусов, связанных с АТ, что было отражено в публикации 2015 г. [34]. В этом GWAS были идентифицированы новые значимые генетические ассоциации в генах *IL6*, *RPS9/LILRB3* (рибосомальный белок S9/лейкоцитарный иммуноглобулиноподобный рецептор В3) и регионе chr21q22. Однонуклеотидный полиморфизм (SNP) rs2069837 в гене *IL6* позже был функционально охарактеризован [43]. Этот SNP расположен в межгенной области гена IL6, хотя было показано, что он влияет на регуляторную область противовоспалительного гена GPNMB (Glycoprotein NmB), которая находится на расстоянии ~520 кб. Это исследование продемонстрировало, что аллель риска AT в этом SNP снижает экспрессию *GPNMB* в макрофагах через белковый комплекс миоцит-специфичного фактора усиления 2-гистондеацетилазы (MEF2-HDAC) и хроматиновую петлю. Результаты этого исследования выявили функциональную роль локуса IL6 при AT, на основе данных GWAS были предложены новые терапевтические подходы. И действительно, ингибитор ИЛ6 тоцилизумаб внедрен в клиническую практику как один из эффективных препаратов для терапии АТ [44].

В GWAS в японской популяции с большим размером выборки были обнаружены генетические ассоциации в гене DUSP22 (фосфатаза двойной специфичности 22), гене PTK2B, кодирующем протеинтирозинкиназу 2β , и гене KLHL33, отвечающем за синтез члена kelch-подобных белков семейства 33 [35].

GWAS, проведенное в самых больших по численности выборках больных АТ (n=1226) и контрольной группе (n=5444), включало пять различных популяций: турок, американцев из Северной Америки – потомков североевропейцев, – китайцев хань, южноазиатов, проживающих в Америке, и итальянцев. [36]. В этом исследовании подтверждена связь ранее зарегистрированных локусов с АТ [32, 34] и, кроме того, выявлены новые ассоциированные с АТ генные локусы на уровне значимости всего генома: МИС21 (муцин 21, связанный с клеточной поверхностью), VPS8 (субъединица VPS8 комплекса CORVET), SVEP1 (суши, фактор фон Виллебранда типа A, EGF и домен 1 пентраксина) – ген, кодирующий белок с несколькими функциональными доменами, включая домены суши, домены фактора фон Виллебранда типа A, повторы, подобные EGF, и домен пентраксина, а также chr13q21 и CFL2 (кофилин 2). Для некоторых из этих генов ранее была установлена связь с миопатиями, сердечно-сосудистыми заболеваниями и другими аутоиммунными заболеваниями [36].

Таблица 2. Полиморфизмы генов с высоким уровнем значимости ($p \le 5 \cdot 10^{-8}$), выявленные в полногеномных исследованиях Table 2. Gene polymorphisms with high level of significance ($p \le 5 \cdot 10^{-8}$) identified in genome-wide association studies

Хромосома	Пациенты/ контроль	Гены (однонуклеотидные полиморфизмы, SNPs)	Источник
1	451/1115* 633/5928##	FCGR2A, FCGR3A (rs10919543, rs2099684)	G. Saruhan-Direskeneli и соавт., 2013 [32], С. Тегао и соавт., 2018 [35]
3	1226/5444***	<i>VPS8</i> (rs58693904)	L. Ortiz-Fernandez и соавт., 2021 [36]
5	451/1115* 167/663# 1226/5444***	<i>IL12B</i> (rs6871626, rs4379175, rs56167332)	G. Saruhan-Direskeneli и соавт., 2013 [32], С. Тегао и соавт., 2013 [33], L. Ortiz-Fernandez и соавт., 2021 [36]
6	451/1115* 693/1536** 1226/5444***	HLA-B/MICA (rs12524487, rs17193507, rs12526858)	G. Saruhan-Direskeneli и соавт., 2013 [32], Р.А. Renauer и соавт, 2015 [34], L. Ortiz-Fernandez и соавт., 2021 [36]
6	451/1115*	HLA-DQB1/HLA-DRB1 (rs113452171)	G. Saruhan-Direskeneli и соавт., 2013 [32]
6	1226/5444***	<i>HLA-G</i> (rs28749167)	L. Ortiz-Fernandez и соавт., 2021 [36]
6	1226/5444***	5' MUC21 (rs2844678)	L. Ortiz-Fernandez и соавт., 2021 [36]
6	167/663#	<i>CCHCR1</i> (rs9263739)	С. Тегао и соавт., 2013 [33]
6	633/5928##	DUSP22 (rs17133698)	С. Тегао и соавт., 2018 [35]
7	693/1536**	<i>IL6</i> (rs2069837)	Р.А. Renauer и соавт, 2015 [34]
8	633/5928## 1226/5444***	<i>PTK2B</i> (rs28834970, rs2322599)	С. Тегао и соавт., 2018 [35], L. Ortiz-Fernandez и соавт., 2021 [36]
9	1226/5444***	SVEP1 (rs7038415)	L. Ortiz-Fernandez и соавт., 2021 [36]
14	1226/5444***	<i>CFL2</i> (rs76457959)	L. Ortiz-Fernandez и соавт., 2021 [36]
14	633/5928##	<i>KLHL33</i> (rs1713450)	С. Тегао и соавт., 2018 [35]
19	633/5928##	<i>LILR3A</i> (rs103294)	С. Тегао и соавт., 2018 [35]
19	693/1536**	RPS9/LILRB3 (rs11666543)	Р.А. Renauer и соавт, 2015 [34]
21	693/1536** 633/5928## 1226/5444***	<i>chr21q22</i> (rs4817983, rs4817988, rs2836878)	P.A. Renauer и соавт, 2015 [34], С. Тегао и соавт., 2018 [35], L. Ortiz-Fernandez и соавт., 2021 [36]
_			-

Примечание. * — смешанная популяция 1: турки, американцы европейского происхождения; ** — смешанная популяция 2: турки, американцы европейского происхождения (более крупная выборка); *** — смешанная популяция 3: турки, американцы европейского происхождения, китайцы, проживающие в Америке, итальянцы; ** — японцы; ** — японцы; ** — японцы; ** — японцы (более крупная выборка).

В 2025 г. была опубликована статья D. Casares-Marfil и А.Н. Sawalha [45], посвященная анализу 5 GWAS и попытке осмыслить данные о функциональности ассоциированных с АТ генов. Авторами были использованы различные методы анализа, что позволило выявить 9 кластеров генных путей: регуляция иммунитета, опосредованного Т-клетками; адаптивный иммунный ответ; адаптивный иммунный ответ, основанный на соматической рекомбинации иммунных рецепторов, построенных из доменов суперсемейства иммуноглобулинов; позитивная регуляция продукции цитокинов;

процессинг антигена и презентация экзогенного пептидного антигена; регуляция активации NK-клеток; регуляция продукции ИЛ6; негативная регуляция развития клеток [45].

Таким образом, генетические исследования являются первым шагом к идентификации соответствующих молекулярных путей и типов клеток при АТ. Полученные данные о подтвержденных генетических регионах, мощные методы анализа информации и использование различных баз данных позволят приступить к функциональным исследованиям роли генетических регионов (вариаций генов) в патогенезе АТ.

ЛИТЕРАТУРА/REFERENCES

- 1. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. *Arthritis Rheum*. 2013 Jan;65(1):1-11. doi: 10.1002/art.37715.
- 2. Harky A, Fok M, Balmforth D, Bashir M. Pathogenesis of large vessel vasculitis: Implications for disease classification and future therapies. *Vasc Med.* 2019 Feb;24(1):79-88. doi: 10.1177/1358863X18802989.
- 3. Kermani TA. Takayasu arteritis and giant cell arteritis: are they a spectrum of the same disease? *Int J Rheum Dis.* 2019 Jan:22 Suppl 1:41-48. doi: 10.1111/1756-185X.13288. 4. Stamatis P. Giant Cell Arteritis versus

ЛЕКЦИЯ/LEСТURE

- Takayasu Arteritis: An Update. *Mediterr J Rheumatol.* 2020 Jun 30;31(2):174-182. doi: 10.31138/mjr.31.2.174.
- 5. Watanabe R, Berry GJ, Liang DH, et al. Pathogenesis of Giant Cell Arteritis and Takayasu Arteritis-Similarities and Differences. *Curr Rheumatol Rep.* 2020 Aug 26; 22(10):68. doi: 10.1007/s11926-020-00948-x. 6. Mortensen PW, Raviskanthan S, Chevez-Barrios P, Lee AG. Giant cell arteritis versus Takayasu's Arteritis: Two sides of the same coin? *Saudi J Ophthalmol.* 2022 Apr 18;35(3): 198-203. doi: 10.4103/SJOPT.SJOPT_
- 7. Arend WP, Michel BA, Bloch DA, et al.
 The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. *Arthritis Rheum*. 1990 Aug; 33(8): 1129-34. doi: 10.1002/art.1780330811.

 8. Hunder GG, Bloch DA, Michel BA, et al.
 The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. *Arthritis Rheum*. 1990 Aug; 33(8): 1122-8. doi: 10.1002/art.1780330810.

 9. Grayson PC, Ponte C, Suppiah R, et al; DCVAS Study Group. 2022 American College of Rheumatology/EULAR classification criteria for Takayasu arteritis. *Ann Rheum Dis*. 2022 Dec; 81(12):1654-1660. doi: 10.1136/
- ard-2022-223482.
 10. Ponte C, Grayson PC, Robson JC, et al; DCVAS Study Group. 2022 American College of Rheumatology/EULAR classification criteria for giant cell arteritis. *Ann Rheum Dis*. 2022 Dec;81(12):1647-1653. doi: 10.1136/ard-2022-223480.
- 11. Aggarwal R, Ringold S, Khanna D, et al. Distinctions between diagnostic and classification criteria? *Arthritis Care Res (Hoboken)*. 2015 Jul;67(7):891-7. doi: 10.1002/acr.22583. 12. Ecclestone T, Watts RA. Classification and epidemiology of vasculitis: Emerging concepts. *Best Pract Res Clin Rheumatol*. 2023 Mar;37(1):101845. doi: 10.1016/j.berh. 2023.101845.
- 13. Numano F. The story of Takayasu arteritis. *Rheumatology (Oxford)*. 2002 Jan;41(1):103-6. doi: 10.1093/rheumatology/41.1.103.
- 14. Ishikawa K, Maetani S. Long-term outcome for 120 Japanese patients with Takayasu's disease. Clinical and statistical analyses of related prognostic factors. *Circulation*. 1994 Oct;90(4):1855-60. doi: 10.1161/01.cir. 90.4.1855.
- 15. Gudbrandsson B, Molberg Ø, Garen T, Palm Ø. Prevalence, Incidence, and Disease Characteristics of Takayasu Arteritis by Ethnic Background: Data From a Large, Population-Based Cohort Resident in Southern Norway. *Arthritis Care Res (Hoboken)*. 2017 Feb;69(2): 278-285. doi: 10.1002/acr.22931.
- 16. Jiang Z, Lefebvre F, Ross C, et al. Variations in Takayasu arteritis characteristics in a cohort of patients with different racial backgrounds. *Semin Arthritis Rheum*. 2022 Apr; 53:151971. doi: 10.1016/j.semarthrit. 2022.151971.

- 17. Rutter M, Bowley J, Lanyon PC, et al. A systematic review and meta-analysis of the incidence rate of Takayasu arteritis. *Rheumatology (Oxford)*. 2021 Nov 3;60(11):4982-4990. doi: 10.1093/rheumatology/keab406 18. Gloor AD, Chollet L, Christ LA, et al. Takayasu arteritis: Prevalence and clinical presentation in Switzerland. *PLoS One*. 2021 Jun 18;16(6):e0250025. doi: 10.1371/journal.pone.0250025.
- 19. Muratore F, Boiardi L, Mancuso P, et al. Incidence and prevalence of large vessel vasculitis (giant cell arteritis and Takayasu arteritis) in northern Italy: A population-based study. *Semin Arthritis Rheum*. 2021 Aug;51(4): 786-792. doi: 10.1016/j.semarthrit. 2021.06.001.
- 20. Watts RA, Hatemi G, Burns JC, Mohammad AJ. Global epidemiology of vasculitis. Nat Rev Rheumatol. 2022 Jan; 18(1):22-34. doi: 10.1038/s41584-021-00718-8. 21. Ozguler Y, Esatoglu SN, Hatemi G. Epidemiology of systemic vasculitis. Curr Opin Rheumatol. 2024 Jan 1;36(1):21-26. doi: 10.1097/BOR.0000000000000983. 22. Judge RD, Currier RD, Gracie WA, Figley MM. Takayasu's arteritis and the aortic arch syndrome. Am J Med. 1962 Mar;32:379-92. doi: 10.1016/0002-9343(62)90128-6. 23. Numano F, Isohisa I, Kishi U, et al. Takayasu's disease in twin sisters. Possible genetic factors. Circulation. 1978 Jul;58(1): 173-7. doi: 10.1161/01.cir.58.1.173. 24. Enomoto S, Iwasaki Y, Bannai S, et al. Takayasu's disease in twin sisters. Jpn Heart J. 1984;25:147-52. doi: 10.1536/ihj.25.147. 25. Naito S, Arakawa K, Takeshita A, et al. HLA-B5 - Association with Takayasus disease. Tissue Antigens. 1977;10:220-30. 26. Isohisa I, Numano F, Maezawa H, Sasazuki T. HLA-Bw52 in Takayasu disease. Tissue Antigens. 1978;12(4):246-8. doi: 10.1111/j.1399-0039.1978.tb01332.x. 27. Naito S, Arakawa K, Saito S, et al. Takayasu's disease: association with HLA-B5. Tissue Antigens 1978;12(2):143-5. doi: 10.1111/j.1399-0039.1978.tb01310.x. 28. Mehra NK, Jaini R, Balamurugan A. et al.
- Suppl 1:S127-32.
 29. Sahin Z, B cake gil M, Aksu K, et al. Takayasu's arteritis is associated with HLA-B*52, but not with HLA-B*51, in Turkey. *Arthritis Res Ther.* 2012 Feb 6;14(1): R27. doi: 10.1186/ar3730.

Immunogenetic analysis of Takayasu arteritis

in Indian patients. Int J Cardiol. 1998 Oct 1;66

- 30. Vargas-Alarcon G, Flores-Dominguez C, Hernandez-Pacheco G, et al. Immunogenetics and clinical aspects of Takayasu's arteritis patients in a Mexican Mestizo population. *Clin Exp Rheumatol.* 2001 Jul-Aug;19(4): 439-43
- 31. Yajima M, Numano F, Park YB, Sagar S. Comparative studies of patients with Takayasu arteritis in Japan, Korea and India comparison of clinical manifestations, angiography and HLA-B antigen. *Jpn Circ J.* 1994 Jan;

- 58(1):9-14. doi: 10.1253/jcj.58.9.
 32. Saruhan-Direskeneli G, Hughes T,
 Aksu K, et al. Identification of multiple genetic susceptibility loci in Takayasu arteritis. *Am J Hum Genet.* 2013 Aug 8;93(2):298-305. doi: 10.1016/j.ajhg.2013.05.026.
- 33. Terao C, Yoshifuji H, Kimura A, et al. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population. *Am J Hum Genet*. 2013 Aug 8;93(2):289-97. doi: 10.1016/j.ajhg.2013.05.024.
- 34. Renauer PA, Saruhan-Direskeneli G, Coit P. et al. Identification of Susceptibility Loci in IL6, RPS9/LILRB3, and an Intergenic Locus on Chromosome 21q22 in Takayasu Arteritis in a Genome-Wide Association Study. Arthritis Rheumatol. 2015 May; 67(5):1361-8. doi: 10.1002/art.39035. 35. Terao C, Yoshifuji H, Matsumura T, et al. Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13045-13050. doi: 10.1073/pnas.1808850115. 36. Ortiz-Fernandez L, Saruhan-Direskeneli G, Alibaz-Oner F, et al. Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study. Am J Hum Genet. 2021 Jan 7;108(1):84-99. doi: 10.1016/j.ajhg. 2020.11.014.
- 37. Terao C. Revisited HLA and non-HLA genetics of Takayasu arteritis where are we? *J Hum Genet*. 2016 Jan;61(1):27-32. doi: 10.1038/jhg.2015.87.
- 38. Renauer P, Sawalha AH. The genetics of Takayasu arteritis. *Presse Med.* 2017 Jul-Aug; 46(7-8 Pt 2):e179-e187. doi: 10.1016/j.lpm. 2016.11.031.
- 39. Saruhan-Direskeneli G, Bicakcigil M, Yilmaz V, et al. Interleukin (IL)-12, IL-2, and IL-6 gene polymorphisms in Takayasu's arteritis from Turkey. *Hum Immunol*. 2006 Sep; 67(9):735-40. doi: 10.1016/j.humimm. 2006.06.003.
- 40. Chen S, Luan H, Li L, et al. Relationship of HLA-B*51 and HLA-B*52 alleles and TNF- α -308A/G polymorphism with susceptibility to Takayasu arteritis: a meta-analysis. *Clin Rheumatol.* 2017 Jan;36(1):173-181. doi: 10.1007/s10067-016-3445-0.
- 41. Wen D, Zhou XL, Du X, et al. Association of interleukin-18 gene polymorphisms with Takayasu arteritis in a Chinese Han population. *Chin Med J (Engl)*. 2020 Oct 5;133(19): 2315-2320. doi: 10.1097/CM9.0000000 000001047.
- 42. Danda D, Goel R, Kabeerdoss J, et al. Angiogenesis related genes in Takayasu Arteritis (TAK): robust association with Tag SNPs of IL-18 and FGF-2 in a South Asian Cohort. *J Hum Genet*. 2024 Jan;69(1):13-18. doi: 10.1038/s10038-023-01198-2.
 43. Kong X, Sawalha AH. Takayasu arteritis
- risk locus in IL6 represses the anti-inflammatory gene GPNMB through chromatin looping and recruiting MEF2-HDAC complex.

ЛЕКЦИЯ/LEСТURE

Апп Rheum Dis. 2019 Oct;78(10):1388-1397. doi: 10.1136/annrheumdis-2019-215567. 44. Егорова ОН, Тарасова ГМ, Койлубаева ГМ и др. Современные подходы к терапии артериита Такаясу. Современная ревматология. 2024;18(1):101-108.

Egorova ON, Tarasova GM, Koylubaeva GM, et al. Modern approaches to the treatment of Takayasu arteritis. *Sovremennaya Revmatologiya = Modern Rheumatology Journal*. 2024;18(1):101-108. (In Russ.). doi: 10.14412/1996-7012-2024-1-101-108.

45. Casares-Marfil D, Sawalha AH. Functional and Practical Insights Into the Genetic Basis of Takayasu Arteritis. *ACR Open Rheumatol.* 2025 Jan;7(1):e11766. doi: 10.1002/acr2.11766.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 25.06.2025/12.09.2025/15.09.2025

Заявление о конфликте интересов/Conflict of Interest Statement

Статья подготовлена в рамках научно-исследовательской работы (№/№ государственных заданий РК 122040400024-7) и международного сотрудничества ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой» (Россия) и Национального центра кардиологии и терапии им. акад. Мирсаида Миррахимова при Министерстве здравоохранения Кыргызской республики (Кыргызстан).

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared within the framework of the research project (State Assignment of the Russian Federation № PK-122040400024-7) and international cooperation between the V.A. Nasonova Research Institute of Rheumatology (Russia) and the National Center of Cardiology and Therapy named after academician Mirsaid Mirrahimov, Ministry of Health of the Kyrgyz Republic (Kyrgyzstan).

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Гусева И.А. https://orcid.org/0000-0002-4906-7148 Болотбекова А.М. https://orcid.org/0000-0003-1880-5678 Егорова О.Н. https://orcid.org/0000-0002-4846-5531 Тарасова Г.М. https://orcid.org/0000-0001-9933-5350 Койлубаева Г.М. https://orcid.org/0000-0001-5433-3300 Чанышев М.Д. https://orcid.org/0000-0002-6943-2915 Самаркина Е.Ю. https://orcid.org/0000-0001-7501-9185

CD8+CD28- T-лимфоциты как маркер иммунного старения у пациентов с началом ревматоидного артрита в пожилом возрасте

Аболешина А.В.¹, Алексанкин А.П.^{1,2}, Зоткин Е.Г.¹, Авдеева А.С.¹, Мовсесян А.А.¹, Молова К.М.¹, Макоева М.А.¹

¹ΦГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²Научно-исследовательский институт морфологии человека им. акад. А.П. Авцына ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского», Москва

¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Россия, 117418, Москва, ул. Цюрупы, 3

Ревматоидный артрит (PA), начавшийся в пожилом и в молодом возрасте, имеет различия. Одной из возможных причин возникновения PA в пожилом возрасте является старение иммунной системы, которое характеризуется утратой экспрессии CD28 на Т-лимфоцитах и накоплением «стареющих» субпопуляций, обладающих провоспалительной активностью.

Цель исследования — изучить субпопуляции CD4+CD28+/- и CD8+CD28+/- Т-лимфоцитов у пациентов с началом PA в пожилом возрасте.

Материал и методы. В исследование включено 100 больных РА. В 1-ю группу вошло 50 пациентов с началом РА после 60 лет (медиана возраста дебюта — 67 [63,0; 72,0] лет); во 2-ю группу — 50 пациентов молодого возраста с началом РА до 45 лет (медиана возраста дебюта — 36 [27,0; 43,0] лет). Длительность болезни составляла ≤3 года (медиана — 1 [1,0; 2,0] год). Изучены также показатели 32 здоровых доноров, сопоставимых с больными РА по полу и возрасту. Фенотипирование субпопуляций T-лимфоцитов осуществляли методом проточной цитометрии.

Результаты и обсуждение. У пациентов с дебютом РА в пожилом возрасте выявлено значительное увеличение уровня CD8+CD28-Т-клеток по сравнению как с молодыми пациентами, так и со здоровыми донорами (медиана абсолютного числа — 0,2 [0,1; 0,4], 0,14 [0,06; 0,2] и 0,1 [0,0; 0,1] соответственно). Различия в количестве CD4+CD28- клеток были статистически незначимыми. Корреляции между количеством CD28-негативных клеток и клинико-лабораторными характеристиками заболевания не установлены. Заключение. При позднем дебюте PA уровень CD4+CD28- Т-клеток значительно повышается уже на ранних этапах заболевания и может служить специфическим маркером иммунного старения.

Ключевые слова: ревматоидный артрит; пожилой возраст; иммунное старение.

Контакты: Александра Вадимовна Аболёшина; abolyoshina@yandex.ru

Для цитирования: Аболешина AB, Алексанкин AП, Зоткин EГ, Авдеева AC, Мовсесян AA, Молова KM, Макоева MA. CD8+ CD28-T-лимфоциты как маркер иммунного старения у пациентов с началом ревматоидного артрита в пожилом возрасте. Современная ревматология. 2025;19(5):13—19 (In Russ.).https://doi.org/10.14412/1996-7012-2025-5-13-19

CD8+CD28- Tlymphocytes as a marker of immunosenescence in patients with late-onset rheumatoid arthritis

Aboleshina A.V.¹, Aleksankin A.P.^{1,2}, Zotkin E.G.¹, Avdeeva A.S.¹, Movsesyan A.A.¹, Molova K.M.¹, Makoeva M.A.¹

¹V.A. Nasonova Research Institute of Rheumatology, Moscow; ²Avtsyn Research Institute of Human Morphology, B.V. Petrovsky Russian Research Center of Surgery, Moscow

¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²3, Tsyurupy Street, Moscow 117418, Russia

Rheumatoid arthritis (RA) with late and early onset demonstrates distinct differences. One of the possible causes of RA onset in older age is immunosenescence, characterized by the loss of CD28 expression on T lymphocytes and the accumulation of "senescent" subpopulations with proinflammatory activity.

Objective. To investigate the subpopulations of CD4+CD28+/- and CD8+CD28+/- T lymphocytes in patients with late-onset RA.

Material and methods. The study included 100 RA patients. Group 1 comprised 50 patients with RA onset after 60 years of age (median age at onset 67 [63.0; 72.0] years); group 2 included 50 younger patients with RA onset before 45 years (median age at onset 36 [27.0; 43.0] years). Disease duration was ≤ 3 years (median 1 [1.0; 2.0] years). Data from 32 healthy donors, matched for sex and age with the RA patients, were also analyzed. We used flow cytometryfor T-lymphocyte subpopulations phenotyping.

Results and discussion. Patients with late-onset RA demonstrated a significant increase in CD8+CD28- T cells compared with both young RA patients and healthy donors (median absolute counts 0.2 [0.1; 0.4], 0.14 [0.06; 0.2] and 0.1 [0.0; 0.1], respectively). Differences in CD4+CD28- cell

counts were not statistically significant. No correlations were found between the number of CD28-negative cells and clinical or laboratory disease characteristics.

Conclusion. In late-onset RA, the level of CD8+CD28- T cells is markedly elevated at the early stages of the disease and may serve as a specific marker of immunosenescence.

Keywords: rheumatoid arthritis; elderly; immunosenescence.

Contact: Alexandra Vadimovna Aboleshina; abolyoshina@yandex.ru

For citation: Aboleshina AV, Aleksankin AP, Zotkin EG, Avdeeva AS, Movsesyan AA, Molova KM, Makoeva MA. CD8+CD28- T lymphocytes as a marker of immunosenescence in patients with late-onset rheumatoid arthritis. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):13–19 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-13-19

Ревматоидный артрит (РА) — иммуновоспалительное (аутоиммунное) ревматическое заболевание неизвестной этиологии, характеризующееся хроническим эрозивным артритом и системным поражением внутренних органов [1]. По данным систематического эпидемиологического анализа глобального бремени РА, основанного на исследовании Global Burden of Disease (GBD, 2017), которое охватывало 195 стран и период с 1990 по 2017 г., стандартизированные по возрасту показатели распространенности заболевания и количество лет, прожитых с инвалидностью, увеличиваются с возрастом, достигая пика в возрастных группах 70—74 лет и 75—79 лет у женщин и мужчин соответственно [2].

Ранее было установлено, что РА, возникший в пожилом и в молодом возрасте, имеет отличия. У пациентов старшей возрастной группы начало заболевания, как правило, сопровождается повышением острофазовых показателей (СОЭ и СРБ), конституциональными явлениями (общая слабость, утомляемость, лихорадка), в то время как серопозитивность по аутоантителам – ревматоидному фактору (РФ) и антителам к циклическому цитруллинированному пептиду (АЦЦП) встречается реже [3-5]. Данные отечественного исследования, в котором обобщен 40-летний опыт наблюдения за пациентами старше 50 лет с ранним РА, свидетельствуют о том, что для этой группы характерно острое начало заболевания с развитием полиартрита, преобладанием высокой, реже - умеренной воспалительной активности, нарушением профессиональной деятельности и способности к самообслуживанию, а также склонность к формированию деструктивных изменений в суставах, что ассоциируется с наличием РФ и/или АЦЦП [6]. Эти отличия оказались настолько значительными, что было предложено выделить отдельный фенотип РА с началом в пожилом возрасте [7].

Одним из ключевых факторов, способствующих развитию РА у пожилых пациентов, являются возрастные изменения иммунной системы, известные как иммунное старение, или иммуносенесценция [8, 9]. Возрастная инволюция тимуса и компенсаторная пролиферация периферических CD4+ и CD8+ Т-клеток приводят к сокращению клеточного репертуара, утрате костимулирующей молекулы CD28 и появлению фукциональных изменений Т-лимфоцитов [9–11], которые приобретают устойчивость к апоптозу, цитотоксические и провоспалительные свойства [12], способствуя развитию воспалительного процесса в тканях и аутоиммунных заболеваний, таких как PA [10].

Появление CD28- Т-клеток, по мнению J.J. Goronzy и соавт. [13], предшествует началу РА. Согласно альтернативной гипотезе, иммуносенесценция — не причина, а следствие РА: наличие специфических для РА аутоантител сопровождается

повышением содержания провоспалительных цитокинов, что активирует процессы иммунного старения [14]. С учетом этих данных предлагается рассматривать РА как модель преждевременного старения человека [15, 16], поскольку прогрессирование РА связано с увеличением распространенности возраст-ассоциированных заболеваний [17].

Изучение связи между РА и иммунным старением необходимо для совершенствования методов диагностики, терапевтических мероприятий и прогнозирования исходов заболевания при его развитии в пожилом возрасте.

Цель исследования — изучить субпопуляции CD4+CD28+/- и CD8+ CD28+/- Т-лимфоцитов периферической крови у пациентов с началом PA в пожилом возрасте.

Материал и методы. В наблюдательное когортное сравнительное исследование включено 100 пациентов с достоверным диагнозом РА (согласно критериям American College of Rheumatology / European Alliance of Associations for Rheumatology, ACR/EULAR, 2010). В 1-ю группу вошло 50 пациентов с дебютом РА после 60 лет, во 2-ю группу − 50 больных с дебютом РА до 45 лет. Длительность РА была сопоставима в обеих группах и составляла ≤3 года с момента дебюта.

Больные наблюдались в ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой» (НИИР им. В.А. Насоновой) с октября 2022 г. по сентябрь 2024 г. Все пациенты подписали информированное согласие на участие в исследовании. Исследование одобрено локальным этическим комитетом НИИР им. В.А. Насоновой (протокол № 24 от 01.12.2022).

Характеристика пациентов при включении представлена в табл. 1. Исходно медиана длительности РА составила 1 [1,0; 2,0] год, среди больных преобладали женщины (76%). Большинство пациентов имели развернутую клиническую (60%) и ІІ рентгенологическую (75%) стадию РА. У 7% пациентов наблюдалась низкая активность заболевания по индексу DAS28-CPБ (Disease Activity Score 28 по уровню СРБ), у 47% — средняя и у 46% — высокая. Позитивны по РФ и АЦЦП были 44% пациентов, системные проявления имелись у 34%. Более половины больных (57%) получали метотрексат (МТ), в то же время 22% вовсе не принимали синтетические базисные противовоспалительные препараты (сБПВП), и только 6% пациентов использовали генно-инженерные биологические препараты (ГИБП). Примечательно, что глюкокортикоиды (ГК) получала почти половина больных (46%), при этом медиана максимальной суточной дозы составила 10 [5; 10] мг.

Всем пациентам проводилось общепринятое клиническое, лабораторное и инструментальное обследование с использованием стандартных методов диагностики. Активность РА

определяли с помощью индексов DAS28-CPE, SDAI (Simplified Disease Activity Index), CDAI (Clinical Disease Activity Index).

Также в исследование включено 32 здоровых донора, сопоставимых с больными по полу и возрасту, которые были разделены на две группы: 1-я группа — старше 60 лет (n=10), 2-я группа — моложе 45 лет (n=22).

Для проведения исследования кровь из локтевой вены в количестве 2,7 мл собирали в вакуумную пробирку с добавлением солей ЭДТА. В иммунофенотипирование лимфоцитов

периферической крови входило: определение процентного количества и абсолютных значений общей популяции Т-клеток (CD3+), Т-хелперов (CD3+CD4+), Т-цитотоксических клеток (CD3+CD8+), иммунорегуляторного индекса (CD3+CD4+/CD3+CD8+) и В-клеток (CD19+). Использовали готовые коммерческие наборы мышиных моноклональных антител: CYTO-STAT tetraCHROME CD45-FITC/CD4-RD1/CD8-ECD/CD3-PC5 (Beckman Coulter, США) и CYTO-STAT tetraCHROME CD45-FITC/CD56-

Таблица 1. Характеристика больных PA Table 1. Characteristics of RA patients

Table 1. Characteristics of KA patients			
Показатель	1-я группа (n=50)	2-я группа (n=50)	p
Возраст, годы, Ме [25-й; 75-й перцентили]	68 [64; 73]	38 [27,0; 45,0]	< 0,001
Пол: женщины/мужчины, п (%)	37 (74)/13 (26)	39 (78)/11 (22)	0,64
Возраст начала заболевания, годы, Ме [25-й; 75-й перцентили]	67 [63,0; 72,0]	36 [27,0; 43,0]	< 0,001
Длительность РА, годы, Ме [25-й; 75-й перцентили]	2 [1; 2]	1 [1,0; 2,0]	0,08
Клиническая стадия, n (%): очень ранняя ранняя развернутая	4 (8) 16 (32) 30 (60)	3 (6) 17 (34) 30 (60)	0,95
Рентгенологическая стадия, n (%): I II III	5 (10) 41 (82) 4 (8)	14 (28) 34 (68) 2 (4)	0.042 0.16 0,67
Эрозивный артрит, n (%)	22 (44)	21 (42)	0,84
PΦ+, n (%)	36 (72)	34 (70)	0.83
АЦЦП+, n (%)	27 (54)	33 (66)	0,3
РФ+, АЦЦП+, n (%)	25 (50)	19 (38)	0,23
Системные проявления, n (%) ревматоидные узелки невропатия СШ ИЗЛ	17 (34) 5 (10) 4 (8) 10 (20) 2 (4)	13 (26) 3 (6) 1 (2) 9 (18)	0,38 0,461 0,169 0,799 0,154
ЧБС, Me [25-й; 75-й перцентили]	9 [6,0; 14,0]	11 [6,0; 16,0]	0,6
ЧПС, Ме [25-й; 75-й перцентили]	4 [2,0; 8,0]	5 [2,0; 6,0]	0,75
Боль, мм, Ме [25-й; 75-й перцентили]	50 [30,0; 60,0]	50 [40,0; 60,0]	0,6
СОЭ, мм/ч, Ме [25-й; 75-й перцентили]	36 [18,0; 56,0]	33,5 [14,0; 58,0]	0,46
СРБ, г/л, Ме [25-й; 75-й перцентили]	8,1 [3; 23,3]	5,65 [0,9; 24,6]	0,19
DAS28-CPБ, M±SD Активность РА по DAS28-CPБ, n (%): низкая средняя	4,8±1,02 3 (6) 24 (48)	4,7±1,2 4 (8) 23 (46)	0,36 0,696 0,842
высокая	23 (46)	23 (46)	1
SDAI, Me [25-й 75-й перцентили] Активность РА по SDAI, n (%): низкая средняя высокая	26,9 [17,8; 32,4] 1 (2) 21 (42) 28 (56)	27,4 [18,0; 37,0] 3 (6) 19 (38) 28 (56)	0,83 0,308 0,684 1
CDAI, Me [25-й 75-й перцентили] Активность РА по CDAI, n (%): низкая средняя высокая	25 [15,0; 31,0] 2 (4) 15 (30) 33 (60)	26,0 [17,0; 32,0] 3 (6) 17 (34) 30 (60)	0,72 0,647 0,669 0,535

Показатель	1-я группа (n=50)	2-я группа (n=50)	p
РФ, МЕ/мл, Ме [25-й 75-й перцентили]	57 [9,4; 188]	26,2 [9,4; 142,8]	0,2
АЦЦП, Ед/мл, Ме [25-й 75-й перцентили]	17,8 [2,1; 167,5]	54 [4; 200]	0,6
Терапия на момент включения сБПВП, n (%): не получали МТ ЛЕФ ССЗ ГКХ	40 (80) 10 (20) 29 (58) 6 (12) 4 (8) 4 (8)	38 (76) 12 (24) 28 (56) 10 (20) 4 (8) 5 (10)	0,630 0,840 0,276 1,000 0,727
ГК, п (%) Максимальная доза ГК в анамнезе, мг/сут, Ме [25-й 75-й перцентили]	27 (54) 5 [5,0; 10,0]	19 (38) 10 [5,0; 10,0]	0,1 0,12
ГИБП, п (%)	2 (4)	4 (8)	0,4

Примечание. СШ — синдром Шегрена; ИПЛ — интерстициальное заболевание легких; ЧПС — число припухших суставов; ЧБС — число болезненных суставов; ЛЕ Φ — лефлуномид; СС3 — сульфасалазин; ГКХ — гидроксихлорохин.

Таблица 2. Сравнение результатов иммунофенотипирования лимфоцитов у пациентов с дебютом РА после 60 лет и здоровых доноров старше 60 лет, Ме [25-й; 75-й процентили]

Table 2. Comparison of lymphocyte immunophenotyping results in patients with RA onset after 60 years and healthy donors over 60 years, Me [25th; 75th percentiles]

Показатель	1-я группа (n=50)	Здоровые доноры (n=10)	p
Т-клетки (CD3+): % абс., ·109/л	78,8 [74,2; 82,4] 1,4 [0,9; 1,8]	70,2 [66,1; 74,9] 1,3 [1,1; 1,5]	0,002 0,837
Т-хелперы (CD3+CD4+): % абс., ·109/л	46,9 [40,6; 52,4] 0,7 [0,5; 1,0]	43,2 [40,3; 45,0] 0,7 [0,6; 0,8]	0,393 0,992
Т-цитотоксические (CD3+CD8+) клетки:	24,0 [18,8; 34,6] 0,4 [0,3; 0,6]	22,1 [15,4; 26,3] 0,4 [0,3; 0,4]	0,146 0,776
Т-хелперы/Т-цитотоксические клетки	2,0 [1,3; 2,6]	1,9 [1,3; 2,6]	0,577
CD8+CD28-: % абс., ·10 ⁹ /л	60,4 [40,1; 72,1] 0,2 [0,1; 0,4]	7,5 [4,6; 15,3] 0,1 [0,0; 0,1]	<0,001 0,0004
CD8+CD28+: % абс., ·10 ⁹ /л	39,6 [27,6; 59,9] 0,2 [0,1; 0,28]	92,5 [84,7; 95,4] 0,8 [0,7; 1,1]	<0,001 <0,001
CD4+ CD28-: % абс., ·10 ⁹ /л	8,8 [4,1; 15,0] 0,07 [0,03; 0,13]	10,5 [6,9; 16,7] 0,1 [0,03; 0,1]	0,341 0,524
CD4+CD28+: % абс., ·10 ⁹ /л	91,2 [84,9; 95,7] 0,7 [0,4; 1,1]	89,5 [83,3; 93,1] 0,7 [0,5; 0,8]	0,361 0,945
В-клетки (CD3- CD19+): % абс., ·10 ⁹ /л	8,4 [4,2; 11,6] 0,1 [0,1; 0,2]	10,5 [6,7; 13,6] 0,2 [0,1; 0,2]	0,197 0,312
NK-клетки EKK (CD3-CD56+): % абс., ·10 ⁹ /л	8,9 [5,8; 13,1] 0,1 [0,1; 0,2]	13,4 [12,1; 16,8] 0,3 [0,2; 0,4]	0,006 0,004

RD1/CD19-ECD/CD3-PC5 (Beckman Coulter, США). Для определения CD4+CD28+/- и CD8+CD28+/- Т-клеток применяли готовые коммерческие наборы мышиных моноклональных антител: CD4-FITC, CD28-PE, CD3-

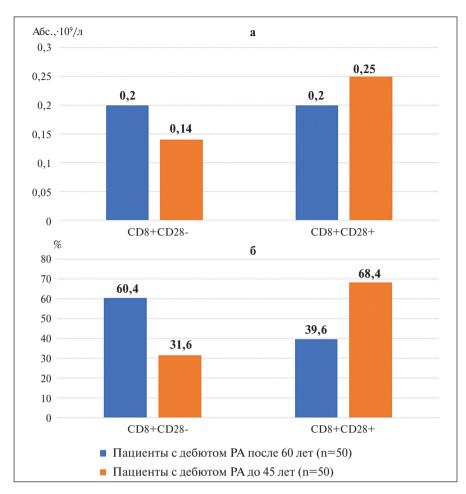
PerCP/Cyanine5.5, CD8a-PE/Cyanine7, CD45-APC (Elabscience Bionovation Inc., Китай).

Подсчет абсолютного количества клеток проводили с помощью набора реагентов для прямого определения лим-

Таблица 3. Сравнение результатов иммунофенотипирования лимфоцитов у пациентов с дебютом РА до 45 лет и здоровых доноров моложе 45 лет, Ме [25-й; 75-й процентили]

Table 3. Comparison of lymphocyte immunophenotyping results in patients with RA onset before 45 years and healthy donors under 45 years, Me [25th; 75th percentiles]

Показатель	2-я группа (n=50)	Здоровые доноры (n=22)	p
Т-клетки (CD3+): % абс., ·10 ⁹ /л	77,1 [70,5; 81,2] 1,1 [0,8; 1,4]	76,7 [73,7; 81,0] 1,3 [0,9; 1,5]	0,831 0,358
Т-хелперы (CD3+ CD4+): % абс., ·109/л	46,7 [42,0; 51,0] 0,6 [0,4; 0,8]	46,6[41,8; 50,0] 0,7 [0,6; 0,9]	0,746 0,303
Т-цитотоксические (CD3+ CD8+) клетки:	24,9 [20,8; 30,0] 0,3 [0,2; 0,5]	23,7 [19,0; 31,1] 0,4 [0,2; 0,5]	0,895 0,296
Т-хелперы/Т-цитотоксические клетки	1,9 [1,4; 2,4]	2,1 [1,4; 2,5]	0,928
CD8+ CD28-: % абс., ·10 ⁹ /л	31,6 [22,5; 51,8] 0,14 [0,06; 0,2]	29,8 [14,8; 41,3] 0,1 [0,1; 0,2]	0,055 0,610
CD8+ CD28+: % абс., ·10 ⁹ /л	68,4 [48,2; 77,5] 0,25 [0,2; 0,4]	70,2 [58,7; 82,8] 0,3 [0,2; 0,5]	0,054 0,335
CD4+ CD28-: % абс., ·10 ⁹ /л	6,9 [3,3; 14,4] 0,04 [0,02; 0,1]	3,8 [2,9; 10,3] 0,1 [0,02; 0,1]	0,385 0,323
CD4+ CD28+: % абс., ·10 ⁹ /л	92,9 [84,9; 96,2] 0,6 [0,4; 0,9]	96,1 [89,8; 97,0] 0,8 [0,6; 1,0]	0,322 0,316
В-клетки (CD3- CD19+): % абс., ·10 ⁹ /л	9,3 [5,5; 12,8] 0,1 [0,1; 0,2]	10,2 [7,5; 11,6] 0,1 [0,1; 0,2]	0,615 0,358
NK-клетки EKK (CD3- CD56+): % абс., ·109/л	8,5 [5,4; 14,6] 0,1 [0,1; 0,2]	10,2 [6,7; 14,4] 0,1 [0,1; 0,2]	0,654 0,634


фоцитов Flow-Count™ Fluorospheres (Beckman Coulter, США). Для подготовки лейкоцитов цельной крови к проточному цитометрическому исследованию осуществляли лизирование и фиксацию проб цельной крови с использованием набора реагентов IOTest 3 Lysing Solution (Beckman Coulter, США). Оценку результатов пятицветного окрашивания лимфоцитов выполняли на анализаторе Navios (Beckman Coulter, США). Клеточные популяции идентифицировали с помощью программного обеспечения СХР (Beckman Coulter, США). При гейтировании по горизонтальной и вертикальной осям определяли процентное содержание клеток.

Статистическую обработку данных проводили с использованием пакета программ Statistica 10.0 (StatSoft Inc., США). Проверку нормальности распределения осуществляли с помощью критерия Шапиро—Уилка. Количественные показатели представлены в виде средних арифметических величин (М) и стандартных отклонений (SD), границ 95% доверительного интервала (ДИ) при нормальном распределении и в виде медианы с интерквартильным интервалом (Ме [25-й; 75-й перцентили]) при распределении, отличном от нормального. Качественные переменные выражали в абсолютных значениях и их относительных частотах (в %). При сравнении групп с нормальным распределением признака рассчитывался t-критерий Стьюдента, при ненормальном распределении — критерий Манна—Уитни.

Сравнение номинальных данных проводилось с помощью критерия χ^2 Пирсона. Для изучения связи между явлениями, представленными количественными данными, распределение которых отличалось от нормального, использовался непараметрический метод — расчет коэффициента ранговой корреляции Спирмена (с указанием коэффициента корреляции Rs). Различия считались статистически значимыми при p<0,05.

Результаты. Пациенты в исследуемых группах были сопоставимы по полу, длительности и клинической стадии PA, серопозитивности по РФ и АЦЦП, наличию системных проявлений (см. табл. 1). Однако обращало на себя внимание, что I рентгенологическая стадия в группе больных с дебютом PA до 45 лет наблюдалась статистически значимо чаще, чем у пожилых пациентов: соответственно в 14 (28%) и 5 (10%) случаях (p=0,042).

Сравнительный анализ показателей активности (см. табл. 1) не выявил значимых различий между двумя группами: количество пациентов, у которых наблюдалась низкая, средняя и высокая активность по индексам DAS28-CPБ, SDAI, CDAI, было сопоставимым в обеих группах. Большинство больных на момент включения в исследование принимали сБПВП: преимущественно назначался МТ (58% пациентам с дебютом РА после 60 лет и 56% с дебютом до 45 лет) и ЛЕФ (12 и 20% соответственно).

Сравнение числа CD8+ CD28+/- субпопуляций Т-лимфоцитов в крови пациентов с PA в зависимости от возраста и дебюта PA в абсолютных показателях (а) и процентах (б)

Comparison of CD8+CD28+/- Tlymphocyte subpopulations in the blood of RA patients depending on age and disease onset in absolute values (a) and percentages (b)

Проведено сравнение результатов иммунофенотипирования лимфоцитов периферической крови у пациентов пожилого возраста с дебютом РА после 60 лет (1-я группа) и здоровых доноров, сопоставимых по полу и возрасту (табл. 2). Абсолютное число Т-лимфоцитов (CD3+) в этих группах не различалось. Количество Т-хелперов (CD3+CD4+) и Т-цитотоксических лимфоцитов (CD3+CD8+) как в абсолютных показателях, так и в процентном выражении также было сопоставимо.

В то же время число CD8+CD28- у пациентов пожилого возраста было статистически значимо выше, чем у здоровых доноров, и в процентах (медиана — 60.4 [40.1; 72.1] и 7.5 [4.6; 15.3]%), и в абсолютных значениях (0.2 [0.1; 0.4] и 0.1[0.0; 0.1] $\cdot 10^9$ /л соответственно). Закономерно, что уровень CD8+CD28+ у пациентов пожилого возраста был значимо ниже по сравнению со здоровыми донорами (медиана — 39.6 [27.6; 59.9] и 92.5 [84.7; 95.4]%; 0.2 [0.1; 0.3] и 0.8 [0.7; 1.1] $\cdot 10^9$ /л соответственно). Количество NK-клеток (CD3-CD56+) также оказалось ниже у пациентов пожилого возраста, чем у здоровых доноров (8.9 [5.8; 13.1] и 13.4 [12.1; 16.8]%; 0.1 [0.1; 0.2] и 0.3 [0.2; 0.4] $\cdot 10^9$ /л соответственно). Между этими группами не выявлено различий в количестве CD4+CD28+/-Т-лимфоцитов и CD3-CD19+ В-лимфоцитов (см. табл. 2).

При сравнительном анализе тех же показателей не наблюдалось значимых различий между пациентами молодого возраста с дебютом РА до 45 лет (2-я группа) и здоровыми донорами (табл. 3). Как абсолютные, так и процентные показатели Т-лимфоцитов, их субпопуляций, В-лимфоцитов и NK-клеток были сопоставимы между группами.

Кроме того, было проведено сравнение результатов иммунофенотипирования лимфоцитов у больных РА 1-й и 2-й групп (см. рисунок). Уровень CD8+CD28- оказался статистически значимо выше у больных РА пожилого возраста по сравнению с пациентами молодого возраста (медиана -60.4 [40.1: 72.1] и 31.6 [22.5: 51.8]%: 0.2 [0.1; 0.4] и $0.14 [0.06; 0.2] \cdot 10^9/л$ соответственно); напротив, уровень CD8+CD28+ у молодых пациентов был значимо выше, чем у пожилых (медиана -68,4 [48,2; 77,5] и 39,6 [27,6; 59,9]%; 0,25 [0,2; 0,4] и 0,2 [0,1; 0,28] $\cdot 10^9$ /л соответственно).

При оценке других параметров (общее число Т-лимфоцитов, количество Т-хелперов, Т-цитотоксических лимфоцитов, CD4+ CD28+/- Т-лимфоцитов, В-лимфоцитов и NK-клеток) значимых различий не выявлено.

В обеих группах пациентов с РА при корреляционном анализе не обнаружено значимых ассоциаций между показателями иммунофенотипирования лимфоцитов и длительностью, активностью РА, серопозитивностью, рентгенологической стадией, наличием си-

стемных проявлений, осложнений и уровнем боли.

Обсуждение. В настоящем исследовании изучались показатели иммунофенотипирования у пациентов с дебютом РА в пожилом возрасте. Показано, что у этих пациентов наблюдается значительное увеличение субпопуляции CD8+CD28- Т-клеток по сравнению со здоровыми донорами, что свидетельствует о развитии иммунного старения. В то же время отсутствие значимых различий в количестве этих клеток у пациентов с дебютом РА до 45 лет и у здоровых доноров, сопоставимых по возрасту, подтверждает ограниченность роли иммунного старения в возникновении заболевания в раннем возрасте. Эти данные свидетельствуют о различных патогенетических механизмах, лежащих в основе РА.

Экспансия CD8+CD28- Т-лимфоцитов у пациентов с поздним дебютом PA выявляется уже на ранних стадиях болезни, что позволяет рассматривать данную субпопуляцию клеток в качестве потенциального маркера развития PA в пожилом возрасте. Повышенное количество CD8+CD28-Т-клеток было обнаружено у больных с длительностью симптомов от 4 нед до 6 мес и в исследовании С. Thompson и соавт. [18], однако возраст дебюта заболевания в данной работе не учитывался.

У наших пациентов с поздним дебютом РА не обнаружено увеличения числа CD4+CD28- Т-лимфоцитов. Мы предполагаем, что длительное наблюдение за больными РА позволило бы выявить выраженную уграту CD28 в популяции CD4+ клеток, тогда как включение в исследование пациентов с длительностью болезни <3 лет, вероятно, не позволяет оценить этот процесс в полной мере. Кроме того, CD8+CD28- и CD4+CD28- не были ассоциированы с развитием осложнений в группе пациентов с поздним дебютом

заболевания. Также не обнаружена взаимосвязь CD4+ и CD8+ субпопуляций клеток с присутствием АЦЦП и РФ, что согласуется с результатами недавно проведенных исследований [18, 19].

Заключение. Полученные нами результаты доказывают, что иммуносенесценция вносит вклад в патогенез РА у пациентов пожилого возраста и акцентируют внимание на необходимости изучения субпопуляции CD8+ CD28- Т-клеток как потенциального предиктора начала заболевания.

ЛИТЕРАТУРА/REFERENCES

- 1. Насонов ЕЛ, редактор. Ревматология. Россииские клинические рекомендации. Москва: ГЭОТАР-Медиа; 2020. Nasonov EL, editor. Rheumatology. Russian clinical recommendations. Moscow: GEOTAR-Media; 2020.
- 2. Safiri S, Kolahi AA, Hoy D, et al. Global, regional and national burden of rheumatoid arthritis 1990-2017: a systematic analysis of the Global Burden of Disease study 2017. *Ann Rheum Dis.* 2019 Nov;78(11):1463-1471. doi: 10.1136/annrheumdis-2019-215920.
- 3. Innala L, Berglin E, Möller B, et al. Age at onset determines severity and choice of treatment in early rheumatoid arthritis: A prospective study. *Arthritis Res Ther.* 2014 Apr 14; 16(2):R94. doi: 10.1186/ar4540.
- 4. Murata K, Ito H, Hashimoto M, et al. Elderly onset of early rheumatoid arthritis is a risk factor for bone erosions, refractory to treatment: KURAMA cohort. *Int J Rheum Dis.* 2019 Jun;22(6):1084-1093. doi: 10.1111/1756-185X.13428.
- 5. Tan TC, Gao X, Thong BY, et al. TTSH Rheumatoid Arthritis Study Group. Comparison of elderly- and young-onset rheumatoid arthritis in an Asian cohort. *Int J Rheum Dis*. 2017 Jun;20(6):737-745. doi: 10.1111/1756-185X.12861.
- 6. Сатыбалдыев АМ, Демидова НВ, Гриднева ГИ и др. Клиническая характеристика трех когорт раннего ревматоидного артрита с поздним началом (в возрасте 50 лет и старше). Обобщение 40-летнего опыта. Научно-практическая ревматология.

- 2020;58(2):140-146.
- Satybaldyev AM, Demidova NV, Gridneva GI, et al. Clinical characteristics of three cohorts of patients with early- and late-onset rheumatoid arthritis (at 50 years or older). Generalization of 40 years' experience. *Nauchno-Prakticheskaya Revmatologiya*. 2020;58(2):140-146. (In Russ.).
- 7. Kobak S, Bes C. An autumn tale: Geriatric rheumatoid arthritis. *Ther Adv Musculoskelet Dis.* 2018 Jan;10(1):3-11. doi: 10.1177/1759720X17740075.
- 8. Lindstrom TM, Robinson WH. Rheumatoid arthritis: a role for immunosenescence? *J Am Geriatr Soc.* 2010 Aug;58(8):1565-75. doi: 10.1111/j.1532-5415.2010.02965.x.
- 9. Koetz K, Bryl E, Spickschen K, et al. T cell homeostasis in patients with rheumatoid arthritis. *Proc Natl Acad Sci U S A*. 2000 Aug 1;97(16): 9203-8. doi: 10.1073/pnas.97.16.9203.
- 10. Weyand CM, Yang Z, Goronzy JJ. T-cell aging in rheumatoid_arthritis. *Curr Opin Rheumatol*. 2014 Jan;26(1):93-100. doi: 10.1097/BOR.0000000000000011.
- 11. Goronzy JJ, Shao L, Weyand CM. Immune aging and rheumatoid arthritis. *Rheum Dis Clin North Am.* 2010 May;36(2):297-310. doi: 10.1016/j.rdc.2010.03.001.
- 12. Strioga M, Pasukoniene V, Characiejus D. CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. *Immunology*. 2011 Sep;134(1):17-32. doi: 10.1111/j.1365-2567.2011.03470.x.
- 13. Goronzy JJ, Bartz-Bazzanella P, Hu W, et al. Dominant clonotypes in the repertoire of

- peripheral CD4+ T cells in rheumatoid arthritis. *J Clin Invest*. 1994 Nov;94(5):2068-76. doi: 10.1172/JCI117561.
- 14. Chalan P, van den Berg A, Kroesen BJ, et al. Rheumatoid Arthritis, Immunosenescence and the Hallmarks of Aging. *Curr Aging Sci.* 2015;8(2):131-46. doi: 10.2174/1874609808666150727110744.
- 15. Barbe-Tuana F, Funchal G, Schmitz CRR, et al. The interplay between immunosenescence and age-related diseases. *Semin Immunopathol.* 2020 Oct;42(5):545-557. doi: 10.1007/s00281-020-00806-z.
- 16. Li Y, Goronzy JJ, Weyand CM. DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. *Exp Gerontol*. 2018 May;105:118-127. doi: 10.1016/j.exger.2017.10.027.
- 17. Van Onna M, Boonen A. The challenging interplay between rheumatoid arthritis, ageing and comorbidities. *BMC Musculoskelet Disord*. 2016 Apr 26;17:184. doi: 10.1186/s12891-016-1038-3.
- 18. Thompson C, Davies R, Williams A, et al. CD28- Cells Are Increased in Early Rheumatoid Arthritis and Are Linked With Cytomegalovirus Status. *Front Med (Lausanne)*. 2020 May 5;7:129. doi:10.3389/fmed. 2020.00129.
- 19. Thewissen M, Somers V, Hellings N, et al. CD4+CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation. *J Immunol.* 2007 Nov 15;179(10):6514-23. doi: 10.4049/jimmunol.179.10.6514.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 27.06.2025/21.08.2025/25.08.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Исследование выполнено в рамках фундаментальной научной темы FURS-2022-008 (государственное задание № 1021051503137-7).

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The study was carried out within the framework of the basicl scientific project FURS-2022-008 (state assignment № 1021051503137-7).

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Аболёшина А.В. https://orcid.org/0000-0003-3431-5580 Алексанкин А.П. https://orcid.org/0000-0001-6686-0896 Зоткин Е.Г. https://orcid.org/0000-0002-4579-2836 Авдеева А.С. https://orcid.org/0000-0003-3057-9175 Мовсесян А.А. https://orcid.org/0009-0002-3473-2480 Молова К.М. https://orcid.org/0009-0005-9730-8224 Макоева М.А. https://orcid.org/0000-0003-3468-8707

Галектины 1, 3 и 9 у больных системной красной волчанкой: есть ли связь с активностью заболевания или клиническими проявлениями?

Кондратьева Л.В., Панафидина Т.А., Горбунова Ю.Н., Попкова Т.В., Диатроптов М.Е., Авдеева А.С.

ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва Россия, 115522, Москва, Каширское шоссе, 34A

Цель исследования — сравнить сывороточные концентрации галектинов 1, 3 и 9 у женщин с системной красной волчанкой (СКВ) и здоровых доноров; определить взаимосвязь указанных биомаркеров с активностью и отдельными клиническими проявлениями заболевания.

Материал и методы. В поперечное исследование включены женщины с CKB (n=121) и без иммуновоспалительных ревматических заболеваний (n=21; контрольная группа). Содержание в сыворотке крови галектинов 1, 3 и 9 определяли с помощью иммуноферментного метода (Cloud-Clone Corp., Kumaŭ)

Результаты и обсуждение. Уровни всех трех галектинов при СКВ оказались выше, чем в контрольной группе. Обнаружены слабые корреляции SLEDAI-2K с концентрацией галектина 1 (r=0,33, p=0,0003) и галектина 3 (r=0,26, p=0,005), индекса повреждения с уровнем галектина 3 (r=0,2, p=0,04). У больных СКВ с поражением кожи, артритом и гемолитической анемией содержание галектина 1 в сыворотке крови было выше, чем у пациенток без этих клинических проявлений. У женщин с нефритом и серозитом выявлены более высокие концентрации галектина 3 по сравнению с пациентками, не имевшими подобных проявлений. При СКВ с антифосфолипидным синдромом ($A\Phi C$) отмечены более низкие уровни галектина 1, а при СКВ с синдромом Шегрена (СШ) — более высокие концентрации галектинов 3 и 9. Уровни антител к двухцепочечной ДНК (aДНК) коррелировали с концентрацией галектина 1 (10, 11, 12, 13, 13, 14, 15, 1

Заключение. Содержание в сыворотке крови галектинов 1, 3 и 9 у женщин с СКВ повышено. Уровни галектинов 1 и 3 слабо взаимосвязаны с активностью СКВ, а галектина 3—с выраженностью необратимых изменений. Некоторые клинические признаки при СКВ ассоциируются с более высокой концентрацией указанных биомаркеров: для галектина 1—это поражение кожи, артрит, гемолитическая анемия, отсутствие АФС, для галектина 3— нефрит, серозит и СШ, для галектина 9—СШ.

Ключевые слова: системная красная волчанка; галектин 1; галектин 3; галектин 9.

Контакты: Любовь Валерьевна Кондратьева; kondratyeva.liubov@yandex.ru

Для цитирования: Кондратьева ЛВ, Панафидина ТА, Горбунова ЮН, Попкова ТВ, Диатроптов МЕ, Авдеева АС. Галектины 1, 3 и 9 у больных системной красной волчанкой: есть ли связь с активностью заболевания или клиническими проявлениями? Современная ревматология. 2025;19(5):20—25. https://doi.org/10.14412/1996-7012-2025-5-20-25

Galectins 1, 3 and 9 in patients with systemic lupus erythematosus: is there an association with disease activity or clinical manifestations?

Kondrateva L.V., Panafidina T.A., Gorbunova Yu.N., Popkova T.V., Diatroptov M.E., Avdeeva A.S.

V.A. Nasonova Research Institute of Rheumatology, Moscow 34A, Kashirskoe Shosse, Moscow 115522, Russia

Objective. To compare serum concentrations of galectins 1, 3 and 9 in women with systemic lupus erythematosus (SLE) and healthy donors; to assess the relationship of these biomarkers with disease activity and specific clinical manifestations.

Material and methods. This cross-sectional study included women with SLE (n=121) and women without immune-inflammatory rheumatic diseases (n=21; control group). Serum levels of galectins 1, 3 and 9 were measured using enzyme-linked immunoassay (Cloud-Clone Corp., China). Results and discussion. Levels of all three galectins were higher in SLE patients compared with the control group. Weak correlations were found between SLEDAI-2K and galectin 1 (r=0.33, p=0.0003) and galectin 3 (r=0.26, p=0.005), and between the damage index and galectin 3 (r=0.2, p=0.04). In patients with SLE and cutaneous involvement, arthritis, or hemolytic anemia, serum galectin 1 was higher than in patients without these manifestations. Women with nephritis and serositis had higher galectin 3 concentrations than those without such features. Patients with SLE and antiphospholipid syndrome (APS) had lower galectin 1 levels, whereas those with secondary Sjugren's syndrome (SS) had higher concentrations of galectins 3 and 9. Anti-dsDNA antibody levels correlated with galectin 1 (r=0.19, p=0.039), galectin 3 (r=0.2, p=0.027), and galectin 9 (r=0.19, p=0.034) concentrations, while C3 and C4 complement levels correlated only with galectin 9 concentrations (r=0.19, p=0.04 and r=-0.18, p=0.045, respectively). Conclusion. Serum concentrations of galectins 1, 3 and 9 are elevated in women with SLE. Levels of galectins 1 and 3 show weak associations with SLE activity, while galectin 3 levels correlates with the severity of irreversible damage. Certain clinical features of SLE are associated with

higher levels of these biomarkers: for galectin 1- cutaneous involvement, arthritis, hemolytic anemia, absence of APS; for galectin 3- nephritis, serositis and SS; for galectin 9- SS.

Keywords: systemic lupus erythematosus; galectin 1; galectin 3; galectin 9.

Contact: Lyubov Valeryevna Kondrateva; kondratyeva.liubov@yandex.ru

For citation: Kondrateva LV, Panafidina TA, Gorbunova YuN, Popkova TV, Diatroptov ME, Avdeeva AS. Galectins 1, 3 and 9 in patients with systemic lupus erythematosus: is there an association with disease activity or clinical manifestations? Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):20–25 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-20-25

Системная красная волчанка (СКВ) — системное аутоиммунное ревматическое заболевание неизвестной этиологии, характеризующееся гиперпродукцией органонеспецифических аутоантител к различным компонентам клеточного ядра и развитием иммуновоспалительного повреждения внутренних органов [1]. Поиск новых биомаркеров для диагностики, оценки прогноза и эффективности терапии является одним из основных направлений исследований при СКВ. Среди широкого спектра наиболее перспективных молекулярных биомаркеров можно выделить целое семейство сходных по структуре белков, которые избирательно связывают β -галактозу рецепторов различных клеток, в том числе иммунных, и модулируют их ответ на различные стимулы. Эти белки получили название «галектины» [2].

Наиболее изучены галектины 1, 3 и 9. Однако даже о них сведений очень мало. На сегодня в ревматологии нет работ, в которых оцениваются одновременно все три биомаркера при СКВ. Отечественные оригинальные исследования посвящены исключительно галектину 3, преимущественно в контексте развития хронической сердечной недостаточности при ревматоидном артрите [3]

Цель исследования — сравнить сывороточные концентрации галектинов 1, 3 и 9 у пациентов с СКВ и здоровых женщин; определить взаимосвязь данных биомаркеров с активностью и отдельными клиническими проявлениями заболевания.

Материал и методы. В одноцентровом поперечном исследовании принимала участие 121 женщина старше 18 лет с диагнозом СКВ, установленным на основании критериев SLICC (Systemic Lupus International Collaborating Clinics) 2012 г. [4] (основная группа). Длительность СКВ колебалась от 0 до 384 мес. Наиболее частыми клиническими проявлениями СКВ на момент включения в исследование были гематологические нарушения, поражение кожи и суставов, наиболее редкими - патология нервной системы и язвы слизистых оболочек. У 2 больных при обследовании антинуклеарный фактор (АНФ) отсутствовал, хотя ранее он неоднократно выявлялся у них в диагностическом титре. Активность СКВ оценивали по индексу SLEDAI-2K (Systemic lupus erythematosus disease activity index в модификации 2K) 2000 г. за период 30 дней [5, 6]. В 58,7% случаев она была высокой или умеренной, при этом индекс необратимых повреждений органов (ИП) [7] оказался преимущественно низким (<1). Большинство пациенток получали глюкокортикоиды (ΓK) и/или гидроксихлорохин (ΓKX) , около трети (34,7%) различные иммуносупрессанты. Применение генно-инженерных биологических препаратов (ГИБП) в течение предшествующего года, наличие острой или обострение хронической инфекции являлись критериями невключения. Характеристика больных представлена в табл. 1.

В контрольную группу вошла 21 женщина без иммуновоспалительных ревматических заболеваний (ИВРЗ), сопо-

ставимая по возрасту с больными СКВ (медиана 31 [28; 39] и 34 [26; 41] года соответственно; p=0,77).

Все участники исследования подписали информированное согласие. Исследование одобрено локальным этическим комитетом ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой» (НИИР им. В.А. Насоновой; протоколы заседаний №09 от 07.04.2022 и №07 от 13.03.2025).

У всех женщин определяли содержание галектинов 1, 3 и 9 в сыворотке крови с помощью иммуноферментного метода (реактивы производства Cloud-Clone Corp., Китай). Наличие каждого из клинических признаков СКВ на момент обследования, за исключением поражения кожи, устанавливали по дефинициям классификационных критериев SLICC 2012 г. [4]. Пациентки с острой, подострой и хронической кожной волчанкой были объединены в одну подгруппу. Синдром Шегрена (СШ) диагностировали по критериям, разработанным на базе НИИР им. В.А. Насоновой [7], антифосфолипидный синдром (АФС) — по модификации критериев 2006 г, предложенных в Саппоро [8].

Статистическую обработку данных выполняли с помощью программы Statistica 64. Для качественных признаков представлены абсолютные и относительные величины (n, %), для количественных — медиана с интерквартильным интервалом (Ме [25-й и 75-й перцентили]). При сравнении независимых групп по количественным признакам применяли критерий Манна—Уитни, для оценки взаимосвязи лабораторных показателей — коэффициент корреляции Спирмена. Различия считали статистически значимыми при р<0,05.

Результаты. Уровни всех трех галектинов при СКВ оказались выше, чем в контрольной группе (табл. 2).

При сравнении пациенток с СКВ, получавших (n=101) и не получавших ГК (n=20), статистически значимые различия наблюдались только по уровню галектина 3 (медиана -1,2 [0,92; 1,53] и 0,93 [0,07;1,18] нг/мл соответственно; p=0,016).

Обнаружены слабые корреляции SLEDAI-2K с концентрацией галектина 1 (r=0,33, p=0,0003) и галектина 3 (r=0,26, p=0,005), но не галектина 9 (r=0,06, p=0,49). ИП был связан только с уровнем галектина 3 (r=0,2, p=0,04).

У больных СКВ с поражением кожи (n=39), артритом (n=42) и гемолитической анемией (n=24) содержание галектина 1 в сыворотке крови было выше, чем у пациенток без этих клинических проявлений. У женщин с нефритом (n=31) и серозитом (n=22) отмечались большие концентрации галектина 3, чем у больных без указанных симптомов. При СКВ с $\Delta\Phi$ C (n=9) выявлены более низкие уровни галектина 1, чем без $\Delta\Phi$ C, а при СКВ с СШ (n=43) — более высокие концентрации галектинов 3 и 9, чем без СШ (табл. 3).

Обнаружены корреляции уровня галектина 1 с концентрацией антител к двухцепочной ДНК — аДНК (r=0,19, p=0,039) и СРБ (r=0,24, p=0,008), содержания галектина 3 с уровнем аДНК (r=0,2, p=0,027), антител к Sm-антигену (aSm) (r=0,21, p=0,025), антител к La (aLa; r=0,26, p=0,004), СРБ

Таблица 1. Характеристика больных СКВ (n=121)
Table 1. Characteristics of patients with systemic lupus erythematosus (n=121)

Показатель	Значение
Возраст, годы, Ме [25-й; 75-й перцентили]	34 [26; 41]
Длительность СКВ, мес, Ме [25-й; 75-й перцентили]	36 [3; 144]
Проявления СКВ, n (%) Поражение кожи острое подострое хроническое Алопеция Язвы слизистых оболочек Артрит Серозит Нефрит Нейропсихические нарушения Гемолитическая анемия Лейкопения/лимфопения Тромбоцитопения	39 (32,2) 27 (22,3) 5 (4,1) 13 (10,7) 30 (24,8) 8 (6,6) 42 (34,7) 22 (18,2) 31 (25,6) 8 (6,6) 24 (19,8) 49 (40,5) 7 (5,8)
Иммунологические нарушения, n (%) Повышение уровня: АНФ аДНК+ аSm+ аФЛ+ Гипокомплементемия Изолированная прямая проба Кумбса+	119 (98,3) 82 (67,8) 14 (11,6) 23 (19,0) 78 (64,5) 16 (13,2)
Активность СКВ, п (%): ремиссия (SLEDAI-2K 0) низкая (SLEDAI-2K 1−4) умеренная (SLEDAI-2K 5−10) высокая (SLEDAI-2K 11−19) очень высокая (SLEDAI-2K ≥20)	9 (7,4) 41 (33,9) 43 (35,5) 16 (13,2) 12 (9,9)
SLEDAI-2K, баллы, Ме [25-й; 75-й перцентили]	6 [4; 10]
ИП, баллы, Ме [25-й; 75-й перцентили]	0 [0; 1]
Терапия ГК, п (%) Суточная доза ГК в пересчете на преднизолон, мг/сут, Ме [25-й; 75-й перцентили] ГКХ, п (%) Иммуносупрессанты, п (%): циклофосфамид микофенолата мофетил азатиоприн метотрексат	101 (83,5) 10 [7,5; 20] 98 (81,0) 42 (34,7) 4 (3,3) 26 (21,5) 6 (4,95) 6 (4,95)
Примечание. аФЛ — антифосфолипидные антитела.	

(r=0,24,p=0,01), концентрации галектина 9 с уровнем аДНК (r=0,19,p=0,034), С3 (r=-0,19,p=0,04), С4 (r=-0,18,p=0,045).

Прямую пробу Кумбса в отсутствие признаков гемолитической анемии исследовали у 76 пациенток, значимых

Таблица 2. Уровни галектинов 1, 3 и 9 у больных СКВ и у лиц контрольной группы, Ме [25-й; 75-й перцентили]

Table 2. Levels of galectins 1, 3 and 9 in patients with systemic lupus erythematosus and in the control group, Me [25th; 75th percentiles]

Галектин 1, нг/мл 0,94 [0,35; 1,51] 0,51 [0,006; 0,97] 0,03 Галектин 3, нг/мл 1,12 [0,87; 1,48] 0,88 [0,69; 1,27] 0,05	Показатель	CKB (n=121)	Контроль (n=21)	р
, , , , , , , , , , , , , , , , , , , ,	Галектин 1, нг/мл	0,94 [0,35; 1,51]	0,51 [0,006; 0,97]	0,03
Farancia 0/ 0 002 [0 001, 0 025] 0 001 [0 001, 0 002] 0 000	Галектин 3, нг/мл	1,12 [0,87; 1,48]	0,88 [0,69; 1,27]	0,05
талектин 9, ш/мл 0,003 [0,001; 0,023] 0,001 [0,001; 0,002] 0,008	Галектин 9, пг/мл	0,003 [0,001; 0,025]	0,001 [0,001; 0,002]	0,008

различий по уровням всех трех галектинов между женщинами, имевшими позитивный и негативный результат, не выявлено.

У части больных СКВ определяли также аФЛ: антикардиолипиновые антитела (аКЛ) — у 105, IgG- и IgM-антитела к β_2 -гликопротеину 1 (а β_2 -Г Π_1) — у 106, волчаночный антикоагулянт (BA) — у 98. Уровень галектинов 1, 3 и 9 не коррелировал с концентрацией IgG и IgM аКЛ, IgG и IgM а β_2 -Г Π_1 (р>0,05 во всех случаях). При наличии BA (n=10) уровни галектина 3 оказались ниже, чем при его отсутствии (медиана — 0,88 [0,74; 1,1] и 1,26 [0,89; 1,67] нг/мл соответственно; p=0,015).

Обсуждение. Поскольку теоретически галектины 1, 3 и 9 рассматривают в ревматологии как перспективные биомаркеры, а сведения о них при системных аутоиммунных ревматических заболеваниях пока малочисленны, предпринята попытка выяснить, связаны ли их уровни в сыворотке крови с конкретными признаками СКВ или активностью заболевания в целом.

Концентрации всех изучаемых галектинов у больных СКВ оказались выше, чем у лиц без ИВРЗ, что совпадает с выводами большинства зарубежных исследований [9-22]. В некоторых из них выявлена также взаимосвязь уровня галектина 9 с активностью СКВ [16, 17, 19, 20, 22]. Однако в наиболее крупном поперечном исследовании Н. Enocsson и соавт. [18], как и в настоящей работе, она не обнаружена. В то же время установлены корреляции, пусть и очень слабые, между содержанием галектина 9 в крови и включенными в индекс SLEDAI-2K иммунологическими показателями (аДНК, С3и С4-компонентами комплемента), что совпадает с ранее опубликованными данными [17, 19, 20]. Не выявлено раз-

личий концентрации галектина 9 у больных СКВ, имевших и не имевших нейропсихические и гематологические нарушения, хотя японские авторы показали, что уровень данного биомаркера выше у больных с активным поражением почек

[19]. Но для определения нефрита они использовали градации A и B почечного домена индекса BILAG (British Isles Lupus Assessment Group), а не классификационные критерии СКВ, поэтому прямое сопоставление результатов этих авторов с нашими данными затруднено. В двух других исследованиях содержание в крови галектина 9 было сходным у пациентов с активной почечной и внепочечной СКВ [20, 22].

Сывороточные концентрации галектина 1 были выше у пациентов с поражением кожи, в частности с острой кожной волчанкой, артритом или гемолитической анемией, а галектина 3 — у больных с нефритом или серозитом. Кроме того, оба биомаркера коррелировали с активностью СКВ, уровнями аЛНК и СРБ. Спектр взаимосвязей галектина 3 с аутоантите-

лами оказался несколько шире, чем галектина 1. и включал также aSm и aLa. По данным большинства зарубежных работ, содержание галектина 1 и галектина 3 в крови не отражало активности СКВ или ее отдельных клинических проявлений [9, 10, 12-14]. Но J. Wu и соавт. [23] сообщили, что у пациентов с волчаночным нефритом концентрация галектина 3 в сыворотке выше, чем у здоровых лиц и у больных СКВ без поражения почек, что согласуется с нашими результатами. Наконец, доступные сведения о связи уровней галектинов 1 и 3 с иммунологическими показателями или отсутствуют, или малочисленны и противоречивы [9, 10, 24].

Концентрация галектина 3 в крови при СКВ коррелировала в настоящем исследовании с ИП, что укладывается в представление об этой молекуле как о маркере фиброза различных тканей [25]. Показано, что при волчаночном нефрите высокий уровень галектина 3 ассоциировался с большей выраженностью интерстициального фиброза и атрофии канальцев в биоптате, а также со снижением скорости клубочковой фильтрации [23]. Возможно, один из механизмов негативного воздействия ГК на накопление необратимых повреждений органов при СКВ, в первую очередь на развитие хронической сердечной недостаточности, основан на увеличении синтеза галектина 3. Так, применение дексаметазона вызывало ремоделирование миокарда крыс и гиперэкспрессию в нем галектина 3 [26]. Наши пациенты, получавшие системные ГК, имели более высокую концентрацию галектина 3, чем больные, которые ГК не использовали.

Интересно, что содержание галектинов при СКВ зависело также от сочетания с другими аутоиммунными заболеваниями. При наличии вторичного АФС был ниже уровень галектина 1, а при СКВ с СШ — выше концентрации галектинов 3 и 9. В ряде источников галектин 9 фигурирует в качестве вероятного маркера активности СШ [27, 28], а у больных СКВ с АФС и без АФС, как и в нашей работе, его уровни сопоставимы [18]. Таким образом, выделение СКВ с АФС или с СШ в само-

стоятельные субтипы заболевания получает дополнительное биохимическое обоснование.

Безусловно, наше исследование имело ограничения, связанные с поперечным дизайном и поисковым характером. Поскольку галектины являются универсальными регуляторами межклеточных взаимодействий, нельзя исключить, что их

Таблица 3. Уровни галектинов 1, 3 и 9 при наличии и отсутствии определенных клинических проявлений СКВ, Ме [25-й; 75-й перцентили]
Table 3. Levels of galectins 1, 3 and 9 in the presence and absence of specific clinical manifestations of systemic lupus erythematosus. Me [25th: 75th percentiles]

of systemic lupus erythematosus, Me [25th; 75th percentiles]				
Показатель	Клинические проявления есть	я СКВ нет	p	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Поражение 1,37 [0,51; 2,8] 1,13 [0,93; 1,42] 0,002 [0,001; 0,05]	кожи 0,62 [0,33; 1,28] 1,12 [0,79; 1,51] 0,003 [0,001; 0,025]	0,0004 0,97 0,18	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Острая кожная 1 1,37 [0,43; 2,76] 1,05 [0,87; 1,55] 0,002 [0,001; 0,06]	волчанка 1,14 [0,33; 1,36] 1,13 [0,86; 1,45] 0,003 [0,001; 0,02]	0,016 0,83 0,83	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Подострая кожна 1,25 [0,51; 2,76] 0,93 [0,93; 1,22] 0,003 [0,001; 0,005]	я волчанка 0,93 [0,35; 1,48] 1,13 [0,86; 1,51] 0,003 [0,001; 0,028]	0,29 0,49 0,95	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Хроническая кожн 1,06 [0,46; 1,67] 1,1 [0,96; 1,34] 0,001 [0,001; 0,005]	ая волчанка 0,91 [0,35; 1,45] 1,14 [0,86; 1,51] 0,003 [0,001; 0,032]	0,35 0,92 0,19	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Алопеци 1,26 [0,40; 1,76] 1,1 [0,66; 1,68] 0,003 [0,001; 0,006]	9 0,69 [0,35; 1,37] 1,13 [0,88; 1,43] 0,003 [0,001; 0,034]	0,09 0,94 0,58	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Язвы слизистых 1,56 [0,21; 3,48] 1,17 [0,76; 1,28] 0,235 [0,001; 1,60]	оболочек 0,91 [0,35; 1,41] 1,11 [0,87; 1,51] 0,003 [0,001; 1,51]	0,35 0,78 0,31	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Артрит 1,32 [0,56; 1,76] 1,26 [0,86; 1,73] 0,005 [0,001; 0,15]	0,65 [0,31; 1,28] 1,08 [0,87; 1,41] 0,002 [0,001; 0,009]	0,002 0,10 0,09	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Серозит 1,03 [0,40; 3,82] 1,36 [1,06; 1,88] 0,0065 [0,001; 0,75]	0,91 [0,35; 1,41] 1,08 [0,86; 1,41] 0,003 [0,001; 0,011]	0,21 0,04 0,21	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Нефрит 1,07 [0,40; 1,67] 1,30 [0,93; 1,76] 0,003 [0,001; 0,06]	0,84 [0,35; 1,45] 1,09 [0,85; 1,40] 0,003 [0,001; 0,02]	0,35 0,04 0,66	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Нейропсихические 1,03 [0,42; 2,05] 1,30 [0,85; 1,96] 0,001 [0,001; 0,026]	нарушения 0,91 [0,35; 1,45] 1,11 [0,87; 1,44] 0,003 [0,001; 0,025]	0,46 0,49 0,18	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Гемолитическая 1,42 [0,69; 3,30] 1,34 [0,88; 1,86] 0,004 [0,001; 1,60]	0,69 [0,35; 1,36] 1,10 [0,86; 1,40] 0,003 [0,001; 0,011]	0,003 0,09 0,55	
Галектин 1, нг/мл Галектин 3, нг/мл Галектин 9, пг/мл	Лейкопения/лим 0,73 [0,35; 1,60] 1,13 [0,79; 1,55] 0,005 [0,001; 0,066]	ифопения 0,95 [0,36; 1,38] 1,11 [0,87; 1,45] 0,003 [0,001; 0,01]	0,72 0,92 0,37	

Показатель	Клинические проявления	p				
	есть	нет				
Тромбоцитопения						
Галектин 1, нг/мл	1,07 [0,35; 2,76]	0,91 [0,35; 1,51]	0,47			
Галектин 3, нг/мл	1,20 [0,74; 1,88]	1,11 [0,87; 1,45]	0,86			
Галектин 9, пг/мл	0,06 [0,001; 125,0]	0,003 [0,001; 0,014]	0,11			
АФС						
Галектин 1, нг/мл	0,35 [0,06; 0,38]	0,98 [0,37; 1,54]	0,006			
Галектин 3, нг/мл	0,92 [0,76; 1,2]	1,16 [0,88; 1,51]	0,24			
Галектин 9, пг/мл	0,003 [0,002; 0,01]	0,003 [0,001; 0,03]	0,84			
CIII						
Галектин 1, нг/мл	1,03 [0,4; 1,6]	0,82 [0,33; 1,41]	0,19			
Галектин 3, нг/мл	1,34 [0,98; 1,73]	1,05 [0,76; 1,31]	0,0023			
Галектин 9, пг/мл	0,007 [0,001; 0,22]	0,002 [0,001; 0,009]	0,024			

сывороточные концентрации быстро изменяются с течением времени, под действием лекарственной терапии или при различных сопутствующих заболеваниях. Кроме того, необходимо помнить о проблеме множественных сравнений и правильной интерпретации результатов вторичного анализа. Из-за несбалансированности и малочисленности ряда выборок пациентов с отдельными клиническими проявлениями СКВ полученные данные следует считать предварительными, требующими дальнейшего подтверждения, в том числе в процессе динамического наблюдения.

ЛИТЕРАТУРА/REFERENCES

- 1. Насонов ЕЛ, Соловьев СК, Аршинов AB. Системная красная волчанка: история и современность. Научно-практическая ревматология. 2022;60(4):397-412.

 Nasonov EL, Solov'ev SK, Arshinov AV. Systemic lupus erythematosus: history and modernity. *Nauchno-Prakticheskaya Revmatologia*. 2022;60(4):397-412. (In Russ.).

 2. Johannes L, Jacob R, Leffler H. Galectins at a glance. *J Cell Sci*. 2018 May 1;131(9): jcs208884. doi: 10.1242/jcs.208884.
- 3. Анкудинов АС, Калягин АН. Анализ симптомов хронической сердечной недостаточности у пациентов с ревматоидным артритом и их взаимосвязь с уровнем галектина-3. Забайкальский медицинский вестник. 2021;(4):1-10.

Ankudinov AS, Kalyagin AN. Analysis of symptoms of chronic heart failure in patients with rheumatoid arthritis and their relationship with the level of galectin-3. *Zabaikal'skii meditsinskii vestnik*. 2021;(4):1-10. (In Russ.). 4. Petri M, Orbai AM, Alarcon GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. *Arthritis Rheum*. 2012 Aug;64(8):

5. Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. *J Rheumatol*. 2002 Feb;29(2): 288-91.

2677-86. doi: 10.1002/art.34473.

- 6. Touma Z, Urowitz MB, Ibanez D, Gladman DD. SLEDAI-2K 10 days versus SLEDAI-2K 30 days in a longitudinal evaluation. *Lupus*. 2011 Jan;20(1):67-70. doi: 10.1177/0961203310385163.
- 7. Насонов ЕЛ, редактор. Российские клинические рекомендации. Ревматология. Москва: ГЭОТАР-Медиа; 2017. Nasonov EL, editor. Russian clinical recommendations. Rheumatology. Moscow: GEOTAR-Media; 2017.
- 8. Miyakis S, Lockshin MD, Atsumi T, et al.

- International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). *J Thromb Haemost*. 2006 Feb;4(2):295-306. doi: 10.1111/j.1538-7836.2006.01753.x.
- 9. Montiel JL, Monsivais-Urenda A, Figueroa-Vega N, et al. Anti-CD43 and antigalectin-1 autoantibodies in patients with systemic lupus erythematosus. *Scand J Rheumatol.* 2010;39(1):50-57. doi: 10.3109/03009740903013213.
- 10. Kang EH, Moon KC, Lee EY, et al. Renal expression of galectin-3 in systemic lupus erythematosus patients with nephritis. *Lupus*. 2009 Jan;18(1):22-8. doi: 10.1177/0961203308094361.
- 11. Gruszewska E, Cylwik B, Gindzienska-Sieskiewicz E, et al. Diagnostic power of galectin-3 in rheumatic diseases. *J Clin Med*. 2020 Oct 15;9(10):3312. doi: 10.3390/jcm9103312.
- 12. Koca SS, Akbas F, Ozgen M, et al. Serum galectin-3 level in systemic sclerosis. *Clin Rheumatol.* 2014 Feb;33(2):215-20. doi: 10.1007/s10067-013-2346-8.
- 13. Shi Z, Meng Z, Han Y, et al. The involvement of galectin-3 in skin injury in systemic lupus erythematosus patients. *Lupus*. 2018 Apr;27(4):621-627. doi: 10.1177/096120 3317736144.
- 14. Kalinska-Bienias A, Kowalczyk E, Bienias P, et al. Serum galectin-3 and galectin-3 binding protein levels in systemic lupus erythematosus and cutaneous lupus erythematosus. *Postepy Dermatol Alergol*. 2021 Apr;38(2): 274-280. doi: 10.5114/ada.2020.92320. 15. Koletsos N, Lazaridis A, Triantafyllou A, et al. Accumulation of microvascular target organ damage in systemic lupus erythematosus patients is associated with increased cardiovascular risk. *J Clin Med*. 2024 Apr 8; 13(7):2140. doi: 10.3390/jcm13072140. 16. Jiao Q, Qian Q, Zhao Z, et al. Expression of human T cell immunoglobulin domain and

- mucin-3 (TIM-3) and TIM-3 ligands in peripheral blood from patients with systemic lupus erythematosus. *Arch Dermatol Res.* 2016 Oct; 308(8):553-61. doi: 10.1007/s00403-016-1665-4.
- 17. Van den Hoogen LL, van Roon JAG, Mertens JS, et al. Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome. *Ann Rheum Dis.* 2018 Dec;77(12):1810-1814. doi: 10.1136/annrheumdis-2018-213497.
- 18. Enocsson H, Wetterö J, Eloranta ML, et al. Comparison of surrogate markers of the type I interferon response and their ability to mirror disease activity in systemic lupus erythematosus. *Front Immunol.* 2021 Jun 30:12: 688753. doi: 10.3389/fimmu.2021.688753. 19. Matsuoka N, Fujita Y, Temmoku J, et al. Galectin-9 as a biomarker for disease activity in systemic lupus erythematosus. *PLoS One.* 2020 Jan 27;15(1):e0227069. doi: 10.1371/journal.pone.0227069.
- 20. Mehta P, Singh P, Aggarwal A. Serum and urinary galectin-9 and C-X-C motif chemokine ligand 10. *Lupus*. 2022 Apr;31(4):482-487. doi: 10.1177/09612033221082907.
- 21. Gensous N, Vagner D, Barnetche T, et al. CXCL-10 and tumor necrosis factor receptor type II as biomarkers of disease activity in systemic lupus erythematosus. *Joint Bone Spine*. 2022 May;89(3):105311. doi: 10.1016/j.jbspin.2021.105311.
- 22. Mirioglu S, Cinar S, Uludag Ö, et al. Serum and urine interferon-inducible protein 10, galectin-9, and SIGLEC-1 as biomarkers of disease activity in systemic lupus erythematosus. *Turk J Med Sci.* 2024 Jan 20;54(2): 391-400. doi: 10.55730/1300-0144.5804. 23. Wu J, Yu X, Liu X, et al. Serum galectin-3 can help distinguish lupus nephritis from systemic lupus erythematosus and is also correlated with the degree of renal damage in lupus nephritis. *Medicine (Baltimore)*. 2024 Dec 20;

103(51):e40987. doi: 10.1097/MD. 00000000000040987.

24. Zhao CN, Mao YM, Liu LN, et al. Plasma galectin-3 levels do not differ in systemic lupus erythematosus patients. *Int J Rheum Dis*. 2019 Oct;22(10):1820-1824. doi: 10.1111/1756-185X.13677.

25. Li LC, Li J, Gao J. Functions of galectin-3 and its role in fibrotic diseases. *J Pharmacol Exp Ther.* 2014 Nov;351(2):336-43.

doi: 10.1124/jpet.114.218370.
26. Akin S, Gucuk-Ipek E, Hayta U, et al. Long-term Dexamethasone Treatment Increases Cardiac Galectin-3 Levels. *Cardiovasc Drugs Ther*. 2023 Oct;37(5):1027-1029. doi: 10.1007/s10557-022-07344-w.
27. Moritoki M, Kadowaki T, Niki T, et al. Galectin-9 ameliorates clinical severity of MRL/lpr lupusprone mice by inducing plasma cell apoptosis independently of Tim-3.

PLoS One. 2013 Apr 9;8(4):e60807. doi: 10.1371/journal.pone.0060807. 28. Van den Hoogen LL, van der Heijden EHM, Hillen MR, et al. Galectin-9 reflects the interferon signature and correlates with disease activity in systemic autoimmune diseases. Response to: 'Biomarkers:to be or not to be' by Yavuz and Rönnblom. Ann Rheum Dis. 2020 Jan;79(1):e9. doi: 10.1136/annrheumdis-2018-214651.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 21.05.2025/05.08.2025/09.08.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Исследование выполнено в рамках фундаментальных тем «Изучение иммунопатологии, диагностики и терапии на ранних стадиях системных ревматических заболеваний» (Per.№ 122040400024-7) и «Изучение иммунопатологии и подходы к терапии при системных ревматических заболеваниях» (PK 125020501434-1).

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The study was carried out within the framework of the basic scientific projects "Investigation of immunopathology, diagnosis and therapy at early stages of systemic rheumatic diseases" (Reg. № 122040400024-7) and "Investigation of immunopathology and approaches to therapy in systemic rheumatic diseases" (PK 125020501434-1).

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Кондратьева Л.В. https://orcid.org/0000-0003-1147-5936 Панафидина Т.А. https://orcid.org/0000-0003-1053-6952 Горбунова Ю.Н. https://orcid.org/0000-0002-2024-6927 Попкова Т.В. https://orcid.org/0000-0001-5793-4689 Диатроптов М.Е. https://orcid.org/0000-0001-6404-0042 Авдеева А.С. https://orcid.org/0000-0003-3057-9175

Клиническое значение уровней растворимых рецепторов CD11b и CD163 в моче при АНЦА-ассоциированных васкулитах

Егорова О.Н.^{1,2}, Дацина А.В.¹, Тарасова Г.М.¹, Самаркина Е.Ю.¹, Никишина Н.Ю.¹, Глухова С.И.¹, Диатроптов М.Е.¹, Авдеева А.С.¹, Лила А.М.^{1,3}

¹ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», Москва; ³ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва ¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Россия, 129110, Москва, ул. Щепкина, 61/2; ³Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1

Цель исследования — оценить диагностическую значимость уровней растворимых рецепторов CD11b и CD163 в моче (U-CD11b и U-CD163) у пациентов с системными васкулитами, ассоциированными с антинейтрофильными цитоплазматическими антителами (АНЦА-CB).

Материал и методы. В одномоментное исследование включено 48 пациентов (21 мужчина и 27 женщин, медиана возраста — 52 [31; 67] года) с достоверным диагнозом АНЦА-СВ: у 38 больных верифицирован гранулематоз с полиангиитом (ГПА), у 8 — микроскопический полиангиит (МПА) и у 2 — эозинофильный гранулематоз с полиангиитом. Больные были разделены на две группы: в 1-ю группу вошли пациенты с АНЦА-СВ без поражения почек (n=25), во 2-ю — с АНЦА-СВ с поражением почек (n=23). 3-ю группу (группа сравнения) составили 13 пациентов (4 мужчины и 9 женщин, медиана возраста — 34 [29,0; 43,4] года) с системной красной волчанкой (СКВ) с достоверным поражением почек. Всем пациентам проводилось общепринятое клиническое, лабораторное и инструментальное обследование с использованием стандартных методов диагностики.

Уровни U-CD11b и U-CD163 оценивали с помощью наборов для иммуноферментного анализа ELH-ITGAM-1 для CD11b человека; DC1630 для CD163 человека (Китай). Референсные значения U-CD11b и U-CD163 были установлены по 95-му процентилю у добровольцев без аутоиммунных заболеваний и составили 5,7 и 41,4 нг/мл соответственно. У 10 пациентов $(2-c\ \Gamma\Pi A,\ 1-c\ M\Pi A)$ и $7-c\ CKB$) проведена прижизненная морфологическая верификация гломерулонефрита (ΓH) .

Результаты и обсуждение. У 36 пациентов (у 23-c АНЦА-СВ и у 13-c СКВ) выявлен ГН. Уровень U-CD11b у 8 (61,5%) пациентов с СКВ был значимо выше, чем у 22 (46%) с АНЦА-СВ (медиана соответственно - 8,2 [4,5; 11,1] и 5,1 [2,7; 8,1] нг/моль; p=0,02). В то же время уровень U-CD163 у 13 (48%) пациентов с АНЦА-СВ был выше (медиана - 29,8 [3,5; 159,1] нг/ммоль), чем у 6 (46,1%) с СКВ (22,6 [12,7; 148,5] нг/моль), p=0,04. Повышение концентрации U-CD11b значимо чаще определялось у больных СКВ и пациентов с АНЦА-СВ с поражением почек, чем у пациентов с АНЦА-СВ без поражения почек (в 61,5; 56,5 и 36% случаев соответственно; p=0,001), причем максимальный уровень отмечался в 3-й группе (медиана - 8,2 [4,5; 11,1] нг/ммоль). Повышенный уровень U-CD163 чаще выявлялся в 3-й и 2-й группах, чем в 1-й (46,1%, p=0,009; 43,4%, p=0,025 и 12% случаев соответственно), наиболее высоким этот показатель был во 2-й группе (медиана - 34,9 [9,3; 159,1] нг/ммоль). Однако статистически значимых различий в группах по частоте повышения концентраций U-CD11b и U-CD163 не наблюдалось. В в 1-й группе также отмечено увеличение содержания U-CD11b (36% случаев) и U-CD163 (12%). Повышенные значения биомаркеров ассоциировались с увеличение активности заболеваний, но не с морфологическими классами ГН при АНЦА-СВ и СКВ.

Заключение. Уровни U-CD11b и U-CD163, вероятно, могут отражать выраженность воспалительных изменений почек у больных АНЦА-СВ и СКВ. Необходимы дальнейшие исследования для определения диагностической значимости данных показателей.

Ключевые слова: АНЦА-васкулиты; системная красная волчанка; гломерулонефрит; биомаркеры; макрофаги; CD163 в моче; CD11 в моче.

Контакты: Ольга Николаевна Егорова; onegorova@yandex.ru

Для цитирования: Егорова ОН, Дацина АВ, Тарасова ГМ, Самаркина ЕЮ, Никишина НЮ, Глухова СИ, Диатроптов МЕ, Авдеева АС, Лила АМ. Клиническое значение уровней растворимых рецепторов CD11b и CD163 в моче при АНЦА-ассоциированных васкулитах. Современная ревматология. 2025;19(5):26—33. https://doi.org/10.14412/1996-7012-2025-5-26-33

Clinical significance of urinary soluble CD11b and CD163 receptor levels in ANCA-associated vasculitides

Egorova O.N.^{1,2}, Datsina A.V.¹, Tarasova G.M.¹, Samarkina E.Yu.¹, Nikishina N.Yu.¹, Glukhova S.I.¹, Diatroptov M.E.¹, Avdeeva A.S.¹, Lila A.M.^{1,3}

¹V.A. Nasonova Research Institute of Rheumatology, Moscow; ²M.V. Vladimirsky Moscow Regional Research Clinical Institute, Moscow; ³Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow

¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²61/2, Schepkina Street, Moscow 129110, Russia; ³2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia

Objective. To assess the diagnostic value of urinary soluble CD11b and CD163 receptor levels (U-CD11b and U-CD163) in patients with antineutrophil cytoplasmic antibody-associated systemic vasculitides (AAV).

Material and methods. This cross-sectional study included 48 patients (21 men, 27 women; median age 52 [31; 67] years) with a confirmed diagnosis of AAV: granulomatosis with polyangiitis (GPA) in 38, microscopic polyangiitis (MPA) in 8, and eosinophilic granulomatosis with polyangiitis in 2. Patients were stratified into two groups: Group 1, AAV without kidney involvement (n=25); Group 2, AAV with kidney involvement (n=23). A comparison Group 3 comprised 13 patients with systemic lupus erythematosus (SLE) and biopsy-proven kidney involvement (4 men, 9 women; median age 34 [29.0; 43.4] years). All patients underwent standard clinical, laboratory, and instrumental evaluations.

U-CD11b and *U-CD163* were measured by ELISA using kits ELH-ITGAM-1 (human CD11b) and DC1630 (human CD163) (China). Reference values for *U-CD11b* and *U-CD163*, established as the 95th percentile in volunteers without autoimmune disease, were 5.7 and 41.4 ng/mL, respectively. In 10 patients (2 with GPA, 1 with MPA, and 7 with SLE) glomerulonephritis (GN) was verified by vital renal biopsy.

Results and discussion. GN was identified in 36 patients (23 with AAV, 13 with SLE). U-CD11b level was significantly higher in 8 (61.5%) SLE patients than in 22 (46%) AAV patients (median 8.2 [4.5; 11.1] and 5.1 [2.7; 8.1] ng/mol, respectively; p=0.02). Conversely, U-CD163 level was higher in 13 (48%) AAV patients (median 29.8 [3.5; 159.1] ng/mmol) than in 6 (46.1%) SLE patients (22.6 [12.7; 148.5] ng/mol), p=0.04. Elevated U-CD11b was detected more frequently in SLE and in AAV with kidney involvement than in AAV without kidney involvement (61.5%, 56.5%, and 36%, respectively; p=0.001), with the highest median in Group 3 (median 8.2 [4.5; 11.1] ng/mmol). Elevated U-CD163 was more frequent in Groups 3 and 2 than in Group 1 (46.1%, p=0.009; 43.4%, p=0.025; and 12%, respectively), with the highest median in Group 2 (34.9 [9.3; 159.1] ng/mmol). However, between-group differences in the frequencies of elevated U-CD11b and U-CD163 were not statistically significant. In Group 1, increases in U-CD11b (36% of cases) and U-CD163 (12%) levels were also observed. Elevated biomarker levels were associated with higher disease activity but not with GN morphological classes in AAV or SLE.

Conclusion. U-CD11b and U-CD163 levels may reflect the severity of renal inflammatory involvement in patients with AAV and SLE. Further studies are needed to determine the diagnostic utility of these biomarkers.

Keywords: ANCA-associated vasculitis; systemic lupus erythematosus; glomerulonephritis; biomarkers; macrophages; urinary CD163; urinary CD11b. Contact: Olga Nikolaevna Egorova; onegorova@yandex.ru

For citation: Egorova ON, Datsina AV, Tarasova GM, Samarkina EYu, Nikishina NYu, Glukhova SI, Diatroptov ME, Avdeeva AS, Lila AM. Clinical significance of urinary soluble CD11b and CD163 receptor levels in ANCA-associated vasculitides. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):26–33 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-26-33

Некротизирующий системный васкулит (СВ) с вовлечением преимущественно сосудов мелкого калибра, опосредованный антинейтрофильными цитоплазматическими антителами (АНЦА), — группа тяжелых полиорганных иммуновоспалительных заболеваний, включающих гранулематоз с полиангиитом (ГПА), микроскопический полиангиит (МПА) и эозинофильный гранулематоз с полиангиитом (ЭГПА) [1]. При АНЦА-ассоциированном СВ (АНЦА-СВ) эпитопными мишенями являются миелопероксидаза (МПО) и протеиназа 3 (ПР3). Зачастую, при изолированном поражении ЛОР-органов и/или глаз (при локальной форме ГПА и ЭГПА), АНЦА к этим антигенам не удается обнаружить [2, 3]. В то же время АНЦА могут определяться при других заболеваниях, инфекциях, приеме ряда лекарственных средств и др. [4], что затрудняет верификацию первичных васкулитов.

АНЦА-СВ является основной причиной развития быстропрогрессирующего малоиммунного (pauci-immune) гломерулонефрита (ГН). Этот тип нефрита имеет отличительные черты: полулуния наблюдаются более чем в половине клубочков и часто ассоциированы с некрозом капиллярных петель, что нередко приводит к быстрому (в течение недель или месяцев) снижению почечной функции вплоть до терминальной стадии почечной недостаточности [1, 5—7].

Установить активность заболевания и оценить эффективность проводимой терапии по клиническим критериям часто не представляется возможным. Так, протеинурия и гематурия могут персистировать после достижения ремиссии, что затрудняет дифференциальную диагностику активного ГН и хронического необратимого повреждения почек у пациентов с АНЦА-СВ [8]. В то же время повышение уровня креатинина в крови часто отмечается уже на этапе необратимой

утраты функции почек [9]. В ряде работ продемонстрировано, что антитела к МПО (аМПО) ассоциируются с более серьезным нарушением функции почек в 70—95% случаев, а антитела к ПРЗ (аПРЗ) — в 50—78% [10—12]. Вместе с тем наличие аПРЗ указывает на более высокий риск рецидива [13], что еще больше увеличивает вероятность снижения функции почек. Специфическим предиктором развития ГН является двукратное повышение уровня АНЦА [14]. Стойкая положительная реакция при определении аМРО, а также смена негативного результата теста на позитивный ассоциируются с рецидивом заболевания [15]. Причем концентрация АНЦА может не коррелировать с активностью заболевания: у небольшого числа пациентов с поражением почек при АНЦА-СВ не удается выявить АНЦА [16].

«Золотым стандартом» диагностики АНЦА-СВ и АНЦАассоциированного ГН (АНЦА-ГН) остается прижизненное морфологическое исследование почки, которое настоятельно рекомендуется всеми экспертами, но не всегда выполнимо, кроме того, нередко имеются неспецифические признаки васкулита, что затрудняет верификацию диагноза [17]. Пациенты с рецидивирующим АНЦА-ГН подвержены наибольшему риску неблагоприятных исходов, что подчеркивает необходимость ранней диагностики и незамедлительного назначения иммуносупрессивной терапии и/или генно-инженерных биологических препаратов (ГИБП) [18]. В связи с этим остается актуальным поиск информативных биомаркеров, поскольку традиционные лабораторные исследования (например, определение СРБ, СОЭ, уровня креатинина в сыворотке крови, анализ мочи и др.) обладают недостаточной чувствительностью для мониторинга активности заболевания и повреждения почек [7, 19].

К таким неинвазивным показателям относится растворимый CD163-рецептор — фагоцитотоксический белок, выделяемый при активации макрофагов М2-типа [20, 21], обнаруженный в моче, который, по-видимому, может быть многообещающим маркером активного АНЦА-ГН [22, 23]. В экспериментальных работах показано, что макрофаги способствуют образованию малоиммунного ГН у мышей [24]. Это было подтверждено при иммуногистохимическом исследовании почки у пациентов с ранней стадией АНЦА-ГН, у которых выявлена избирательная локализация CD163(+) в неизмененных и измененных (в местах фибриноидного некроза) клубочках [25].

Относительно недавно в моче пациентов с волчаночным нефритом (ВН) и АНЦА-ГН обнаружен повышенный уровень CD11b [26], который принадлежит к семейству лейкоцитарных β_2 -интегринов CD11c/CD18 ($\alpha X \beta_2$) [27]. Он активно экспрессируется на нейтрофилах и моноцитах, играет важную роль в их активации, фагоцитозе и гибели клеток. Наличие активного CD11b на дендритных клетках препятствует полной активации Т-клеток и считается маркером созревания NKклеток. CD11b регулирует передачу сигналов от B-клеточного рецептора, индуцирует апоптоз аутореактивных В-клеток и подавляет активацию других иммунных клеток, предотвращая развитие аутоиммунных заболеваний [27]. Во время активации лейкоцитов Mac-1 (интегрин аМ/β2, CD11b) может быть «сброшен» с поверхности клеток посредством протеолитического расщепления с помощью различных ферментов, таких как матриксные металлопротеиназы (ММП), и затем расщепленный sCD11b (фрагмент CD11b) попадает во внеклеточную среду [28]. Поскольку при АНЦА-ГН фильтрационная функция нарушена, CD11b может проникать через гломерулярный фильтр и выводиться с мочой [29].

Цель исследования — оценить диагностическую значимость уровней растворимых рецепторов CD11b и CD163 в моче (U-CD11b и U-CD163) у пациентов с АНЦА-CB.

Материал и методы. В одномоментное исследование включено 48 пациентов (21 мужчина и 27 женщин, медиана возраста — 52 [31; 67] года) с достоверным диагнозом АНЦА-CB (38 – с $\Gamma\Pi A$, 8 – с $M\Pi A$, 2 – с $\Im\Gamma\Pi A$). Диагноз $AH \coprod A$ -СВ был установлен в соответствии с классификационными критериями ACR (American College of Rheumatology) 2022 г. [30-32]. Больные были разделены на две группы: в 1-ю груп- пу вошли пациенты с АНЦА-СВ без поражения почек (n=25), во 2-ю – с АНЦА-СВ с поражением почек (n=23). Группу сравнения составили 13 пациентов (4 мужчины и 9 женщин, медиана возраста -34 [29,0; 43,4] года) с диагнозом СКВ с достоверным поражением почек в соответствии с критериями SLICC (Systemic Lupus Erythematosus International Collaborating Clinics) 2012 г. [33]. Из исследования были исключены пациенты, не отвечавшие критериям для верификации диагноза АНЦА-СВ и СКВ. Все больные наблюдались в ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой» (НИИР им. В.А. Насоновой) с апреля 2022 г. по июль 2024 г. Исследование одобрено локальным этическим комитетом НИИР им. В.А. Насоновой. Все пациенты подписали информированное согласие на участие в исследовании.

При включении пациентов в анализ изучали первичную медицинскую документацию. У больных с АНЦА-СВ рассчитывали Бирмингемский индекс активности васкулита (Birmingham Vasculitis Activity Score, BVAS, версия 3; BVAS

≥3 балла соответствовал высокой активности заболевания) и индекс повреждения (ИП) при васкулите (Vasculitis Damage Index, VDI). У пациентов с СКВ определяли индекс активности SLEDAI-2K (Systemic Lupus Erythematosus Disease Activity Index в модификации 2K) и ИП SLICC (Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index).

Всем пациентам проводилось общепринятое клиническое, лабораторное и инструментальное обследование с использованием стандартных методов диагностики. Для оценки характера и тяжести поражения почек определяли уровень сывороточного креатинина, расчетную скорость клубочковой фильтрации (рСКФ) по формуле СКD-ЕРІ и соотношение альбумин/креатинин. Диагностику хронической болезни почек и острого почечного повреждения проводили в соответствии с рекомендациями KDIGO (Kidney Disease: Improving Global Outcomes, 2024), а также Национальной ассоциации нефрологов и Научного общества нефрологов России (2021). Клиническим эквивалентом быстропрогрессирующего ГН считали сочетание мочевого синдрома с быстропрогрессирующей почечной недостаточностью (нарастание уровня креатинина сыворотки ≥2 раза менее чем за 3 мес). У 10 пациентов (у 2 – с $\Gamma\Pi A$, у 1 – с $M\Pi A$ и у 7 – СКВ) проводилась прижизненная морфологическая верификация ГН.

Характеристика пациентов при включении в исследование представлена в табл. 1. Во всех группах преобладали женщины (в соотношении 1:1,2-2). Пациенты с СКВ были моложе на момент дебюта заболевания и имели большую его длительность (р=0,01). При АНЦА-СВ в 83,3% случаев выявлены АНЦА, преимущественно аПРЗ (64,5%). У 48% пациентов с наличием АНЦА (у 15 – с ГПА и у 8 – с МПА) диагностирован ГН (см. табл. 1). Значимое изменение соотношения альбумин/креатинин чаще встречалось при СКВ (p=0,004). Показатели BVAS и VDI были выше при ГПА (медиана -6 [0; 8] и 2 [1; 3,5]) и ниже - при МПА (4 [0; 9] и 1 [0; 3]) и ЭГПА (3 [0; 7,5] и 1 [0; 2,5] соответственно). У пациентов с СКВ индекс SLEDAI-2K составлял ≥6, что соответствовало средней и высокой степени активности заболевания, медиана ИП SLICC – 2 [1; 4]. Все пациенты получали глюкокортикоиды — Γ К (медиана дозы — 15 [8,0; 19] мг/сут), больше половины (56,2% – с АНЦА-СВ и 54% – с СКВ) – иммунодепрессанты и более четверти (35,4% – с АНЦА-СВ и $46,1\% - c CKB) - \Gamma ИБП.$

Образцы мочи центрифугировали при 3000g в течение 10 мин при 4°С, надосадочную жидкость хранили при -80°С до использования. Содержание CD11b и CD163 в моче, разбавленной в 1–20 раз по сравнению с исходной концентрацией, оценивали с помощью наборов для иммуноферментного анализа (ELH-ITGAM-1 для CD11b человека; DC1630 для CD163 человека, Китай). Для вычисления соотношения альбумин/креатинин в разовой порции мочи содержание альбумина определяли с помощью нефелометрии (U-Alb), а креатинина — колориметрическим методом (U-Cr). Уровни U-CD11b, U-CD163 и U-Alb были нормализованы по отношению к U-Cr. Референсные уровни U-CD11b и U-CD163 установлены по 95-му процентилю добровольцев без аутоиммунных заболеваний и составили 5,7 и 41,4 нг/мл соответственно.

Статистическая обработка данных выполнена с помощью методов параметрической и непараметрической статистики программы Statistica 10 для Windows (StatSoft Inc., USA).

Таблица 1. Характеристика пациентов с АНЦА-СВ и СКВ (n=63) Table 1. Characteristics of patients with AAV and SLE (n=63)

Показатель	АНЦА-CB (n=48)	CKB (n=13)
Пол, n (%): мужской женский	21 (43,7) 27 (56,2)	4 (31) 9 (69,2)
Возраст, годы, Ме [25-й; 75-й перцентили]	52 [31; 67]	34 [29,0; 43,4]
Возраст дебюта заболевания, годы, Ме [25-й; 75-й перцентили]	47 [22; 59]	29 [22,0; 37,2]
Длительность заболевания, мес, Ме [25-й; 75-й перцентили]	29 [16;53]	63 [31; 153,5]
Диагноз, n (%): ГПА МПА ЭГПА	38 (79,1) 8 (16,6) 2 (4,1)	- - -
AHЦA, n (%), β mom числе: aΠP3 aΜΠΟ aΠP3 + aΜΠΟ отсутствуют	40 (83,3) 31 (64,5) 8 (16,6) 1 (2) 8 (16,6)	- - - -
Креатинин, мкмоль/л, Ме [25-й;75-й перцентили]	85,5 [69,7; 104,4]	85,5 [70,4; 164,3]
Альбумин/креатинин, Ме [25-й; 75-й перцентили]	4,6 [0; 20,6]	20 [9,8; 322]
ΓH, n (%)	23 (48)	13 (100)
BVAS, Me [25-й; 75-й перцентили] VDI, Me [25-й; 75-й перцентили]	4,0 [1,0; 7,5] 2,0 [1,0; 3,7]	
SLEDAI-2K, Me [25-й; 75-й перцентили] ИП SLICC, Me [25-й; 75-й перцентили]	_	11 [8; 16,5] 2 [1; 4]
Прижизненная биопсия почки, n (%)	3 (6,2)	7 (54)
Терапия: безмедикаментозная ремиссия, n (%) ГК, n (%) ЦФ, n (%) Кумулятивная доза ЦФ, г, Me [25-й; 75-й перцентили] РТМ, n (%) Кумулятивная доза РТМ, г, Me [25-й; 75-й перцентили] ММФ, n (%) АЗА, n (%) МТ, n (%)	0 48 (100) 11 (23) 1,6 [0,8; 2,0] 17 (35,4) 4,0 [3,0; 8,4] 7 (14,5) 5 (10,4) 4 (8,3)	0 13 (100) 4 (31) 3 [2; 4,5] 6 (46,1) 3,0 [1; 4,5] 2 (15,3) 1 (7,6)

Примечание. ЦФ — циклофосфамид; PTM — ритуксимаб; $MM\Phi$ — микофенолата мофетил; A3A — азатиоприн; MT — метотрексат.

Учитывая небольшой объем выборки, результаты представлены в виде медианы и интерквартильного интервала (Ме [25-й; 75-й перцентили]). Корреляционный анализ проводился по методу Спирмена. Различия считали статистически значимыми при p < 0.05.

Результаты. У 14 (61%) пациентов с АНЦА-СВ и у 7 (54%) с СКВ поражение почек диагностировано на начальном этапе заболеваний, у 15 (у 9 — с АНЦА-СВ и у 6 — с СКВ) медиана времени от дебюта заболевания до выявления клинических признаков вовлечения почек составила 4 [1; 14] мес. У 36 пациентов с поражением почек мочевой синдром характеризовался протеинурией и/или гематурией. Развитие гематурии отмечено у 33 (91,6%) больных, а ее частота была сопоставима у пациентов с АНЦА-СВ и СКВ. Протеинурия имелась у 27 (75%) больных и несколько чаще встречалась у пациентов с СКВ и МПА (р=0,06). Сочетание мочевого син-

дрома с быстропрогрессирующей почечной недостаточностью зафиксировано у 9 (39,1%) пациентов с АНЦА-СВ (у 4 — с ГПА и у 5 — с МПА) и у 6 (46,1%) с СКВ. При МПА и СКВ наблюдалось повышение уровня креатинина сыворотки крови и снижение рСКФ, однако эти изменения не являются статистически значимыми (p=0,2). Кроме того, не обнаружено значимых различий в частоте поражения почек у пациентов, позитивных по аПР3 и аМПО (p=0,12).

Из 10 больных, которым проводилась прижизненная биопсия почки, у 3 с АНЦА-ГН (у 2-c ГПА и у 1-c МПА) диагностирован малоиммунный ГН с полулуниями (экстракапиллярный ГН II класса по классификации А.Е. Berden [34] — у 2 и фокальный ГН I класса — у 1), тогда как у 7 пациентов с СКВ чаще определялся диффузный пролиферативный нефрит IV класса (у 5) и реже — мембранозный ВН V класса (у 2).

Таблица 2. Лабораторные показатели у пациентов с АНЦА-СВ и СКВ Table 2. Laboratory parameters in patients with AAV and SLE

Показатель	АНЦА-СВ без поражения почек, 1-я группа (n=25)	АНЦА-СВ с поражением почек, 2-я группа (n=23)	СКВ, 3-я группа (n=13)	p
Альбумин/креатинин, Ме [25-й; 75-й перцентили]	0 [0; 16,6]	6 [0; 96,4]	20 [9,8; 322]	
U-CD11b, нг/ммоль: Ме [25-й; 75-й перцентили] ≤5,7, n (%) >5,7, n (%)	3,1 [1,9; 6,1] 16 (64) 9 (36)	5,9 [3,9; 9,5] 10 (43,4) 13 (56,5)	8,2 [4,5; 11,1] 5 (38,4) 8 (61,5)	$p_{1-2}=0.01$ $p_{1-3}=0.01$ $p_{2-3}=0.36$
U-CD163, нг/ммоль: Ме [25-й; 75-й перцентили] ≤41,4, n (%) >41,4, n (%)	9,8 [3,7; 28,9] 22 (88) 3 (12)	34,9 [9,3; 159,1] 13 (56,5) 10 (43,4)	22,6 [12,7; 148,5] 7 (53,8) 6 (46,1)	$p_{1-2}=0,009$ $p_{1-3}=0,025$ $p_{2-3}=0,65$

Уровень U-CD11b был повышен у 8 (61,5%) пациентов с СКВ (8,2 [4,5; 11,1] нг/ммоль) и у 22 (46%) с АНЦА-СВ (5,1 [2,7; 8,1] нг/ммоль) (р=0,02). Увеличение уровня U-CD163 отмечалось у 13 (48%) пациентов с АНЦА-СВ (29,8 [3,5; 159,1] нг/ммоль) и у 6 (46,1%) с СКВ (22,6 [12,7; 148,5] нг/ммоль, р=0,04; табл. 2). При СКВ наблюдалась корреляция уровней U-CD11b (р=0,01; r=0,309) и U-CD163 (р=0,003; r=0,37) с гематурией. При АНЦА-СВ выявлена умеренная связь соотношения альбумин/креатинин с уровнями U-CD11b (р=0,001; r=0,41) и U-CD163 (р=0,002; r=0,38). Достоверных ассоциаций концентрации мочевых маркеров с уровнем креатинина (p=0,3) и показателями мочевого синдрома — гематурией (p=0,06) и протеинурией (p=0,1) — при АНЦА-СВ не отмечено.

Учитывая полученные данные, мы решили оценить диагностические возможности U-CD11b и U-CD163 при АНЦА-ГН. Повышенный уровень U-CD11b у пациентов с СКВ и пациентов с АНЦА-СВ с поражением почек отмечался значимо чаще, чем у пациентов АНЦА-СВ без поражения почек (соответственно в 61,5; 56,5 и 36% случаев; p=0,001), причем максимальным он был в 3-й группе (медиана 8,2 [4,5; 11,1] нг/моль; см. табл. 2). Повышение содержания U-CD163 также чаще определялось в 3-й и 2-й группах, чем в 1-й: соответственно в 46,1%; p=0,009), 43,4% (p=0,025) и 12% случаев, самый высокий показатель зарегистрирован во 2-й группе (медиана -34,9 [9,3; 159,1] нг/ммоль). Однако значимых различий концентраций U-CD11b (p=0,36) и U-CD163 (p=0,65) во 2-й и 3-й группах не выявлено (см. табл. 2). Интересно, что в в 1-й группе также отмечено повышение уровней U-CD11b (в 36% случаев) и U-CD163 (в 12%).

Соотношение альбумин/креатинин у пациентов 3-й группы было значимо выше, чем у больных 1-й группы (р=0,005). Уровень U-CD163 коррелировал с этим показателем у пациентов 3-й (р=0,001, г=0,49) и 2-й (р=0,0004, г=0,53) групп, а также с содержанием креатинина в 3-й группе (р=0,035, г=0,58). Гематурия в 3-й и 2-й группах была умеренно связана с уровнями U-CD11b (р=0,03, г=0,41 и р=0,001, г=0,44 соответственно) и U-CD163 (р=0,04, г=0,37 и р=0,002, г=0,39 соответственно). У пациентов 2-й группы содержание U-CD11b и U-CD163 коррелировало с уровнем АНЦА (р=0,0003, г=0,44 и р=0,006, г=0,37 соответственно) и BVAS (р=0,005, г=0,42 и р=0,04, г=0,39 соответственно). В 3-й группе концентрации U-CD11b и U-CD163 коррелировали с уровнем антител к двуспиральной ДНК (р=0,0001, г=0,53 и р=0,005,

r=0,46 соответственно) и ИП SLICC (p=0,0001, r=0,51 и p=0,0003, r=0,53). Небольшое число больных, которым проводилась биопсия почки, не позволило выявить связь биомаркеров с морфологическими классами ГН, что требует дальнейшего изучения.

Обсуждение. Ранняя диагностика имеет ключевое значение для своевременного начала лечения ГН, поэтому поиск новых методов неинвазивной диагностики и оценки активности АНЦА-СВ и СКВ представляется весьма актуальным. За последние 25 лет было предложено более 160 сывороточных и мочевых биомаркеров в качестве потенциальных диагностических инструментов для оценки активности АНЦА-СВ и АНЦА-ГН [35-38]. Мы изучили два перспективных растворимых рецептора – U-CD11b и U-CD163, – которые, согласно последним исследованиям, продемонстрировали значимую ассоциацию с ГН при АНЦА-СВ и СКВ [22, 23, 25, 26, 29, 39]. Для подтверждения этих данных мы включили в группу сравнения пациентов с СКВ, которые были моложе на момент дебюта заболевания и имели большую его длительность, чем больные АНЦА-СВ (p=0,001 и p=0,0002 соответственно; см. табл. 1).

Согласно нашим данным, уровни изученных биомаркеров различаются в группах пациентов с АНЦА-СВ и СКВ, что подтверждает их диагностическую ценность. Так, концентрация U-CD11b при СКВ повышалась в большей степени, чем при АНЦА-СВ (р=0,02), что, вероятно, обусловлено выраженной активностью ВН (IV класс в 71,4% случаев и V класс – в 28,5%). Уровень U-CD163 был выше при АНЦА-СВ, чем при СКВ (р=0,04), что может быть связано с развитием экстракапиллярного ГН II гистологического класса. М.С. Nielsen и соавт. [40] отметили высокую информативность содержания неинвазивных биомаркеров в моче (CD163, CD206, интерлейкин 16), которое повышалось до появления протеинурии и гематурии и коррелировало с активностью ВН. Рядом авторов была выявлена ассоциация повышения уровней CD163, CD11b и CD206 в моче и их снижения на фоне лечения с изменением гистологического класса ГН при СКВ, что подтверждает связь макрофагов с повреждением почек и активностью ВН, а уменьшение уровня этих маркеров способствует улучшению прогноза заболевания [26, 39, 41]. Примечательно, что более высокий уровень U-CD11b являлся предиктором III и IV морфологических классов ГН при СКВ [26]. Эта связь наблюдалась и в настоящем исследовании.

У наших пациентов повышенный уровень U-CD11b чаще регистрировался в 3-й группе, тогда как увеличение концентрации U-CD163 — во 2-й, но значимых различий не установлено. Возможно, это обусловлено различиями в подтипах лейкоцитов, экспрессирующих CD11b как на нейтрофилах, так и на макрофагах, а CD163 – только на макрофагах. А. Kitagawa и соавт. [26] предположили, что повышение уровня CD11b в моче при активном BH связано с активностью в клубочках не только нейтрофилов, но и макрофагов. Вероятно, выявленная особенность биомаркеров может определяться морфологическим классом ГН, поскольку у наших пациентов с АНЦА-СВ отмечался экстракапиллярный и фокальный ГН по классификации А.Е. Berden [34]. J. Li и соавт. [42] установили взаимосвязь уровня U-CD11b с воспалением как в клубочках почек, так и в тубулоинтерстиции при МПА и ГПА, тогда как концентрация U-CD163 была связана с изменениями в полулунных клубочках у пациентов с активной фазой и рефрактерными формами АНЦА-СВ [43]. Однако Y. Yokoe и соавт. [29] наблюдали одинаковое повышение уровней U-CD11b и U-CD163 при активном АНЦА-ГН, отражающее клиническое и гистологическое состояние гломерулярного воспаления. Интересно, что на фоне индукционной терапии АНЦА-СВ уровень U-CD163 значительно снижался по сравнению с концентрацией U-CD11b [22, 26]. В исследованиях in vitro продемонстрирована положительная динамика двух поверхностных лейкоцитарных молекул СD163, которые расщеплялись под действием дезинтегрина и ММП17 в ответ на определенные воспалительные стимулы [44, 45], в то время как для расщепления U-CD11b требовалась трансмиграция клеток через эндотелий после активации [26, 28]. Таким образом, повышение уровня U-CD163 может

указывать на активацию гломерулярных макрофагов, чувствительных к иммуносупрессивному лечению, а повышение содержания U-CD11b — на накопление биомаркера в клубочках и частично в канальцах, а также в гломерулярных полулуниях при ГН. Вероятно, этим можно объяснить корреляцию концентраций U-CD11b и U-CD163 с гематурией у наших пациентов во 2-й и 3-й группах. Примечательно, что уровень U-CD163 значимо чаще коррелировал с соотношением альбумин/креатинин во 2-й и 3-й группах, а с концентрацией креатинина — только в 3-й группе.

Неожиданный результат мы получили в 1-й группе, в которой у части пациентов также наблюдалось повышение уровней U-CD11b и U-CD163, что, возможно, свидетельствует о нарушении фильтрационной функции почек при активном АНЦА-СВ.

Представленные данные подтверждают, что U-CD11b отражает активный нейтрофильный ответ и является индикатором острого поражения, тогда как U-CD163 характеризует активность макрофагов (тубулоинтерстициальное воспаление, фиброз) и указывает на рецидив или ремиссию ГН.

Заключение. Таким образом, U-CD11b и U-CD163 могут рассматриваться в качестве новых биомаркеров в диагностике ГН при АНЦА-СВ и СКВ. Вместо сложной дорогостоящей и инвазивной прижизненной биопсии почки мы предлагаем инновационный метод: выборочный протеомный анализ мочи. Он позволит в режиме реального времени отслеживать воспалительные процессы в почечной ткани, открывая новые возможности для оптимизации терапии и прогнозирования исходов заболевания. Однако, несмотря на многообещающие результаты, необходимы дальнейшие углубленные исследования новых биомаркеров при ГН.

ЛИТЕРАТУРА/REFERENCES

- 1. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. *Arthritis Rheum.* 2013 Jan;65(1):1-11. doi: 10.1002/art.37715.
- 2. Fijolek J, Wiatr E. Antineutrophil cytoplasmic antibodies their role in pathogenesis, diagnosis and treatment monitoring of ANCA-associated vasculitis. *Cent Eur J Immunol.* 2020;45(2):218-227. doi: 10.5114/ceii.2019.92494
- 3. Bossuyt X, Cohen Tervaert JM, Arimura Y, Blockmans D, Flores-Suarez LF, Guillevin L, et al. Position paper: revised 2017 international consensus on testing of ANCA in granulomatosis with polyangiitis and microscopic polyangiitis. *Nat Rev Rheumatol*. 2017 Nov; 13(11):683-692. doi:10.1038/nrrheum.2017.140. 4. Егорова ОН, Тарасова ГМ, Исаева БГ и др. К проблеме дифференциальной диагностики при выявлении антинейтрофильных цитоплазматических антител. Современная ревматология. 2024; 18(2):7-15.
- Egorova ON, Tarasova GM, Isaeva BG, et al. On the problem of differential diagnosis in the detection of antineutrophil cytoplasmic anti-

- bodies. Sovremennaya revmatologiya = Modern Rheumatology Journal. 2024;18(2):7-15. (In Russ.). doi: 10.14412/1996-7012-2024-2-7-15.
- 5. Hilhorst M, Wilde B, van Breda Vriesman P, et al. Estimating renal survival using the ANCA-associated GN classification. *J Am Soc Nephrol.* 2013 Sep;24(9):1371-5. doi: 10.1681/ASN.2012090912.
- 6. Moiseev S, Novikov P, Jayne D, Mukhin N. End-stage renal disease in ANCA-associated vasculitis. *Nephrol Dial Transplant*. 2017 Feb 1;32(2):248-253. doi: 10.1093/ndt/gfw046. 7. Floege J, Jayne DRW, Sanders JSF, et al. Executive summary of the KDIGO 2024 Clinical Practice Guideline for the Manage-
- Clinical Practice Guideline for the Management of ANCA-Associated Vasculitis. *Kidney Int.* 2024 Mar; 105(3):447-449.doi: 10.1016/j.kint.2023.10.009.
- 8. Wu I, Parikh CR. Screening for kidney diseases: older measures versus novel biomarkers. *Clin J Am Soc Nephrol*. 2008 Nov;3(6):1895-901. doi: 10.2215/CJN.02030408.
- 9. Oomatia A, Moran SM, Kennedy C, et al. Prolonged duration of renal re covery following ANCA-associated glomerulonephritis. *Am J Nephrol.* 2016;43(2):112-9. doi: 10.1159/

- 000444925.
- 10. Kronbichler A, Shin JI, Lee KH, et al. Clinical associations of renal involvement in ANCA-associated vasculitis. *Autoimmun Rev.* 2020 Apr;19(4):102495. doi: 10.1016/j.autrev.2020.102495.
- 11. Odler B, Bruchfeld A, Scott J, et al. Challenges of defining renal response in ANCA-associated vasculitis: call to action? *Clin Kidney J.* 2023 Jan 11;16(6):965-975. doi: 10.1093/ckj/sfad009.
- 12. Kitching AR, Anders HJ, Basu N, et al. ANCA-associated vasculitis. *Nat Rev Dis Primers*. 2020 Aug 27;6(1):71. doi: 10.1038/s41572-020-0204-y.
- 13. Kronbichler A, Bajema IM, Bruchfeld A, et al. Diagnosis and management of ANCA-associated vasculitis. *Lancet*. 2024 Feb 17;403(10427):683-698. doi: 10.1016/S0140-6736(23)01736-1.
- 14. Kemna MJ, Damoiseaux J, Austen J, et al. ANCA as a predictor of relapse: useful in patients with renal involvement but not in patients with nonrenal disease. *J Am Soc Nephrol*. 2015 Mar;26(3):537-42. doi: 10.1681/ASN. 2013111233.
- 15. Casal Moura M, Specks U, Tehranian S,

- et al. Maintenance of remission and risk of relapse in myeloperoxidase-positive ANCA-associated vasculitis with kidney involvement. *Clin J Am Soc Nephrol.* 2023 Jan 1;18(1):47-59. doi: 10.2215/CJN.06460622.
- 16. Novikov P, Smitienko I, Bulanov N, et al. Testing for antineutrophil cytoplasmic antibodies (ANCAs) in patients with systemic vasculitides and other diseases. *Ann Rheum Dis.* 2017 Aug;76(8):e23. doi: 10.1136/annrheumdis-2016-210890.
- 17. Hellmich B, Sanchez-Alamo B, Schirmer JH, et al. EULAR recommendations for the management of ANCA-associated vasculitis: 2022 update. *Ann Rheum Dis.* 2024 Jan 2; 83(1):30-47. doi: 10.1136/ard-2022-223764. 18. Slot MC, Tervaert JW, Franssen CF, Stegeman CA. Renal survival and prognostic factors in patients with PR3-ANCA associated vasculitis with renal involvement. *Kidney Int.* 2003 Feb;63(2):670-7. doi: 10.1046/j.1523-1755.2003.00769.x.
- 19. Rhee RL, Davis JC, Ding L. The utility of urinalysis in determining the risk of renal relapse in ANCA-associated vasculitis. *Clin J Am Soc Nephrol.* 2018 Feb 7;13(2):251-257. doi: 10.2215/CJN.04160417.
- 20. Kristiansen M, Graversen JH, Jacobsen C, et al. Identification of the haemoglobin scavenger receptor. *Nature*. 2001 Jan 11;409(6817): 198-201. doi: 10.1038/35051594.
- 21. Etzerodt A, Moestrup SK. CD163 and inflammation: Biological, diagnostic, and therapeutic aspects. *Antioxid Redox Signal*. 2013 Jun 10;18(17):2352-63. doi: 10.1089/ars. 2012.4834.
- 22. O'Reilly VP, Wong L, Kennedy C, et al. Urinary soluble CD163 in active renal vasculitis. *J Am Soc Nephrol.* 2016 Sep;27(9):2906-16. doi: 10.1681/ASN.2015050511.
- 23. Moran SM, Monach PA, Zgaga L, et al. Urinary soluble CD163 and monocyte chemoattractant protein-1 in the identification of subtle renal flare in anti-neutrophil cytoplasmic antibody-associated vasculitis. *Nephrol Dial Transplant*. 2020 Feb 1;35(2): 283-291.doi: 10.1093/ndt/gfy300.
- 24. Rousselle A, Kettritz R, Schreiber A. Monocytes promote crescent formation in anti-myeloperoxidase antibody-induced glomerulonephritis. *Am J Pathol.* 2017 Sep; 187(9):1908-1915. doi: 10.1016/j.ajpath. 2017.05.003.
- 25. Zhao L, David MZ, Hyjek E, et al. M2 macrophage infiltrates in the early stages of ANCA-associated pauci-immune necrotizing GN. *Clin J Am Soc Nephrol.* 2015 Jan 7;10(1): 54-62. doi: 10.2215/CJN.03230314.
- 26. Kitagawa A, Tsuboi N, Yokoe Y, et al. Urinary levels of the leukocyte surface molecule CD11b associate with glomerular inflammation in lupus nephritis. *Kidney Int.* 2019 Mar; 95(3):680-692. doi: 10.1016/j.kint.2018.10.025.

- 27. Hou L, Koutsogiannaki S, Yuki K. Multi-faceted, unique role of CD11c in leukocyte biology. *Front Immunol.* 2025 Mar 4;16: 1556992. doi: 10.3389/fimmu.2025.1556992. 28. Zen K, Guo YL, Li LM, et al. Cleavage of the CD11b extracellular domain by the leukocyte serprocidins is critical for neutrophil detachment during chemotaxis. *Blood.* 2011 May 5;117(18):4885-94. doi: 10.1182/blood-2010-05-287722.
- 29. Yokoe Y, Tsuboi N, Imaizumi T, et al. Clinical impact of urinary CD11b and CD163 on the renal outcomes of anti-neutrophil cytoplasmic antibody-associated glomerulonephritis. *Nephrol Dial Transplant*. 2021 Jul 23;36(8):1452-1463. doi: 10.1093/ndt/gfaa097.
- 30. Robson JC, Grayson PC, Ponte C, et al; DCVAS Study Group. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for granulomatosis with polyangiitis. *Arthritis Rheumatol.* 2022 Mar;74(3):393-399. doi: 10.1002/art.41986.
- 31. Suppiah R, Robson JC, Grayson PC, et al; DCVAS Study Group. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for microscopic polyangiitis. *Arthritis Rheumatol.* 2022 Mar;74(3):400-406. doi: 10.1002/art.41983.

32. Grayson PC, Ponte C, Suppiah R et al;

- DCVAS Study Group. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for eosinophilic granulomatosis with polyangiitis. *Arthritis Rheumatol*. 2022 Mar; 74(3):386-392. doi: 10.1002/art.41982. 33. Petri M, Orbai AM, Alarcon GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. *Arthritis Rheum*. 2012 Aug; 64(8):
- 34. Berden AE, Ferrario F, Hagen EC, et al. Histopathologic classification of ANCA-associated glomerulonephritis. *J Am Soc Nephrol*. 2010 Oct;21(10):1628-36. doi: 10.1681/ASN.2010050477.

2677-86. doi: 10.1002/art.34473.

- 35. Kronbichler A, Kerschbaum J, Gründlinger G, et al. Evaluation and validation of biomarkers in granu lomatosis with polyangiitis and microscopic polyangiitis. *Nephrol Dial Transplant*. 2016 Jun;31(6): 930-6. doi: 10.1093/ndt/gfv336.
- 36. Буланов НМ, Серова АГ, Кузнецова ЕИ и др. Молекулы повреждения почечной ткани (КІМ-1, МСР-1) и коллаген IV типа в оценке активности ассоциированного с антинейтрофильными цитоплазматическими антителами гломерулонефрита. Терапевтический архив. 2017;89(6):48-55. Bulanov NM, Serova AG, Kuznetsova EI,

- et al. Renal tissue damage molecules (KIM-1, MCP-1) and type IV collagen in assessing the activity of glomerulonephritis associated with antineutrophil cytoplasmic antibodies. *Terapevticheskii arkhiv.* 2017;89(6):48-55. (In Russ.).
- 37. Al-Hussain T, Hussein MH, Conca W, et al. Pathophysiology of ANCA-associated Vasculitis. *Adv Anat Pathol.* 2017 Jul;24(4): 226-234. doi: 10.1097/PAP.0000000 000000154.
- 38. Воркель ЕН, Решетняк ТМ, Нурбаева КС и др. Сывороточный кальпротектин при васкулитах, ассоциированных с антинейтрофильными цитоплазматическими антителами. Современная ревматология. 2024;18(4):66-73.
- Vorkel' EN, Reshetnyak TM, Nurbaeva KS, et al. Serum calprotectin in vasculitis associated with antineutrophil cytoplasmic antibodies. *Sovremennaya revmatologiya* = *Modern Rheumatology Journal*. 2024;18(4):66-73. (In Russ.). doi:10.14412/1996-7012-2024-4-66-73.
- 39. Fava A, Buyon J, Magder L, et al. Urine proteomic signatures of histological class, activity, chronicity, and treatment response in lupus nephritis. *JCI Insight*. 2024 Jan 23;9(2): e172569. doi: 10.1172/jci.insight.172569. 40. Nielsen MC, Andersen MN, Rittiget N, et al. The macrophage-related biomarkers sCD163 and sCD206 are released by different shedding mechanisms. *J Leukoc Biol*. 2019 Nov; 106(5):1129-1138. doi: 10.1002/JLB.3A1218-500R.
- 41. Olmes G, Büttner-Herold M, Ferrazzi F, et al. CD163+ M2c-like macrophages predominate in renal biopsies from patients with lupus nephritis. *Arthritis Res Ther*. 2016 Apr 18: 18:90. doi: 10.1186/s13075-016-0989-y. 42. Li J, Jo MH, Yan J, et al. Ligand binding initiates single-molecule integrin conformational activation. *Cell*. 2024 Jun 6; 187(12): 2990-3005.e17. doi: 10.1016/j.cell. 2024.04.049.
- 43. Endo N, Tsuboi N, Furuhashi K, et al. Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. *Nephrol Dial Transplant*. 2016 Dec; 31(12): 2023-2033. doi: 10.1093/ndt/gfw214.
 44. Droste A, Sorg C, Hogger P. Shedding of CD163, a novel regulatory mechanism for a
- CD163, a novel regulatory mechanism for a member of the scavenger receptor cysteinerich family. *Biochem Biophys Res Commun*. 1999 Mar 5;256(1):110-3. doi: 10.1006/bbrc.1999.0294.
- 45. Moller HJ, Peterslund NA, Graversen JH, et al. Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma. *Blood*. 2002 Jan 1;99(1): 378-80. doi: 10.1182/blood.v99.1.378.

Современная ревматология. 2025;19(5):26-33

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 28.07.2025/17.09.2025/20.09.2025

Заявление о конфликте интересов/Conflict of Interest Statement

Статья подготовлена в рамках научно-исследовательской работы, государственное задание № РК 125020501434-1.

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared within the framework of the research project, State Assignment № PK 125020501434-1.

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Егорова О.Н. https://orcid.org/0000-0002-4846-5531 Дацина А.В. https://orcid.org/0000-0003-3051-219X Тарасова Г.М. https://orcid.org/0000-0001-9933-5350 Самаркина Е.Ю. https://orcid.org/0000-0001-7501-9185 Никишина Н.Ю. https://orcid.org/0000-0002-4160-7218 Глухова С.И. https://orcid.org/0000-0002-4285-0869 Диатроптов М.Е. https://orcid.org/0000-0001-6404-0042 Авдеева А.С. https://orcid.org/0000-0003-3057-9175 Лила А.М. https://orcid.org/0000-0002-6068-3080

Остеоартрит коленных суставов на ранней стадии: оценка структурных изменений с помощью инструментальных методов

Хальметова А.Р.¹, Лила А.М.¹,², Таскина Е.А.¹, Алексеева Л.И.¹,², Савушкина Н.М.¹, Кашеварова Н.Г.¹, Стребкова Е.А.¹, Кудинский Д.М.¹, Алексеева О.Г.¹, Колесникова К.В.¹

¹ΦГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²ΦГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва

¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1

Цель исследования — определить выявляемые при магнитно-резонансной томографии (MPT) признаки структурных изменений у пациентов с ранней стадией остеоартрита (OA) коленных суставов (KC) с использованием системы WORMS.

Материал и методы. В исследование включено 78 женщин в возрасте от 35 до 68 лет с жалобами на боль в КС длительностью ≤1 год и минимальными рентгенологическими изменениями по Kellgren—Lawrence (0—II стадия, без сужения суставной щели). На каждую больную заполнялась унифицированная индивидуальная карта, включавшая антропометрические данные (индекс массы тела, ИМТ), анамнез заболевания, результаты клинического обследования, оценку боли в КС по визуальной аналоговой шкале и общую оценку состояния здоровья пациентом, показатели индекса WOMAC, шкалы KOOS, опросника DN4, а также сведения о сопутствующих заболеваниях. Всем больным проводились стандартная рентгенография, УЗИ, МРТ КС, лабораторное обследование. МРТ-изображения оценивались по системе WORMS.

Результаты и обсуждение. На ранней стадии ОА наиболее распространенными находками по данным МРТ являлись синовит (96,2%), изменения в хряще (93,6%) и дегенеративное поражение менисков (до 89,7%). Остеофиты, преимущественно малых размеров, визуализировались у 38,5% больных; остеит и субхондральные кисты выявлялись относительно редко — менее чем у 15%. При корреляционном анализе отсутствовали ассоциации между синовитом, дефектами хряща и клинико-антропометрическими параметрами. В то же время определены умеренные, но значимые связи между наличием остеофитов, остеита, менископатий и возрастом больных, ИМТ, наличием метаболического синдрома (МС) и интенсивностью боли в КС.

Как показал сравнительный анализ различных инструментальных методов визуализации (MPT, УЗИ и рентгенографии), частота выявления остеофитов при MPT (38,5%) была сопоставима с таковой при рентгенографии (34,6%), тогда как при УЗИ она оказалась существенно меньшей (16,6%). MPT отличалась наиболее высокой информативностью при обнаружении синовита (96,2%), превосходя УЗИ (84,6%) и клинический осмотр (23%), p<0,05.

Заключение. Полученные результаты подтверждают, что MPT является ценным инструментом визуализации структурных изменений на ранних этапах OA. При наличии таких клинических факторов, как пожилой возраст, повышенный ИМТ, МС, боль и синовит, выявленный при клиническом осмотре, MPT можно считать обоснованным методом верификации ранних признаков OA КС. Установленные значимые корреляции между MPT-изменениями и клиническими показателями открывают перспективы для улучшения диагностики ранних стадий OA.

Ключевые слова: остеоартрит; ранняя стадия; диагностика; магнитно-резонансная томография; система WORMS.

Контакты: Алсу Равилевна Хальметова; halmetova2017@yandex.ru

Для цитирования: Хальметова АР, Лила АМ, Таскина ЕА, Алексеева ЛИ, Савушкина НМ, Кашеварова НГ, Стребкова ЕА, Кудинский ДМ, Алексеева ОГ, Колесникова КВ. Остеоартрит коленных суставов на ранней стадии: оценка структурных изменений с помощью инструментальных методов. Современная ревматология. 2025;19(5):34—40. https://doi.org/10.14412/1996-7012-2025-5-34-40

Early-stage knee osteoarthritis: assessment of structural changes using imaging methods Khalmetova A.R.¹, Lila A.M.^{1,2}, Taskina E.A.¹, Alekseeva L.I.^{1,2}, Savushkina N.M.¹, Kashevarova N.G.¹, Strebkova E.A.¹, Kudinsky D.M.¹, Alekseeva O.G.¹, Kolesnikova K.V.¹

¹V.A. Nasonova Research Institute of Rheumatology, Moscow; ²Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russia

¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia

Objective. To identify magnetic resonance imaging (MRI) features of structural changes in patients with early-stage knee osteoarthritis (OA) using the Whole-Organ Magnetic Resonance Imaging Score (WORMS).

Material and methods. The study included 78 women aged 35–68 years with knee pain lasting no longer than 1 year and minimal radiographic

changes according to Kellgren—Lawrence grade 0—II (without joint space narrowing). A standardized individual record was completed for each patient, including anthropometric data (body mass index, BMI), disease history, results of clinical examination, assessment of knee pain by visual analogue scale, global health assessment by the patient, WOMAC index, KOOS scale, DN4 questionnaire, and information on comorbidities. All patients underwent standard radiography, ultrasound, knee MRI, and laboratory testing. MRI images were assessed using WORMS.

Results and discussion. At the early stage of OA, the most common MRI findings were synovitis (96.2%), cartilage changes (93.6%), and degenerative meniscal lesions (up to 89.7%). Osteophytes, mostly of small size, were detected in 38.5% of patients; osteitis and subchondral cysts were relatively rare (<15%). Correlation analysis showed no associations between synovitis, cartilage defects, and clinical/anthropometric parameters. Moderate but significant associations were observed between osteophytes, osteitis, meniscal lesions and patients' age, BMI, metabolic syndrome (MS), and knee pain intensity. Comparative analysis of imaging modalities (MRI, ultrasound, and radiography) showed that the frequency of osteophyte detection by MRI (38.5%) was comparable to radiography (34.6%), while ultrasound detected significantly fewer cases (16.6%). MRI demonstrated the highest diagnostic yield for synovitis (96.2%), surpassing ultrasound (84.6%) and clinical examination (23%) (p<0.05). Conclusion. MRI is a valuable tool for visualizing structural changes in early OA. In patients with such clinical risk factors as older age, increased BMI, MS, pain, and clinically detected synovitis, MRI can be considered a justified method for verifying early OA signs. Significant correlations between MRI changes and clinical parameters provide prospects for improving early OA diagnosis.

Keywords: osteoarthritis; early stage; diagnosis; magnetic resonance imaging; WORMS system.

Contact: Alsu Ravilievna Khalmetova; halmetova2017@yandex.ru

For citation: Khalmetova AR, Lila AM, Taskina EA, Alekseeva LI, Savushkina NM, Kashevarova NG, Strebkova EA, Kudinsky DM, Alekseeva OG, Kolesnikova KV. Early-stage knee osteoarthritis: assessment of structural changes using imaging methods. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):34–40 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-34-40

Остеоартрит (ОА) — одно из наиболее распространенных заболеваний опорно-двигательного аппарата, характеризующееся хроническим течением, нарастающей болью и прогрессирующей утратой функции сустава [1, 2]. Несмотря на широкую распространенность и социальную значимость ОА, до настоящего времени не разработано эффективных методов его терапии, способных достоверно замедлить прогрессирование структурных изменений и снизить частоту тотального эндопротезирования суставов [3].

В последние годы активно обсуждается необходимость распознавания ранней стадии ОА – до появления выраженных структурных изменений, в период «окна возможностей», когда патологические изменения уже начались, но еще могут быть обратимыми [4, 5]. Однако выявление пациентов на этой стадии представляет значительные трудности в связи с неспецифичностью клинических симптомов: боль может быть кратковременной, низкой интенсивности, сопровождаться только чувством дискомфорта или крепитацией в суставе. Объективные данные при осмотре также не позволяют уверенно диагностировать ОА. Наиболее доступный рутинный метод визуализации - рентгенография - на этой стадии либо вовсе не показывает изменений, либо определяет минимальные признаки, недостаточные для установления диагноза [6, 7]. Также при ОА ранней стадии существует высокая степень несоответствия между клиническими проявлениями и структурными нарушениями [8]

В связи с этим особую ценность приобретает магнитнорезонансная томография (МРТ) как метод, позволяющий визуализировать ранние изменения в суставе, включая субхондральное поражение, остеит, наличие остеофитов, синовит и повреждение менисков [9]. Для стандартизации описания таких изменений разработано несколько систем оценок: WORMS (Whole-Organ Magnetic Resonance Imaging Score), MOAKS (MRI Osteoarthritis Knee Score), BLOKS (Boston-Leeds Osteoarthritis Knee Score), а также более новые шкалы — KIMRISS (Knee Inflammation MRI Scoring System) и ACLOAS (Amsterdam Classification of Osteoarthritis) [10—14]. Эти системы различаются по степени детализации, сложности применения

и цели. Так, MOAKS ориентирована на более тонкую градацию изменений костного мозга и хряща, BLOKS — на точную оценку синовита, KIMRISS — на количественную оценку воспаления, а ACLOAS предлагает упрощенную классификацию для продольных исследований. Однако большинство этих систем требуют предварительного обучения персонала, значительных временных затрат и, что крайне важно, не валидированы для клинического применения. Кроме того, имеющиеся оценочные системы детализируют изменения преимущественно при продвинутых рентгенологических стадиях ОА, что обусловливает недостаточную изученность МРТ-характеристик ранних стадий заболевания.

Среди полуколичественных систем оценок MPT-изменений WORMS остается одной из наиболее широко используемых при ОА. Ее отличительной чертой является комплексный подход, охватывающий все ключевые анатомические структуры коленного сустава (КС) — костные элементы, хрящ, мениски, связки и синовиальную оболочку. Благодаря высокой воспроизводимости результатов и возможности стандартизированной полуколичественной оценки выраженности поражений WORMS активно применяется для определения степени структурных изменений, мониторинга динамики заболевания, а также в сравнительных и клинических исследованиях при ОА [15, 16].

Цель настоящей работы — изучение MPT-изменений у пациентов с ранней стадией OA KC с помощью системы оценки WORMS, а также сравнительная оценка выявления остеофитов и синовита при использовании различных методов диагностики — клинического осмотра, рентгенографии, УЗИ и MPT.

Материал и методы. В одномоментное исследование включено 78 женщин в возрасте от 35 до 68 лет с ранней стадией ОА КС, наблюдавшихся в ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой» (НИИР им. В.А. Насоновой). Под ОА КС ранней стадии подразумевали длительность боли в КС — <1 года, 0—II рентгенологическую стадию по классификации Kellgren—Lawrence без сужения суставной щели.

Исследование одобрено локальным этическим комитетом НИИР им. В.А. Насоновой (протокол №20 от 12.10.2023), все пациентки подписали информированное согласие на участие в нем.

Критерии невключения: наличие других ревматических заболеваний, травма исследуемого КС, требующая хирургического лечения, II—IV рентгенологическая стадия по Kellgren—Lawrence (II стадия с сужением суставной щели), беременность и/или лактация на момент исследования.

На каждую больную заполнялась унифицированная индивидуальная карта, включавшая антропометрические данные (рост, масса тела, объем талии, объем бедер, индекс массы тела, ИМТ), анамнез заболевания, результаты клинического обследования, в том числе оценку боли в КС по визуальной аналоговой шкале (ВАШ), показатели индекса WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index, содержит 24 вопроса, охватывающих боль, скованность и функциональные нарушения), шкалы KOOS (Knee Injury & Osteoarthritis Outcome Score, содержит 42 вопроса, оценивающих симптомы, боль, функцию при повседневной и спортивной активности, а также качество жизни), опросника DN4 (Douleur Neuropathique en 4 Questions, диагностический опросник невропатической боли), общую оценку состояния здоровья пациентом (ОСЗП), а также сведения о сопутствующих заболеваниях.

Рентгенография КС выполнялась в положении стоя, с фиксированным сгибанием в заднепередней проекции, с использованием позиционной рамки. Стадия ОА определялась врачом лучевой диагностики и врачом-исследователем по классификации Kellgren—Lawrence. Остеофиты фиксировались при визуальной идентификации краевых костных разрастаний и классифицировались по критерию «наличие/отсутствие».

УЗИ КС проводилось врачом ультразвуковой диагностики. Оценивались наличие выпота в заворотах, толщина синовиальной оболочки и суставного хряща в медиальных и латеральных отделах бедренной кости (в переднем и заднем доступе), а также наличие краевых остеофитов. Признаки синовита (гипертрофия синовиальной оболочки и выпот) и остеофиты регистрировались по критерию «наличие/отсутствие».

МРТ целевого КС выполняли всем пациентам на томографе Philips Multiva мощностью 1,5 Т. Изображения оценивались врачом лучевой диагностики с применением полуколичественной системы WORMS. В этой системе сустав условно делится на 14 анатомических регионов, в каждом из которых независимо анализируются хрящ, субхондральные структуры, мениски, связки, а также наличие синовита. Нами применялась упрощенная версия шкалы WORMS, включающая оценку остеофитов от 0 до 3 баллов и хрящевых изменений от 0 до 6 баллов [17].

Хрящевая ткань оценивалась по шкале от 0 до 6 баллов, отражающей как глубину, так и протяженность дефекта: 0 баллов — нормальный хрящ; 1 балл — нормальный контур, но есть снижение интенсивности сигнала; 2 балла — дефект <1 см в диаметре, вовлекающий <50% площади региона; 3 балла — дефект <1 см, но ≥50% площади; 4 балла — дефект 1−2,5 см либо множественные мелкие дефекты, общая вовлеченность <75%; 5 баллов — дефект >2,5 см или множественные дефекты с поражением ≥75% площади; 6 — полный дефект: утрата хряща на всем протяжении региона.

Остеофиты оценивались в каждом отделе по шкале 0—3 балла: 0 баллов — отсутствуют; 1 балл — небольшие остео-

фиты; 2 балла — умеренные; 3 балла — выраженные, крупные. Остеит и субхондральные кисты оценивались по шкале 0-3 балла: 0 баллов — отсутствуют; 1 балл — поражение <25% объема региона; 2 балла — 25-50%; 3 балла — >50%.

Субхондральный склероз оценивался по шкале 0—2 балла: 0 баллов — отсутствует; 1 балл — умеренный; 2 балла — выраженный.

Мениски (передние и задние рога, тела медиального и латерального менисков) оценивались по степени дегенерации и разрывов: 0 баллов — нормальная структура; 1 балл — повышение сигнала без признаков разрыва; 2 балла — внутриструктурный (linearly increased signal) разрыв; 3 балла — сложный или частичный разрыв; 4 балла — обширный разрыв или фрагментация.

Связки (передняя и задняя крестообразные, медиальная и латеральная коллатеральные) оценивались с обеих сторон: 0 баллов — интактные; 1 балл — частичный разрыв, 2 балла — полный разрыв.

Синовит определялся по наличию жидкости или утолщения синовиальной оболочки и оценивался с обеих сторон: 0 баллов — отсутствие признаков воспаления; 1 балл — их наличие.

Остеонекроз фиксировался при наличии типичных МРТпризнаков и оценивался одновременно в двух суставах: 0 баллов — нет; 1 балл — наличие признаков остеонекроза.

Итоговая сумма баллов отражала степень и распространенность структурных изменений.

Статистическую обработку данных проводили с помощью программного обеспечения Statistica 10.0 (StatSoft Inc., США). Выполнены анализ на нормальность распределения переменных с помощью тестов Колмогорова-Смирнова, Шапиро-Уилка и частотный анализ. Использованы методы описательной статистики с вычислением минимальных, максимальных и средних значений переменных, стандартных отклонений, медианы и интерквартильного интервала (Ме [25-й; 75-й перцентили]), а также параметрические (t-тест Стьюдента) и непараметрические (U-критерий Манна-Уитни, χ^2) критерии. Для анализа отношений вероятностей в группах рассчитывали отношение шансов (ОШ) и 95% доверительный интервал (ДИ). Для выявления взаимной зависимости между переменными использовали корреляционный анализ, взаимосвязь между признаками оценивали методом ранговой корреляции по Спирмену. Различия считали статистически значимыми при р<0,05.

Результаты. Медиана возраста пациенток составила 45 [39; 52] лет, длительности симптомов - 0,8 [0,5; 1] года, ИМТ - 24,7 [21,6; 28,6] кг/м². Клиническая характеристика больных представлена в таблице.

При оценке данных MPT КС по системе WORMS наиболее частыми признаками оказались синовит (у 96,2% пациенток) и дегенеративные изменения менисков (до 89,7%). Поражение тела медиального мениска регистрировалось у 85,9% больных, причем у 41% из них выраженность изменений составляла 3—4 балла. Латеральный мениск поражался несколько реже — у 75,6% обследованных, при этом выраженные повреждения (3—4 балла) отмечались лишь в 19,2% случаев.

Изменения хряща имелись в подавляющем большинстве наблюдений: у 84,6% женщин выявлены умеренные поверхностные дефекты (2-3 балла по WORMS). Это указывает на высокую частоту структурных нарушений хрящевой ткани

уже на ранних этапах заболевания, несмотря на отсутствие выраженных рентгенологических изменений. Тяжелые повреждения (\geq 4 балла) отмечались крайне редко (до 9%).

Изменения передней и задней крестообразных связок также были достаточно распространены: частичное повреждение передней крестообразной связки отмечено у 34,6%, задней — у 47,4% обследованных. Краевые остеофиты визуализировались у 38,5% пациенток, преимущественно в медиальных отделах. В основном их выраженность не превышала 1 балла, что свидетельствует о начальном уровне костных изменений.

Выраженные костные изменения по данным MPT встречались относительно редко. Остеонекроз не выявлен ни в одном случае. Остеит диагности-

рован менее чем у 15% обследованных, был слабо выражен и локализовался в медиальном мыщелке бедренной кости. Субхондральные кисты обнаружены в единичных наблюдениях (<8%).

Полученные данные указывают на то, что описанные выше изменения встречаются существенно реже по сравнению с другими MPT-признаками и, возможно, не являются ведущими характеристиками OA на ранней стадии.

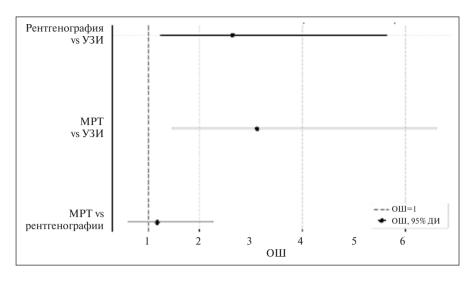
Несмотря на высокую информативность MPT при раннем OA, ограниченная доступность и высокая стоимость метода затрудняют его широкое применение. В связи с этим представляется актуальным выявление наиболее значимых компонентов шкалы WORMS, которые ассоциированы с клиническими проявлениями заболевания. С этой целью мы провели корреляционный анализ параметров WORMS и клинических характеристик.

Синовит, по данным МРТ, хотя и выявлялся в 96,2% случаев, не имел статистически значимых связей ни с клиническими шкалами, ни с демографическими характеристиками. Аналогично дефекты хряща, обнаруженные у 93,6% больных, также не ассоциировались с клиническими параметрами. В отличие от них, остеит и субхондральные кисты, которые встречались значительно реже (14 и 13% соответственно), демонстрировали связь с рядом клинических и антропометрических параметров (p<0,05 для всех случаев). Так, остеит в области медиального мыщелка бедренной кости положительно коррелировал с возрастом (r=0,4), ИМТ (r=0,3), клиническим синовитом (r=0,3), метаболическим синдромом – MC (r=0,3) и болью в KC по ВАШ (r=0,3). Субхондральные кисты в латеральном мыщелке большеберцовой кости ассоциировались с возрастом (r=0,3), ИМТ (r=0,3), клиническим синовитом (r=0,3), MC (r=0,5) и артериальной гипертензией (r=0,5).

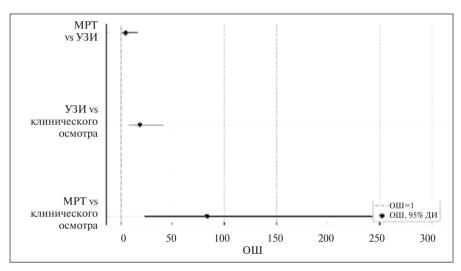
Остеофиты в медиальном мыщелке большеберцовой кости (22%) имели значимые корреляции с возрастом (r=0,4), ИМТ (r=0,4), клиническим синовитом (r=0,3), болью в КС по ВАШ (r=0,3), скованностью по WOMAC (r=0,3), функциональной недостаточностью по WOMAC (r=0,3), суммарным баллом WOMAC (r=0,3) и показателем KOOS боль (r=-0,3). Остеофиты в медиальном мыщелке бедренной кости (19%)

Клиническая характеристика больных с ранней стадией OA KC Clinical characteristics of patients with early-stage knee OA

Показатель	Значение
Боль в суставе по ВАШ, мм, Ме [25-й; 75-й перцентили]	20 [7,5; 50]
WOMAC, мм, Ме [25-й; 75-й перцентили]: боль скованность функциональная недостаточность суммарный балл	55 [20; 140] 30 [0; 70] 150 [55; 390] 255 [88; 670]
KOOS, %, Me [25-й; 75-й перцентили]: симптомы боль бытовые действия спорт качество жизни суммарный балл	75 [64; 86] 78 [61; 86] 76 [57; 94] 4 [25; 8] 59 [38; 69] 76 [59; 88]
DN4, баллы, Me [25-й; 75-й перцентили]	1 [0; 2]
ОСЗП, мм, Ме [25-й; 75-й перцентили]	27 [10; 50]


ассоциировались с возрастом (r=0,4), ИМТ (r=0,5), клиническим синовитом (r=0,3), болью (r=0,3), скованностью по WOMAC (r=0,2) и болью по шкале KOOS (r=-0,3). Для остеофитов в латеральном мыщелке бедренной кости (18%) также отмечены связи с возрастом (r=0,4), ИМТ (r=0,5), клиническим синовитом (r=0,3), МС (r=0,2) и болью в КС по ВАШ (r=0,3).

Изменения менисков, в частности тела медиального мениска (86%), положительно коррелировали с возрастом (r=0,4), ИМТ (r=0,4) и клиническим синовитом (r=0,3).


Таким образом, несмотря на наличие статистически значимых корреляций между отдельными компонентами шкалы WORMS и клинико-демографическими параметрами, их сила в большинстве случаев оставалась умеренной. Полученные данные не позволяют однозначно использовать клинические признаки в качестве надежных маркеров структурных МРТ-изменений. Следовательно, при наличии клинической симптоматики, особенно в сочетании с факторами риска (возраст, повышенный ИМТ, наличие МС, менископатии), МРТ остается обоснованным методом верификации ранних признаков ОА КС.

Дополнительно была проведена сравнительная оценка частоты выявления остеофитов и синовита при использовании различных методов. На сегодняшний день имеются доказательства того, что синовит и остеофиты являются предикторами не только развития, но и прогрессирования ОА на ранних стадиях. В связи с этим мы сопоставили частоту обнаружения остеофитов по данным рентгенографии, МРТ и УЗИ, а также частоту определения синовита по данным клинического осмотра, УЗИ и МРТ.

Согласно полученным результатам, частота обнаружения остеофитов зависела от метода визуализации (рис. 1). Так, при MPT остеофиты определены у 30 (38,5%) пациенток. Сопоставимые результаты были получены при рентгенографии: остеофиты выявлены у 27 (34,6%) больных (ОШ 1,18; 95% ДИ 0,61–2,26; p=0,073). При УЗИ остеофиты были визуализированы лишь в 16,6% случаев (n=13), что в 3,1 раза меньше, чем при MPT (ОШ 3,12; 95% ДИ 1,47–6,61; p=0,003) и в 2,6 раза меньше по сравнению с рентгенографией (ОШ 2,64; 95% ДИ 1,24–5,64; p=0,01).

Рис. 1. Сравнение различных методов визуализации остеофитов (ОШ, 95% ДИ) **Fig. 1.** Comparison of different imaging methods for detecting osteophytes (OR, 95% СІ)

Рис. 2. Сравнение различных методов выявления синовита (ОШ, 95% ДИ) **Fig. 2.** Comparison of different methods for detecting synovitis (OR, 95% CI)

Таким образом, частота выявления остеофитов при ранней стадии ОА существенно зависит от используемого метода визуализации: МРТ и рентгенография, в отличие от УЗИ, характеризуются наибольшей чувствительностью.

При анализе различных методов диагностики синовита было установлено преимущество МРТ перед УЗИ и клиническим осмотром. Так, по данным МРТ признаки синовита имелись у 96,2% (n=75), при УЗИ — у 84,6% (n=66), тогда как при клиническом осмотре — лишь у 23% (n=18) пациенток (рис. 2).

Установлено, что синовит диагностировался значимо чаще при МРТ (ОШ 83,33; 95% ДИ 23,44—296,31; p<0,0001) и УЗИ (ОШ 18,33; 95% ДИ 8,16—41,20; p<0,0001), чем при клиническом осмотре, при этом информативность МРТ оказалась в 4,5 раза выше, чем УЗИ (ОШ 4,55; 95% ДИ 1,23—16,81; p=0,02). Сопоставление визуализируемых изменений с клиническими параметрами на ранней стадии ОА КС позволило охарактеризовать как частоту и выраженность структурных нарушений, так и возможности различных методов в их диагностике.

Обсуждение. В настоящем исследовании продемонстрировано, что у больных с симптомами ОА КС на ранней стадии, даже при отсутствии рентгенологических изменений, МРТ позволяет выявить широкий спектр структурных изменений. Наиболее частыми находками были признаки синовита (96,2%) и поражение хрящевой ткани (93,6%). Практически у половины обследованных диагностированы повреждения менисков, в первую очередь заднего рога медиального мениска, также нередко выявлялось поражение передней и задней крестообразных связок. Остеофиты визуализировались у трети пациенток, в то время как остеит и субхондральные кисты обнаруживались редко, а остеонекроз не регистрировался вовсе.

Дополнительный корреляционный анализ показал, что отдельные компоненты WORMS, в частности остеофиты, остеит и изменения в менисках, ассоциировались с возрастом, ИМТ, наличием МС, а также с интенсивностью боли в КС по ВАШ, скованностью и функциональной недостаточностью по WOMAC. При этом не установлено статистически значимых взаимосвязей изменений хряща и связок с клиникодемографическими характеристиками. Также сравнительный анализ показал, что МРТ по сравнению с другими методами позволяет определить признаки синовита и остеофитов у значительно большего числа больных (р<0,05). В частности, признаки синовита существенно чаще регистрировались при МРТ, чем при УЗИ и клиническом осмотре, тогда как остеофиты выявля-

лись преимущественно при MPT и рентгенографии. Полученные данные подчеркивают важность использования MPT для полноценной оценки состояния КС у пациентов с подозрением на начальные формы OA.

Одна из немногих работ, посвященных изучению частоты структурных изменений по данным МРТ у пациентов без рентгенологических признаков ОА, но с наличием факторов риска, была выполнена в 2018 г. Ј. Китт и соавт. [18]. Авторы проанализированы данные 294 лиц 45-55 лет (средний ИМТ -27 кг/м²) из базы данных Osteoarthritis Initiative (OAI). К факторам риска относились избыточная масса тела, перенесенные ранее травмы или операции на КС, семейный анамнез тотального эндопротезирования, наличие узелков Гебердена, а также боли, скованности или дискомфорта. При сравнении с нашей выборкой, включавшей пациенток с болью в КС и минимальными рентгенологическими изменениями, выявлены как сходство, так и значимые отличия в спектре структурных нарушений по данным МРТ. Так, частота хрящевых дефектов была высокой в обеих группах: 93,6% в нашей выборке против 82% в ОАІ. Признаки синовита в ис-

следуемой нами когорте также встречались чаще (96,2% против 29%). Однако остеит и субхондральные кисты мы диагностировали существенно реже (≤20 и <8% соответственно), тогда как в ОАІ их частота составляла 60 и 41%. В то же время дегенеративные изменения менисков (89,7%) и частичные повреждения крестообразных связок (передняя крестообразная связка — 34,6% и задняя — 47,4%) регистрировались значительно чаще, чем в ОАІ, а частота выявления остеофитов оказалась сопоставимой — 38,5 и 45%. Отмеченные различия могут быть связаны как с особенностями критериев включения, так и с методами оценки (WORMS и MOAKS). Вместе с тем высокая распространенность изменений в хряще и достаточно частое обнаружение остеофитов в обеих выборках позволяют рассматривать их как потенциальные ранние маркеры ОА.

Дополнительным важным наблюдением стало преимущество МРТ в диагностике синовита по сравнению с другими методами – УЗИ и клиническим осмотром. Эти результаты согласуются с данными S. Tarhan и соавт. [19], которые провели сравнительное исследование частоты выявления синовита с помощью МРТ и УЗИ у 40 пациентов с ОА КС. Признаки синовита определялись в 94% случаев при МРТ и в 88% при УЗИ, что сопоставимо с нашими данными (96,2 и 84,6% соответственно). В дальнейшем в метаанализе К. Liu и соавт. [20], опубликованном в 2024 г. и включавшем 14 исследований с участием 755 пациентов, основное внимание было уделено оценке диагностической точности УЗИ в выявлении синовита, в качестве диагностического стандарта была использована контрастная МРТ. Чувствительность УЗИ составила 88%, а специфичность - 70%, что подтверждает высокую потенциальную ценность этого метода.

Таким образом, хотя МРТ является более информативным методом, особенно при визуализации тонких структурных изменений в суставе, УЗИ остается полезным для клинической практики инструментом, особенно в условиях ограниченного доступа к высокотехнологичным методам.

При раннем ОА важное значение придается оценке не только воспалительных изменений, но и костных компонентов, в частности формированию остеофитов, которые отражают ранние процессы ремоделирования суставных поверхностей. Сегодня рентгенография традиционно считается основным методом визуализации остеофитов и входит в критерии диагностики ОА, включая классификацию Kellgren-Lawrence. В то же время существует ограниченное число исследований, в которых непосредственно сравнивается способность рентгенографии и МРТ выявлять остеофиты. В нашем исследовании частота диагностики остеофитов при МРТ (38,5%) и рентгенографии (34,6%) оказалась сопоставимой (ОШ 1,18; 95% ДИ 0,61-2,26; p=0,073), что может указывать на аналогичную чувствительность этих методов на ранних стадиях заболевания.

Значительно более низкая частота выявления остеофитов при УЗИ (16,6%) может быть связана как с техническими ограничениями метода, так и с локализацией остеофитов. Вместе с тем, по данным литературы, при использовании аппаратов УЗИ экспертного класса частота выявления остеофитов сравнима с таковой при рентгенографии. Так, в исследовании J.M. Koski и соавт. [21], в котором УЗИ и рентгенография сравнивались с артроскопией в качестве диагностического стандарта, была показана высокая степень согласия между этими методами в отношении остеофитов в медиальных и латеральных мыщелках бедренной и большеберцовой костей. F.W. Roemer и соавт. [22], использовавшие в качестве эталона компьютерную томографию, считают, что при МРТ может иметь место недооценка наличия и размеров остеофитов, особенно в пателлофеморальном и латеральном отделах КС, что подчеркивает потенциальные ограничения метода при минимально выраженных изменениях.

Таким образом, несмотря на ограниченность данных, можно констатировать потенциальную применимость МРТ и рентгенографии для оценки структурных изменений на ранней стадии ОА КС. УЗИ в настоящем исследовании продемонстрировало существенно более низкую частоту выявления остеофитов, что, вероятно, может быть связано с особенностями локализации изменений или техническими ограничениями метода.

Заключение. В нашей работе впервые в Российской Федерации был выполнен частотный анализ МР-изменений по системе WORMS при ранней стадии ОА. Показано, что МРТ позволяет выявить широкий спектр патологических признаков, что определяет важность ее использования на ранних этапах болезни. Кроме того, установленные значимые корреляции между МР-изменениями и клиническими показателями могут способствовать совершенствованию диагностических подходов в клинической практике.

ЛИТЕРАТУРА/REFERENCES

- 1. Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA. 2021 Feb 9;325(6):568-578. doi: 10.1001/jama.2020.22171.
- 2. Sarzi-Puttini P, Cimmino MA, Scarpa R, et al. Osteoarthritis: an overview of the disease and its treatment strategies. Semin Arthritis Rheum. 2005 Aug;35(1 Suppl 1):1-10. doi: 10.1016/j.semarthrit.2005.01.013.
- uld JP. Most recent developments in strategies to reduce the progression of structural changes in osteoarthritis: today and tomorrow. Arthritis Res Ther. 2006;8(2):206. doi: 10.1186/ar1932. 4. Caneiro JP, O'Sullivan PB, Roos EM, et al.
- 3. Pelletier JP, Martel-Pelletier J, Rayna-Three steps to changing the narrative about
- knee osteoarthritis care: a call to action. Br J Sports Med. 2020 Mar;54(5):256-258. doi: 10.1136/bjsports-2019-101328. 5. Im GI. The concept of early osteoarthritis and its significance in regenerative medicine. Tissue Eng Regen Med. 2022 Jun;19(3): 431-436. doi: 10.1007/s13770-022-00436-6. 6. Roemer FW, Demehri S, Omoumi P, et al. State of the Art: Imaging of Osteoarthritis-Revisited 2020. Radiology. 2020 Jul;296(1):5-21. doi: 10.1148/radiol.2020192498. 7. Braun HJ, Gold GE. Diagnosis of osteoarthritis: imaging. Bone. 2012 Aug;51(2): 278-88. doi: 10.1016/j.bone.2011.11.019. 8. Bedson J, Croft PR. The discordance between clinical and radiographic knee
- osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord. 2008 Sep 2:9:116. doi: 10.1186/1471-2474-9-116.
- 9. Piccolo CL, Mallio CA, Vaccarino F, et al. Imaging of knee osteoarthritis: a review of multimodal diagnostic approach. Quant Imaging Med Surg. 2023;13(11):7582-7595. doi:10.21037/qims-22-1392
- 10. Peterfy CG, Guermazi A, Zaim S, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004 Mar;12(3): 177-90. doi: 10.1016/j.joca.2003.11.003. 11. Hunter DJ, Guermazi A, Lo GH, et al.

Evolution of semi-quantitative whole joint as-

sessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). *Osteoarthritis Cartilage*. 2011 Aug;19(8):990-1002. doi: 10.1016/j.joca. 2011.05.004.

12. Hunter DJ, Lo GH, Gale D, et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). *Ann Rheum Dis.* 2008 Feb;67(2):206-11. doi: 10.1136/ard.2006.066183. 13. Jaremko JL, Jeffery D, Buller M, et al.

13. Jaremko JL, Jeffery D, Buller M, et al. Preliminary validation of the Knee Inflammation MRI Scoring System (KIMRISS) for grading bone marrow lesions in osteoarthritis of the knee: data from the Osteoarthritis Initiative. *RMD Open*. 2017 Jan 18;3(1):e000355. doi: 10.1136/rmdopen-2016-000355.

14. Roemer FW, Frobell R, Lohmander LS, et al. Anterior Cruciate Ligament Osteo-Arthritis Score (ACLOAS): longitudinal MRI-based whole joint assessment of anterior cruciate ligament injury. *Osteoarthritis Cartilage*. 2014 May;22(5):668-82. doi: 10.1016/j.joca. 2014.03.006.

15. Roemer FW, Jarraya M, Hayashi D, et al. A perspective on the evolution of semi-quantitative MRI assessment of osteoarthritis: past, present and future. *Osteoarthritis Cartilage*. 2024 Apr;32(4):460-472. doi: 10.1016/j.joca.2024.01.001.

16. Felson DT, Lynch J, Guermazi A, et al. Comparison of BLOKS and WORMS scoring systems. Part II: longitudinal assessment of knee MRIs for osteoarthritis and suggested approach based on their performance: data from the Osteoarthritis Initiative. *Osteoarthritis Cartilage*. 2010 Nov;18(11):1402-7. doi: 10.1016/j.joca.2010.06.016.

17. Kornaat PR, Bloem JL, Ceulemans RY, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. *Radiology*. 2006 Jun;239(3):811-7. doi: 10.1148/radiol.2393050253.

18. Kumm J, Turkiewicz A, Zhang F, et al. Structural abnormalities detected by knee magnetic resonance imaging are common in middle-aged subjects with and without risk factors for osteoarthritis. *Acta Orthop.* 2018 Oct;89(5):535-540. doi: 10.1080/17453674.

2018.1495164.

19. Tarhan S, Unlu Z, Goktan C. Magnetic resonance imaging and ultrasonographic evaluation of the patients with knee osteoarthritis: a comparative study. *Clin Rheumatol.* 2003 Sep; 22(3):181-8. doi: 10.1007/s10067-002-0694-x. 20. Liu K, Li X, Weng Q, et al. Diagnostic accuracy of ultrasound for assessment of synovial abnormalities among patients with knee pain: a meta-analysis. *Arthritis Care Res* (*Hoboken*). 2024 Feb;76(2):295-303. doi: 10.1002/acr.25205.

based knee osteophyte assessment with ultrasonography and radiography: relationship to arthroscopic degeneration of articular cartilage. *Scand J Rheumatol.* 2016;45(2):158-64. doi: 10.3109/03009742.2015.1055797. 22. Roemer FW, Engelke K, Li L, et al. MRI underestimates presence and size of knee osteophytes using CT as a reference standard. *Osteoarthritis Cartilage.* 2023 May;31(5): 656-668. doi: 10.1016/j.joca.2023.01.575.

21. Koski JM, Kamel A, Waris P, et al. Atlas-

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 01.06.2025/10.09.2025/15.09.2025

Заявление о конфликте интересов/Conflict of Interest Statement

Статья подготовлена в рамках научно-исследовательской работы (государственное задание №РК 125020501433-4).

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared within the framework of the research project (state assignment № PK 125020501433-4).

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Хальметова А.Р. https://orcid.org/0000-0002-0447-4110 Лила А.М. https://orcid.org/0000-0002-6068-3080 Таскина Е.А. https://orcid.org/0000-0001-8218-3223 Алексеева Л.И. https://orcid.org/0000-0001-7017-0898 Савушкина Н.М. https://orcid.org/0000-0001-8562-6077 Кашеварова Н.Г. https://orcid.org/0000-0001-8732-2720 Стребкова Е.А. https://orcid.org/0000-0001-8130-5081 Кудинский Д.М. https://orcid.org/0000-0002-1084-3920 Алексеева О.Г. https://orcid.org/0000-0003-1852-1798 Колесникова К.В. https://orcid.org/0009-0005-4237-4398

Замедление прогрессирования анкилозирующего спондилита на фоне долгосрочной терапии нетакимабом: результаты международного многоцентрового рандомизированного двойного слепого клинического исследования III фазы BCD-085-5/ASTERA

Мазуров В.И.¹, Лила А.М.^{2,3}, Эрдес Ш.Ф.², Гайдукова И.З.^{1,4}, Дубинина Т.В.², Смирнов А.В.^{2,5}, Пристром А.М.⁶, Кундер Е.В.⁶, Сорока Н.Ф.⁷, Кастанаян А.А.⁸, Поварова Т.В.⁹, Жугрова Е.С.^{1,10}, Самигуллина Р.Р.¹, Плаксина Т.В.¹¹, Шестерня П.А.¹², Кропотина Т.В.¹³, Антипова О.В.¹⁴, Смолярчук Е.А.¹⁵, Цюпа О.А.¹⁶, Абдулганиева Д.И.¹⁷, Лапшина С.А.¹⁷, Кречикова Д.Г.¹⁸, Гордеев И.Г.¹⁹, Несмеянова О.Б.²⁰, Иливанова Е.П.²¹, Стрелкова А.В.²², Тыренко В.В.²³, Линькова Ю.Н.²⁴, Зинкина-Орихан А.В.²⁴, Фокина Е.А.²⁴, Еремеева А.В.²⁴, Пухтинская П.С.²⁴

 1 ФГБОУ BO «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, Санкт-Петербург; ²ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ³ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва; 4Санкт-Петербургское ГБУЗ «Клиническая ревматологическая больница № 25», Санкт-Петербург; ⁵ФГБУ «Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий Федерального медико-биологического агентства», Москва; ⁶Учреждение здравоохранения «1-я городская клиническая больница», Минск; $^7 \Gamma Y$ «Минский научно-практический центр хирургии, трансплантологии и гематологии», Минск; 8ФГБОУ ВО «Ростовский государственный медицинский университет» Минздрава России, Ростов-на-Дону; 9 ЧУЗ «Клиническая больница «РЖД-Медицина» города Саратов», Саратов; 10 Санкт-Петербургское ГБУЗ «Городская поликлиника $N\!\!\!_{2}38$ », Санкт-Петербург; $^{11}\Gamma E V 3$ Нижегородской области «Нижегородская областная клиническая больница им. Н.А. Семашко», Нижний Новгород; ¹²ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России, Красноярск; ¹³БУЗ Омской области «Областная клиническая больница», Омск; ¹⁴ОГБУЗ «Иркутская городская клиническая больница № 1», Иркутск; $^{15}\Phi \Gamma AOУ$ BO «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет), Москва; ¹⁶КГБУЗ «Городская больница № 4 им. Н.П. Гулла, города Барнаул», Барнаул; ¹⁷ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань; ¹⁸ЧУЗ «Клиническая больница «РЖД-Медицина» города Смоленск», Смоленск; 19 ГБУЗ «Городская клиническая больница №15 им. О.М. Филатова» Департамента здравоохранения города Москвы», Москва; ²⁰ГБУЗ «Челябинская областная клиническая больница», Челябинск; $^{21}\Gamma E V 3$ «Ленинградская областная клиническая больница», Санкт-Петербург; ²²ГБУЗ АО «Первая городская клиническая больница им. Е.Е. Волосевич», Архангельск; ²³ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Минобороны России, Санкт-Петербург; ²⁴АО «БИОКАД», Санкт-Петербург

¹Россия, 191015, Санкт-Петербург, ул. Кирочная, 41; ²Россия, 115522, Москва, Каширское шоссе, 34А; ³Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1; ⁴Россия, 190068, Санкт-Петербург, ул. Большая Подъяческая, 30; ⁵Россия, 115682, Москва, Ореховый бульвар, 28; ⁶Республика Беларусь, 220013, Минск, просп. Независимости, 64; ⁷Республика Беларусь, 220045, Минск, ул. Семашко, 8; ⁸Россия, 344022, Ростов-на-Дону, пер. Нахичеванский, 29; ⁹Россия, 410004, Саратов, 1-й Станционный проезд, 7;

¹⁰Россия, 191015, Санкт-Петербург, ул. Кавалергардская, 26А; ¹¹Россия, 603126, Нижний Новгород, ул. Родионова, 190; ¹²Россия, 660022, Красноярск, ул. Партизана Железняка, 1; ¹³Россия, 644111, Омск, ул. Березовая, 3; ¹⁴Россия, 664046, Иркутск, ул. Байкальская, 118; ¹⁵Россия, 119991, Москва, ул. Трубец-кая, 8, стр. 2; ¹⁶Россия, 656050, Барнаул, ул. А. Юрина, 166А; ¹⁷Россия, 420012, Казань, ул. Бутлерова, 49; ¹⁸Россия, 214025, Смоленск, 1-й Краснофлотский пер., 15; ¹⁹Россия, 111539, Москва, ул. Вешняковская, 23; ²⁰Россия, 454048, Челябинск, ул. Воровского, 70; ²¹Россия, 194291, Санкт-Петербург, просп. Луначарского, 45—49; ²²Россия, 163001, Архангельск, ул. Суворова, 1; ²³Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, 6; ²⁴Россия 198515, Санкт-Петербург, поселок Стрельна, ул. Связи, 38, стр. 1

Цель — оценить действие долгосрочной терапии препаратом нетакимаб (HTK) на рентгенологическое прогрессирование и снижение выраженности воспалительных изменений по данным магнитно-резонансной томографии (MPT) у пациентов с анкилозирующим спондилитом (AC), а также выявить факторы, влияющие на достижение ответа.

Материал и методы. Проведен апостериорный анализ эффективности лечения HTK 228 пациентов с активным AC в течение 156 нед в рамках рандомизированного клинического исследования BCD-085-5/ASTERA. Определено относительное количество пациентов с отсутствием признаков рентгенологического прогрессирования, у которых увеличение индекса mSASSS на неделе 156 терапии составило <2 баллов по сравнению с исходным уровнем. Дополнительно установлено относительное количество пациентов с отсутствием увеличения индекса mSASSS на неделе 156 по сравнению с исходным уровнем. Оценено относительное количество пациентов без увеличения индексов ASspi-MRI-а и SPARCC, а также с положительной динамикой этих индексов — достижением значений 0 баллов или снижения показателей на ≥50% от исходного уровня на неделях 52, 104 и 156 терапии. Анализ влияния исходных клинико-демографических факторов на достижение ответа по индексам mSASSS, ASspi-MRI-а и SPARCC проведен с использованием одномерных и многомерных моделей логистической регрессии.

Результаты и обсуждение. Из 228 пациентов в течение 156 нед терапии HTK у 66% наблюдалось отсутствие рентгенологического прогрессирования, а у 63% — отсутствие увеличения индекса mSASSS по сравнению с исходным уровнем. Продемонстрирована положительная динамика индексов ASspi-MRI-а и SPARCC на протяжении 2 лет терапии HTK с сохранением эффекта к неделе 156 лечения. В одномерной модели логистической регрессии показана меньшая частота рентгенологического прогрессирования по индексу mSASSS у пациентов более молодого возраста (p=0,013) и пациентов, не имевших синдесмофитов и анкилозов позвоночника на момент назначения терапии (p<0,01). С помощью многомерной модели не выявлено значимого влияния исходных клинико-демографических факторов и факторов анамнеза на эффект терапии HTK.

Заключение. Результаты исследования показали, что долгосрочная терапия HTK обеспечивает отсутствие рентгенологического прогрессирования и снижение выраженности активных воспалительных изменений по данным MPT у большинства пациентов с АС независимо от исходных клинико-демографических характеристик и предшествующего лечения ингибиторами фактора некроза опухоли α.

Ключевые слова: нетакимаб; блокада интерлейкина 17А; рентгенологический аксиальный спондилоартрит; анкилозирующий спондилит. **Контакты:** Татьяна Васильевна Дубинина; **tatiana-dubinina@mail.ru**

Для цитирования: Мазуров ВИ, Лила АМ, Эрдес ШФ, Гайдукова ИЗ, Дубинина ТВ, Смирнов АВ, Пристром АМ, Кундер ЕВ, Сорока НФ, Кастанаян АА, Поварова ТВ, Жугрова ЕС, Самигуллина РР, Плаксина ТВ, Шестерня ПА, Кропотина ТВ, Антипова ОВ, Смолярчук ЕА, Цюпа ОА, Абдулганиева ДИ, Лапшина СА, Кречикова ДГ, Гордеев ИГ, Несмеянова ОБ, Иливанова ЕП, Стрелкова АВ, Тыренко ВВ, Линькова ЮН, Зинкина-Орихан АВ, Фокина ЕА, Еремеева АВ, Пухтинская ПС. Замедление прогрессирования анкилозирующего спондилита на фоне долгосрочной терапии нетакимабом: результаты международного многоцентрового рандомизированного двойного слепого клинического исследования III фазы BCD-085-5/ASTERA. Современная ревматология. 2025;19(5): 41—51. https://doi.org/10.14412/1996-7012-2025-5-41-51

Slowing the progression of ankylosing spondylitis during long-term therapy with netakimab: results of the international multicenter randomized double-blind phase III clinical trial BCD-085-5/ASTERA

Mazurov V.I.¹, Lila A.M.^{2,3}, Erdes Sh.F.², Gaydukova I.Z.^{1,4}, Dubinina T.V.², Smirnov A.V.^{2,5}, Pristrom A.M.⁶, Kunder E.V.⁶, Soroka N.F.⁷, Kastanayan A.A.⁸, Povarova T.V.⁹, Zhugrova E.S.^{1,10}, Samigullina R.R.¹, Plaksina T.V.¹¹, Shesternya P.A.¹², Kropotina T.V.¹³, Antipova O.V.¹⁴, Smolyarchuk E.A.¹⁵, Tsyupa O.A.¹⁶, Abdulganieva D.I.¹⁷, Lapshina S.A.¹⁷, Krechikova D.G.¹⁸, Gordeev I.G.¹⁹, Nesmeyanova O.B.²⁰, Ilivanova E.P.²¹, Strelkova A.V.²², Tyrenko V.V.²³, Lin'kova Yu.N.²⁴, Zinkina-Orikhan A.V.²⁴, Fokina E.A.²⁴, Eremeeva A.V.²⁴, Pukhtinskaia P.S.²⁴

¹North-Western State Medical University named after I.I. Mechnikov, Ministry of Health of Russia, St. Petersburg; ²V.A. Nasonova Research Institute of Rheumatology, Moscow; ³Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow; ⁴Clinical Rheumatology Hospital №25, St. Petersburg; ⁵Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA, Moscow; ⁶First City Clinical Hospital, Minsk; ⁷Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology, Minsk; 8Rostov State Medical University, Ministry of Health of Russia, Rostov-on-Don; 9Clinical Hospital «RZD-Meditsina», Saratov; ¹ºCity Polyclinic №38, St. Petersburg; ¹¹N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod; 12Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of Russia, Krasnovarsk; ¹³Regional Clinical Hospital, Omsk; ¹⁴Irkutsk City Clinical Hospital №1, Irkutsk; 15 I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow; ¹6City Hospital №4 named after N.P. Gull, Barnaul; ¹7Kazan State Medical University, Ministry of Health of Russia, Kazan; ¹⁸Clinical Hospital «RZD-Meditsina», Smolensk; ¹⁹City Clinical Hospital №15 named after O.M. Filatov, Moscow; ²⁰Chelyabinsk Regional Clinical Hospital, Chelyabinsk; ²¹Leningrad Regional Clinical Hospital, St. Petersburg; ²²E.E. Volosevich First City Clinical Hospital, Arkhangelsk; ²³Military medical academy named after S.M. Kirov, St. Petersburg; ²⁴JSC BIOCAD, St. Petersburg ¹41, Kirochnaya Street, St. Petersburg 191015, Russia; ²34A, Kashirskoe Shosse, Moscow 115522, Russia; ³2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia; ⁴30, Bolshaya Pod'yacheskaya Street, St. Petersburg 190068, Russia; 528, Orekhovy Boulevard, Moscow 115682, Russia; 644, Nezavisimosti Avenue, Minsk 220013, Belarus; ⁷8, Semashko Street, Minsk 220045, Belarus; ⁸29, Nakhichevansky Lane, Rostov-on-Don 344022, Russia; 97, 1st Stantsionny Passage, Saratov 410004, Russia; 1026A, Kavalergardskaya Street, St. Petersburg 191015, Russia; 1190, Rodionova Street, Nizhny Novgorod 603126, Russia; 121, Partizana Zheleznyaka Street, Krasnoyarsk 660022, Russia; 133, Berezovaya Street, Omsk 644111, Russia; 14118, Baikalskaya Street, Irkutsk 664046, Russia; 158, Trubetskaya Street, Build. 2, Moscow 119991, Russia; 16166A, A. Yurina Street, Barnaul 656050, Russia; ¹⁷49, Butlerova Street, Kazan 420012, Russia; ¹⁸15, 1st Krasnoflotsky Lane, Smolensk 214025, Russia; 1923, Veshnyakovskaya Street, Moscow 111539, Russia; 2070, Vorovskogo Street, Chelyabinsk 454048, Russia; ²¹45–49, Lunacharsky Avenue, St. Petersburg 194291, Russia; ²²1, Suvorova Street, Arkhangelsk 163001, Russia; ²³6, Akademika Lebedeva Street, St. Petersburg 194044, Russia; ²⁴38, Svyazi Street, Build. 1, Strelna, St. Petersburg 198515, Russia

Objective. To evaluate the effect of long-term therapy with netakimab (NTK) on radiographic progression and reduction of inflammatory changes assessed by magnetic resonance imaging (MRI) in patients with ankylosing spondylitis (AS), and to identify factors influencing treatment response. Material and methods. A post hoc analysis was performed on 228 patients with active AS who received NTK for 156 weeks in the randomized clinical trial BCD-085-5/ASTERA. The proportion of patients without radiographic progression was determined, defined as an increase in the mSASSS (modified Stoke Ankylosing Spondylitis Spinal Score) of <2 points from baseline to week 156. Additionally, the proportion of patients without any increase in mSASSS by week 156 was calculated. The proportions of patients without increases in the ASspi-MRI-a (Ankylosing Spondylitis spine MRI activity index) and SPARCC (Spondyloarthritis Research Consortium of Canada index), as well as with positive dynamics of these indices (reaching 0 or a \geq 50% reduction from baseline at weeks 52, 104 and 156), were also assessed. The influence of baseline clinical and demographic factors on achieving a response by mSASSS, ASspi-MRI-a, and SPARCC was analyzed using univariate and multivariate logistic regression models.

Results and discussion. Among 228 patients, 66% showed no radiographic progression and 63% had no increase in mSASSS at week 156 compared with baseline. Positive dynamics in ASspi-MRI-a and SPARCC indices were demonstrated during two years of NTK therapy, with sustained effect through week 156. In univariate logistic regression, younger age (p=0.013) and absence of syndesmophytes or spinal ankylosis at baseline (p<0.01) were associated with lower rates of radiographic progression by mSASSS. Multivariate analysis did not reveal significant influence of baseline clinical-demographic or disease-history factors on NTK treatment response.

Conclusion. Long-term therapy with NTK prevents radiographic progression and reduces active inflammatory changes by MRI in the majority of AS patients, regardless of baseline clinical and demographic characteristics or prior tumor necrosis factor α inhibitor therapy.

Keywords: netakimab; interleukin-17A blockade; radiographic axial spondyloarthritis; ankylosing spondylitis.

Contact: Tatyana Vasilievna Dubinina; tatiana-dubinina@mail.ru

For citation: Mazurov VI, Lila AM, Erdes ShF, Gaydukova IZ, Dubinina TV, Smirnov AV, Pristrom AM, Kunder EV, Soroka NF, Kastanayan AA, Povarova TV, Zhugrova ES, Samigullina RR, Plaksina TV, Shesternya PA, Kropotina TV, Antipova OV, Smolyarchuk EA, Tsyupa OA, Abdulganieva DI, Lapshina SA, Krechikova DG, Gordeev IG, Nesmeyanova OB, Ilivanova EP, Strelkova AV, Tyrenko VV, Lin'kova YuN, Zinkina-Orikhan AV, Fokina EA, Eremeeva AV, Pukhtinskaia PS. Slowing the progression of ankylosing spondylitis during long-term therapy with netakimab: results of the international multicenter randomized double-blind phase III clinical trial BCD-085-5/ASTERA. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):41–51 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-41-51

Анкилозирующий спондилит (АС), или рентгенологический аксиальный спондилоартрит (р-аксСпА), характеризуется хроническим воспалительным поражением осевого скелета в виде сакроилиита и/или спондилита и нередко сопровождается развитием как внеаксиальных (периферический артрит, энтезит, дактилит), так и внескелетных (увеит, псориаз, воспалительные заболевания кишечника) проявлений [1]. Патофизиологическую основу АС составляет сочетание остеодеструкции и остеопролиферации, являющихся признаками нарушения функции остеобластов и остеокластов, в развитии которого важную роль играет воспаление [2, 3]. Рентгенологическое прогрессирование проявляется ростом синдесмофитов, энтезофитов, вплоть до анкилозирования суставов позвоночника, что приводит к ограничению подвижности осевого скелета, функциональным нарушениям и потере трудоспособности [4]. Выраженность структурного прогрессирования ассоциирована с активностью АС [5], при этом ключевая роль в патогенезе заболевания принадлежит таким провоспалительным цитокинам, как фактор некроза опухоли α (ΦΗΟα) и интерлейкин 17 (ИЛ17) [6]. Роль ИЛ17 в нарушении метаболизма костной ткани представляет особый интерес в связи с его индуцирующим влиянием на остеокластогенез и стимуляцией остеобластов и их предшественников [7]. Блокада ИЛ17 с помощью генно-инженерных биологических препаратов (ГИБП) представляется перспективной в отношении как снижения воспаления и улучшения функции, так и торможения прогрессирования АС [6]. Препарат нетакимаб (НТК) — оригинальное моно-клональное антитело к ИЛ17А — продемонстрировал эффективность и благоприятный профиль безопасности в лечении активного АС [8], в том числе при длительном применении [9, 10].

Цель исследования — оценка воздействия долгосрочной терапии HTK на рентгенологическое прогрессирование и снижение выраженности активных воспалительных изменений по данным магнитно-резонансной томографии (MPT) у пациентов с AC, а также выявление факторов, влияющих на достижение ответа.

Материал и методы. BCD-085-5/ASTERA — международное многоцентровое рандомизированное плацебо-контролируемое клиническое исследование III фазы у пациентов с активным AC (ClinicalTrials.gov NCT03447704). Исследование проводилось в 19 центрах на территории Российской Федерации и 2 центрах в Республике Беларусь. Исследование

Таблица 1. Исходные клинико-демографические характеристики пациентов с AC Table 1. Baseline clinical and demographic characteristics of patients with ankylosing spondylitis

Показатель	HTK (n=114)	Плацебо/ HTK (n=114)	Bcero (n=228)
Возраст, годы	39,6±9,7	38,6±10,3	39,1±10,0
Мужской пол, п (%)	87 (76,3)	86 (75,4)	173 (75,9)
Носительство HLA-B27 антигена, n (%)	102 (89,5)	107 (93,9)	209 (91,7)
Время от установления диагноза до назначения НТК, мес	52,8±55,5	52,9±48,8	52,9±52,1
СРБ, мг/л	24,7±26,6	27,2±33,5	26,0±30,2
ASDAS, баллы	3,9±0,9	4,1±1,1	4,0±1,0
BASDAI, баллы	6,1±1,6	6,5±2,0	6,3±1,8
BASMI, баллы	4,25±1,6	4,48±1,5	4,36±1,5
BASFI, баллы	4,73±2,4	6,45±2,3	5,59±2,5
MASES, баллы	3,2±3,1	3,0±2,7	3,1±2,9
ЧПС	1,1±2,0	1,8±4,0	1,4±3,2
Оценка пациентом боли в спине по ЧРШ	6,8±1,6	7,2±2,0	7,0±1,8
Оценка пациентом ночной боли по ЧРШ	6,6±1,8	6,9±2,1	6,8±2,0
mSASSS, баллы	15,8±17,3	17,2±18,5	16,5±17,9
ASspi-MRI-а, баллы	4,2±4,6	3,9±4,1	4,0±4,4
SPARCC, баллы	5,7±8,3	3,5±6,3	4,6±7,4
Терапия иФНОα в анамнезе, п (%)	28 (24,6)	25 (21,9)	53 (23,2)
Наличие структурных изменений (синдесмофиты), n (%)	63 (55,3)	70 (61,4)	133 (58,3)
Наличие анкилозов, п (%)	33 (28,9)	36 (31,6)	69 (30,3)

Примечание. Данные представлены как M±SD, если не указано иначе. ASDAS – Ankylosing Spondylitis Disease Activity Score; BASDAI – Bath Ankylosing Spondylitis Disease Activity Index; BASMI – Bath Ankylosing Spondylitis Metrology Index; BASFI – Bath Ankylosing Spondylitis Functional Index; MASES – Maastricht Ankylosing Spondylitis Enthesitis Score; ЧПС – число припухших суставов; ЧРШ – числовая рейтинговая шкала; иФНОα – ингибиторы фактора некроза опухоли α.

соответствует стандартам надлежащей клинической практики (Good Clinical Practice) и принципам Хельсинской декларации. Перед включением в исследование все пациенты подписали форму информированного согласия.

Дизайн исследования, критерии отбора и параметры оценки были подробно описаны ранее [8, 9]. В исследование включали пациентов с активным АС (р-аксСпА), соответствовавших модифицированным Нью-Йоркским критериям (1984). Пациентов, удовлетворявших критериям включения, рандомизировали в соотношении 1:1 в группу НТК или группу плацебо. После оценки ответа на терапию, которая проводилась на неделе 16, пациентов группы плацебо, не достигших критерия ASAS20 (20% улучшение по шкале Assessment of Spondyloarthritis International Society), переводили на лечение НТК, а достигших этого критерия исключали из исследования. Участники продолжали получать НТК до 156 нед активной терапии. Пациенты, исходно рандомизированные в группу плацебо и переведенные на терапию активным препаратом (группа плацебо/НТК), продолжали участие в исследовании суммарно до недели 172 с учетом 16 нед применения плацебо. Результаты оценки эффективности и безопасности НТК в соответствии с конечными точками исследования также были опубликованы ранее [8-10].

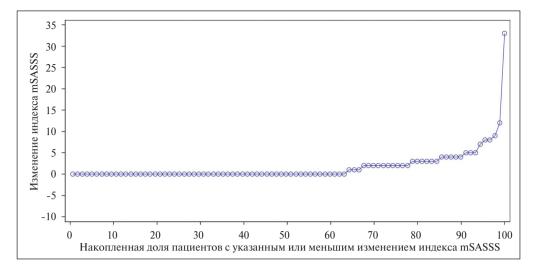
В настоящей статье представлены результаты апостериорного анализа эффективности терапии НТК в отношении предотвращения рентгенологического прогрессирования АС и снижения выраженности активных воспалительных изменений по данным МРТ. В качестве ключевого параметра ответа на терапию оценивалось относительное количество пациентов в популяции ITT (intention-to-treat population), у которых на неделе 156 отсутствовали признаки рентгенологического прогрессирования по индексу mSASSS (modified Stoke Ankylosing Spondylitis Spine Score). Под рентгенологическим или структурным прогрессированием понимали увеличение индекса mSASSS на ≥2 балла по сравнению с исходным уровнем. Дополнительно определяли относительное количество пациентов популяции ІТТ, у которых не наблюдалось увеличения индекса mSASSS на неделе 156 терапии по сравнению с его исходным значением.

Кроме того, оценивалось относительное количество пациентов популяции ITT, у которых по данным MPT согласно индексам ASspi-MRI-а (Ankylosing Spondylitis Spine MRI Activity Score) и SPARCC (Spondyloarthritis Research Consortium of Canada) на неделях 52, 104 и 156 терапии HTK наблюдались отсутствие прогрессирования и снижение выраженности активных воспалительных изменений. За отсутствие прогрессирования по результатам MPT принимали отсутствие нарастания индексов ASspi-MRI-а и SPARCC по сравнению с исходным уровнем. Снижением выраженности активных воспалительных изменений считалось достижение для каждого из индексов значения 0 баллов или уменьшение показателей на ≥50% относительно исходного уровня.

Продемонстрирована динамика индексов mSASSS, ASpi-MRI-а и SPARCC на протяжении 156 нед терапии HTK, а также проанализирована связь между частотой рентгенологического прогрессирования, ответом по MPT-индексам и исходными клинико-демографическими характеристиками пациентов с оценкой значимости их влияния на достижение эффекта лечения.

Расчет проводили только для периодов применения активной терапии. Так, для пациентов группы HTK были ис-

пользованы данные 0-156 нед, для пациентов группы плацебо/HTK — с 16-й по 172-ю неделю соответственно.


Рентгенографию и MPT у всех пациентов выполняли на одном и том же оборудовании в течение всего периода исследования по единому для всех центров протоколу. Повторное исследование должно было соответствовать предыдущему по критериям позиционирования пациента, определенным протоколом. Оценка индексов mSASSS, ASspi-MRI-а и SPARCC проводилась централизованно независимыми заслепленными специалистами по лучевой диагностике.

На неделях 0, 52, 104 и 156 выполнялась рентгенография шейного и поясничного отделов позвоночника в боковой проекции с последующим централизованным определением индекса mSASSS. Оценка динамики индексов SPARCC и ASspi-MRI-а также проводилась централизованно на неделях 16, 52, 104 и 156 с анализом изображений с помощью полуавтоматической сегментационной методики на основании сопоставления с предельно допустимыми величинами. Индекс SPARCC оценивался после определения наличия отека костного мозга в крестцово-подвздошных суставах (КПС) с анализом 6 последовательных полукорональных срезов, каждый из которых подразделен на 4 квадранта посредством вертикальной линии по ходу суставной щели и горизонтальной линии, проходящей через центр КПС (максимальный балл - 72). При оценке индекса ASspi-MRI-а использовался Берлинский модифицированный метод с определением выраженности отека костного мозга в 23 позвоночных единицах — от нижней половины тела Сп до верхней половины тела $S_{I}-c$ градацией от 0 до 3 баллов для каждой позвоночной единицы (максимальный балл – 69).

Статистическая обработка данных осуществлялась с использованием языка программирования R и программного пакета для статистического анализа SAS 9.4 (SAS Institute Inc.). Для оценки бинарных переменных были определены доли субъектов, достигших заданных конечных точек, построена обобщенная линейная смешанная модель с группой терапии, визитом, фактором взаимодействия группы и визита в качестве фиксированных эффектов, а также субъектов в качестве случайного эффекта. Для оценки количественных переменных были рассчитаны средние значения и стандартные отклонения ($M\pm SD$), а межгрупповые сравнения выполнены с помощью модели смешанных эффектов с группой лечения, визитом и фактором взаимодействия группы и визита в качестве фиксированных эффектов. Используемые статистические тесты и доверительные интервалы являлись двусторонними. Вероятность ошибки первого рода (пороговый уровень значимости) составляла 0,05. Межгрупповые сравнения выполнены с использованием критерия Манна-Уитни.

Оценка возможных предикторов рентгенологического прогрессирования и ответа по МРТ-индексам проводилась с помощью построения модели логистической регрессии с зависимой переменной, отражающей наличие прогрессирования, и различными комбинациями факторов, возможно влияющих на прогрессирование в качестве ковариат. Выбор оптимальной модели выполнялся через построение одномерных моделей логистической регрессии, включающих в качестве предиктора каждый из факторов. На основании результатов построения одномерных моделей для каждой группы выявляли факторы, влияющие на прогрессирование, для которых р-значение для коэффициента фактора со-

Показатель	HTK	16 нед плацебо/НТК	HTK	52 нед плаце6о/НТК	всего	HTK	104 нед плаце6о/НТК	всего	НТК	156 нед плаце6о/НТК	всего
mSASSS	Н.д.		$0,3\pm 1,2$	0,7±2,7	$0,5\pm 2,0$	$0,6\pm 1,7$	1,0±3,1	$0,8\pm 2,5$	1,3±2,3	1,8±4,4	$1,6\pm 3,4$
ASspi-MRI-a	-2,2±2,8	$-2,2\pm2,8$ $-0,3\pm1,6$	-2,8±3,5	-2,4±3,6	-2,6±3,5	-3,1±3,8 -3,1±3,8	-3,1±3,8	-3,1±3,8	$-3,1\pm4,0$ $-2,9\pm4,0$	-2,9±4,0	-3,0±3,9
SPARCC	-3,8±6,7	$-3,8\pm6,7$ $-1,8\pm4,1$	-5,3±7,7	-4,5±7,2	-4,9±7,5	-5,8±8,4 -4,9±7,4	-4,9±7,4	-5,4±7,9	-5,9±8,6 -5,0±7,5	-5,0±7,5	$-5,5\pm 8,1$

Рис. 1. Накопленная доля пациентов с изменением индекса mSASSS относительно исходного уровня в течение 156 нед терапии HTK

Fig. 1. Cumulative proportion of patients with change in mSASSS compared to baseline during 156 weeks of NTK therapy

ставляло <0,05, для последующего использования в многомерной модели логистической регрессии с несколькими факторами-предикторами.

Результаты. В исследование было рандомизировано 228 пациентов с активным АС, распределенных поровну в группу НТК и группу плацебо. Исходные характеристики пациентов, включенных в статистический анализ, представлены в табл. 1. Большинство участников были мужчины, средний возраст — 39,1 (10,0) года, средняя продолжительность заболевания -52,9 (52,1) мес. Исходно у пациентов имелась высокая и очень высокая активность АС: средние показатели индексов активности ASDAS и BASDAI находились на уровне 4,0 (1,0) и 6,3 (1,8) балла соответственно. Изменения по данным рентгенографии и МРТ имели широкие индивидуальные вариации: средние значения индекса mSASSS составляли 16,5 (17,9),ASspi-MRI-a – 4,0 (4,4) и SPARCC – 4,6 (7,4) балла. На момент начала терапии НТК более 58% пациентов имели синдесмофиты, а 30,3% — анкилозы различной локализации.

Динамика индексов mSASSS, ASspi-MRI-а и SPARCC на протяжении 156 нед терапии HTK представлена в табл. 2. При сравнении исследуемых групп на неделе 16 было показано статистически значимое превосходство группы HTK над плацебо по положительной динамике изменения индексов ASspi-MRI-а (p<0,0001) и SPARCC (p=0,0078).

К неделе 156 терапии НТК у 66% пациентов не наблюдалось рентгенологического

прогрессирования (увеличение индекса mSASSS составляло ≤2 балла относительно исходного уровня), а у 63% пациентов индекс mSASSS не увеличился по сравнению с исходным уровнем. К неделе 156 активного лечения у подавляющего большинства пациентов, получивших HTK, увеличение индекса mSASSS было <5 баллов (рис. 1).

Подгрупповой анализ достижения ответа по индексу mSASSS к неделе 156 лечения НТК показал, что с увеличением возраста относительное количество пациентов с отсутствием рентгенологического прогрессирования заболевания уменьшается. Наибольшая доля пациентов без рентгенологического прогрессирования наблюдалась в возрасте 20−29 лет¹, а наименьшая — в возрасте ≥50 лет (рис. 2).

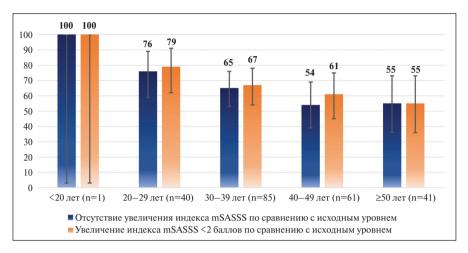
Доля пациентов с отсутствием прогрессирования по результатам МРТ представлена в табл. 3. К неделе 52 терапии НТК >80% пациентов не имели увеличения индексов ASspi-MRI-а и SPARCC. Достигнутые результаты сохранялась у подавляющего большинства пациентов на всем протяжении терапии НТК.

Оценка снижения выраженности активных воспалительных изменений по индексам ASspi-MRI-а и SPARCC показала, что к неделе 52 лечения НТК относительное количество пациентов, достигших для каждого из индексов значения 0 или снижения показателей на \geq 50% по сравнению с исходным уровнем, составила 55% (95% ДИ 56; 62), к неделе 104-77% (95% ДИ 70; 83), к неделе 156-72% (95% ДИ 64; 79).

Габлица 2. Динамика рентгенологических и МРТ-индексов на фоне терапии HTK, баллы, M±SD

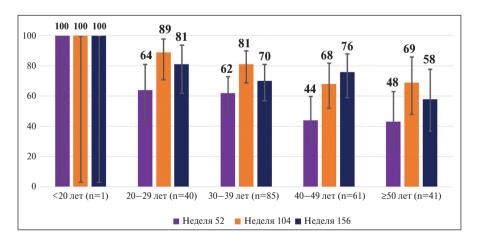
 $^{^{1}}$ В подгруппу в возрасте < 20 лет включен всего 1 пациент, в связи с чем суждение о валидности результатов в данной подгруппе затруднено.

Подгрупповой анализ положительной динамики индексов ASspi-MRI-а и SPARCC в зависимости от возраста продемонстрировал увеличение относительного количества пациентов со снижением выраженности активных воспалительных изменений по данным МРТ на неделях 52 и 104 во всех возрастных подгруппах (рис. 3). Дальнейшая динамика оцениваемых по данным МРТ параметров была разнонаправленной в разных возрастных подгруппах, однако относительное количество пациентов с улучшением параметров МРТ на неделе 156 лечения НТК во всех подгруппах оказалось выше, чем на неделе 52 (см. рис. 3).


Подгрупповой анализ показал, что относительное количество пациентов с отсутствием рентгенологического прогрессирования по индексу mSASSS и положительной динамикой индексов ASspi-MRI-а и SPARCC было сопоставимо среди мужчин и женщин, а также в подгруппах биологически наивных пациентов и пациентов, получавших лечение иФНОа к моменту включения в исследование (табл. 4). Однако в случае исходного отсутствия синдесмофитов и анкилозов у большего числа пациентов отмечалось торможение рентгенологического прогрессирования, как и снижение выраженности активных воспалительных изменений по данным МРТ (см. табл. 4).

В качестве предикторов рентгенологического прогрессирования АС, определенного как увеличение индекса mSASSS ≥2 баллов к неделе 156 терапии НТК, рассматривались такие исходные показатели, как возраст, пол, время, прошедшее с момента установления диагноза, клинические и лабораторно-инструментальные параметры, индексы активности заболевания, выраженность боли и функциональных нарушений, а также наличие изменений на рентгенограммах и по данным МРТ. При использовании одномерной модели статистически значимое влияние на частоту ответа на терапию НТК оказали возраст, исходные значения индексов ASDAS и ASspi-MRI-а, а также наличие синдесмофитов на момент назначения терапии НТК (табл. 5). При оценке с использованием многомерной модели ни один из этих параметров не продемонстрировал статистической значимости (см. табл. 5).

На достижение ответа по индексам ASspi-MRI-а и SPARCC на неделях 52 и 104 в многомерных моделях оказывал влияние


Таблица 3. Относительное количество пациентов с отсутствием прогрессирования по данным MPT-индексов на фоне терапии HTK, n (%)
Table 3. Proportion of patients without progression according to MRI indices during NTK therapy, n (%)

Неделя	HTK (n=114)	Плацебо/НТК (n=114)	Всего (n=228)
52	100 (87,7)	85 (74,6)	185 (81,1)
104	95 (83,3)	82 (71,9)	177 (77,6)
156	89 (78,1)	78 (68,4)	167 (73,2)

Рис. 2. Относительное количество пациентов с отсутствием рентгенологического прогрессирования по индексу mSASSS на неделе 156 терапии HTK в зависимости от возраста, % (95% ДИ)

Fig. 2. Proportion of patients without radiographic progression by mSASSS at week 156 of NTK therapy depending on age, % (95% CI)

Рис. 3. Относительное количество пациентов с AC, достигших значения индексов ASspi-MRI-а и SPARCC 0 баллов или их снижения на \geq 50% по сравнению с исходным уровнем, в разных возрастных подгруппах на фоне применения HTK, % пациентов $(95\% \ \Pi U)$

Fig. 3. Proportion of patients with AS achieving ASspi-MRI-a and SPARCC index values of 0 points or $a \ge 50\%$ reduction from baseline in different age subgroups during NTK treatment, % of patients (95% CI)

только исходный уровень SPARCC: 1,06 (95% ДИ 1,01; 1,12; p=0,018) и 1,1 (95% ДИ 1,01; 1,19; p=0,029) соответственно. При этом на неделе 156 значимым фактором, помимо ис-

Таблица 4. Относительное количество пациентов, достигших ответа по индексам mSASSS, ASspi-MRI-а и SPARCC в течение 156 нед терапии НТК в зависимости клинико-демографических характеристик, % (95% ДИ)

Table 4. Proportion of patients achieving response according to mSASSS, ASspi-MRI-a and SPARCC indices during 156 weeks of NTK therapy depending on clinical and demographic characteristics, % (95% CI)

Критерий достижения	Пол		Т	ерапия иФ	ΗΟα		Наличие синдесмофитов исходно			Налич	Наличие анкилозов исходно	
	мужчины (n=173)	женщины (n=55)	получал (n=53)		бионаи (n=175)		имеют (n=13		отсутствуют (n=91)	имеют (n=69)		сутствуют =155)
Отсутствие увеличен mSASSS относительн исходного уровня на неделе 156	,	; 70) 66 (49	9; 80) 0),62 (0,46; 0	,76) (0,63 (0,55;	0,71)	54 (44;	64) 76 (65	; 85)	55 (41; 69	0) 67 (58; 76)
Увеличение mSASSS <2 баллов относители исходного уровня на неделе 156	(; 74) 66 (49	9; 80) 0),71 (0,55; 0	,84) (0,64 (0,55;	0,72)	58 (48;	68) 77 (66	; 86)	59 (45; 72	2) 70 (61; 78)
Достижение по ASspi-MRI-а и SPARCC значения или снижение на ≥50 относительно исходнуровня: на неделе 52 на неделе 104 на неделе 156	%	(85) 72 (53	3; 87) 0	0,61 (0,45; 0 0,84 (0,69; 0 0,73 (0,56; 0	,94)	0,53 (0,44; 0,75 (0,66; 0,72 (0,62;	0,82)	48 (38; 71 (60; 65 (54;	79) 87 (76	; 94)	47 (34; 61 70 (56; 82 67 (52; 79	2) 81 (72; 88)

ходного уровня SPARCC: 1,14 (95% ДИ 1,04; 1,25; p=0,005), явилось и значение индекса BASFI на момент начала терапии HTK: 0,84 (95% ДИ 0,71; 1,00; p=0,046). Возраст, пол, выраженность воспаления и продолжительность заболевания, а также исходные структурные нарушения не влияли на положительную динамику MPT-изменений на фоне терапии HTK.

Обсуждение. Согласно международным рекомендациям, целью терапии АС является не только уменьшение активности и контроль воспаления, но и предупреждение структурного прогрессирования [11]. Вмешательства, замедляющие или останавливающие прогрессирование необратимых структурных повреждений при АС, представляют клинический интерес с точки зрения сохранения функционального состояния и улучшения качества жизни пациентов [12]. По данным ряда работ, пролонгированная терапия ингибиторами ИЛ17А и иФНО приводит к замедлению рентгенологического прогрессирования у пациентов с АС [13].

В нашем исследовании ключевым параметром для анализа динамики структурных изменений под влиянием терапии HTK был индекс mSASSS как наиболее предпочтительный и рекомендованный метод оценки рентгенологического прогрессирования у пациентов с АС [12]. Известно, что скорость прогрессирования структурных изменений, оцененная с помощью данного индекса, индивидуальна и зависит от многих факторов, среди которых возраст, мужской пол, носительство HLA-B27-антигена, продолжительность симптомов, стадия сакроилиита, высокий уровень СРБ, курение, а также исходное наличие синдесмофитов, увеита, периферических артритов и ожирения [4, 14]. В настоящей работе для оценки эффекта 156 нед терапии НТК было использовано определение относительного числа пациентов с отсутствием увеличения индекса mSASSS по сравнению с исходным уровнем на ≥2 балла, что согласуется с данными литературы [14, 15] о средней скорости структурного прогрессирования в популяции пациентов с AC по индексу mSASSS, которая составляет в среднем 2,0 балла за 2 года.

По данным S. Ramiro и соавт. [15], у 48% биологически наивных пациентов с АС в первые 2 года после подтверждения диагноза наблюдалось прогрессирование по индексу mSASSS на ≥2 балла, а в 25% — на ≥5 баллов. Согласно результатам представленного исследования, на фоне применения НТК в течение 156 нед у 66% пациентов увеличение индекса mSASSS было <2 баллов, а у 63% пациентов оно отсутствовало по сравнению с исходным уровнем. Обращает на себя внимание то, что в изучаемой нами выборке преобладали лица с высоким исходным риском рентгенологического прогрессирования – мужчины с носительством НLA-В27-антигена. пациенты с очень высоким индексом активности ASDAS (70,6%), наличием синдесмофитов (58,3%) и/или анкилозов (30,3%). Такой профиль пациентов предполагает неблагоприятное течение заболевания с ускоренным развитием структурных изменений, в том числе на фоне адекватной терапии. Несмотря на наличие указанных факторов риска, на протяжении 156 нед лечения НТК у большинства пациентов не наблюдалось рентгенологического прогрессирования АС.

При анализе динамики индекса mSASSS в возрастных подгруппах нами выявлена негативная тенденция в виде уменьшения числа лиц без рентгенологического прогрессирования АС при увеличении возраста. По данным Т.Н. Lee и соавт. [14], у пациентов с АС имеется неравномерное увеличение скорости образования синдесмофитов: она возрастает с момента развития заболевания, достигая пика у пациентов 30—39 лет, и снижается в более старшем возрасте. Полученные нами данные о нарастающем с возрастом рентгенологическом прогрессировании на фоне терапии НТК могут быть объяснены большей длительностью АС и накоплением необратимых изменений у пациентов старших возрастных групп к моменту начала лечения, что подчеркивает важность своевременной активной терапии заболевания независимо от возраста.

Таблица 5. Оценка значимости факторов, влияющих на рентгенологическое прогрессирование по индексу mSASSS, на неделе 156 терапии HTK у пациентов с AC

Table 5. Assessment of factors influencing radiographic progression by mSASSS at week 156 of NTK therapy in patients with ankylosing spondylitis

Фактор	Одно коэффициент регрессии (95% ДИ) ¹	омерная модо	ель р-значение ²	коэффицие регрессии (95% ДИ) ¹	Многомерная мод ент	ель р-значение ²
Возраст, годы	0,96 (0,93; 0,99)	0,0113	0,97 (0,94;	1,01)	0,1306
Пол	0,99 (0,48; 2,07	")	0,9868	NA		NA
Время от установления диагноза до назначения НТК, мес	1,00 (1,00; 1,01)	0,1784	NA		NA
СРБ	0,99 (0,98; 1,00))	0,1425	NA		NA
ASDAS	0,72 (0,52; 1,00))	0,0492	0,75 (0,53;	1,06)	0,1051
BASDAI	0,97 (0,82; 1,15	5)	0,7405	NA		NA
BASMI	0,83 (0,68; 1,02	2)	0,0701	NA		NA
BASFI	0,98 (0,87; 1,12	2)	0,8102	NA		NA
MASES	1,02 (0,91; 1,13)	0,7516	NA		NA
ЧПС	1,00 (0,89; 1,12	()	0,9420	NA		NA
Оценка пациентом общей боли в спине по ЧРШ (0 -10 баллов)	0,96 (0,81; 1,15	(i)	0,6708	NA		NA
Оценка пациентом ночной боли в спине по ЧРШ (0 -10 баллов)	0,97 (0,83; 1,15	()	0,7568	NA		NA
mSASSS исходно, баллы	0,99 (0,97; 1,01)	0,2019	NA		NA
ASspi-MRI-а исходно, баллы	0,91 (0,84; 0,98	8)	0,0144	0,93 (0,86;	1,01)	0,0965
SPARCC исходно, баллы	1,02 (0,97; 1,06	<u>(</u>)	0,4615	NA		NA
Терапия иΦΗΟα в анамнезе	1,40 (0,66; 2,98	3)	0,3771	NA		NA
Наличие структурных изменений (синдесмофитов) исходно	0,41 (0,21; 0,79))	0,0076	0,63 (0,29;	1,35)	0,2305
Наличие анкилозов исходно	0,62 (0,32; 1,19))	0,1502	NA		NA

Примечание. ¹Значение коэффициента регрессии для оцениваемого фактора и 95% ДИ для коэффициента в модели логистической регрессии. ²р-значение при проверке гипотезы о равенстве 0 коэффициента для фактора в регрессии. NA (not applicable) — неприменимо.

Представляет интерес влияние на рентгенологическое прогрессирование и других факторов. В нашей работе относительное количество пациентов с отсутствием увеличения индекса mSASSS или его приростом <2 было сопоставимо у мужчин и женщин, а также у лиц, получавших и не получавших иФНО до лечения НТК. В то же время у пациентов без синдесмофитов и анкилозов на момент назначения терапии отсутствие прогрессирования по индексу mSASSS наблюдалось чаще, что соответствует результатам других авторов [12, 14, 16]. Данные настоящего исследования позволяют предположить, что активная тактика ведения пациентов с назначением НТК целесообразна независимо от пола, истории применения иФНОа, но при этом упреждающий эффект в отношении рентгенологического прогрессирования АС имеет большую мощность при назначении лечения до развития синдесмофитов и анкилозов.

При факторном анализе в одномерной модели статистически значимое влияние на рентгенологическое прогрес-

сирование на фоне терапии НТК оказывали такие исходные параметры, как возраст, значения индексов ASDAS, ASspi-MRI-а и наличие структурных изменений (синдесмофитов) на момент начала терапии. Полученные результаты в отношении исходной активности заболевания сопоставимы с анализом 12-летних данных когорты OASIS (Outcome in Ankylosing Spondylitis International Study), показавшим, что значение индекса ASDAS напрямую связано с рентгенологическим прогрессированием [5]. Данный факт подтверждает важность своевременного подавления воспаления при АС, в том числе с помощью ГИБП. Проведенный нами анализ с применением многомерной модели продемонстрировал нивелирование статистической значимости влияния указанных выше факторов. Это свидетельствует о том, что блокада ИЛ17 при АС является патогенетически обоснованной. Для дальнейшего изучения и поиска предикторов ответа требуются дополнительные исследования, в том числе в рамках реальной клинической практики.

Динамика показателей МРТ позволяет оценить влияние терапии НТК на локальное воспаление (отек костного мозга) [17]. При анализе динамики индексов ASspi-MRI-а и SPARCC получены свидетельства значимого снижения выраженности активных воспалительных изменений по данным МРТ на протяжении 2 лет терапии НТК с сохранением эффекта к неделе 156, или 3-му году лечения. Факторный анализ демонстрирует, что положительная динамика показателей МРТ под влиянием терапии НТК наблюдалась независимо от исходных клинико-демографических параметров и истории применения ГИБП, однако она была более выраженной у пациентов с отсутствием синдесмофитов и анкилозов на момент назначения препарата. Эти данные согласуются с результатами анализа индекса mSASSS и подтверждают преимущество тактики своевременной блокады ИЛ17А для получения противовоспалительного эффекта, что играет решающую роль в предотвращении последующего формирования новой кости и рентгенологического прогрессирования при АС [18, 19]. Таким образом, применение НТК для предупреждения структурных изменений представляется целесообразным вне связи с исходными клинико-демографическими параметрами пациента с АС. При этом медицинским сообществом поддерживается концепция длительной терапии ГИБП, направленной на достижение стабильного эффекта в отношении прогрессирования АС [16, 18].

Ограничением представленной работы является отсутствие сравнительного анализа динамики структурного поражения между группой активного лечения и плацебо. Это связано с коротким периодом применения плацебо — 16 нед, что является недостаточным для оценки рентгенологического прогрессирования. В то же время сохранение плацебо на протяжении оцениваемых 156 нед представляется неэтичным с учетом имеющихся данных литературы о положительном влиянии долгосрочной терапии ГИБП на структурные изменения.

Таким образом, на фоне 3 лет (156 нед) терапии НТК наблюдалось отсутствие рентгенологического прогрессирования у большей части пациентов с АС независимо от исходных клинико-демографических характеристик и предшествующей генно-инженерной биологической терапии. НТК продемонстрировал стабильный эффект в отношении как клинических проявлений АС, так и торможения структурного прогрессирования и снижения выраженности активных воспалительных изменений по данным МРТ. Замедление структурных изменений осевого скелета было наиболее выраженным у пациентов с АС без исходных синдесмофитов и анкилозов, что подчеркивает важность и перспективность ранней активной терапии. Отсутствие факторов, оказывающих значимое влияние на торможение рентгенологического прогрессирования на фоне терапии НТК, подчеркивает универсальность механизма действия препарата в виде блокады ИЛ17 и предполагает успешное его применение у широкой популяции пациентов.

ЛИТЕРАТУРА/REFERENCES

- 1. Navarro-Compan V, Sepriano A, El-Zorkany B, van der Heijde D. Axial spondyloarthritis. *Ann Rheum Dis.* 2021 Dec;80(12):1511-1521. doi: 10.1136/ annrheumdis-2021-221035.
- 2. Poddubnyy D, Sieper J. Mechanism of new bone formation in axial spondyloarthritis. *Curr Rheumatol Rep.* 2017 Sep;19(9):55. doi: 10.1007/s11926-017-0681-5.
- 3. Sepriano A, Ramiro S, Landewe R, et al. Is active sacroiliitis on MRI associated with radiographic damage in axial spondyloarthritis? real-life data from the ASAS and DESIR cohorts. *Rheumatology (Oxford)*. 2019 May 1;58(5):798-802. doi: 10.1093/rheumatology/kev387.
- 4. Эрдес ШФ, Коротаева ТВ. Прогрессирование аксиального спондилоартрита. Современная ревматология. 2021;15(3):7-14. Erdes ShF, Korotaeva TV. Progression of axial spondyloarthritis. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2021; 15(3):7-14. (In Russ.). doi: 10.14412/1996-7012-2021-3-7-14
- 5. Ramiro S, van der Heijde D, van Tubergen A, et al. Higher disease activity leads to more structural damage in the spine in ankylosing spondylitis: 12-year longitudinal data from the OASIS cohort. *Ann Rheum Dis.* 2014 Aug;73(8):1455-61. doi: 10.1136/annrheumdis-2014-205178.
- 6. Dinneen B, O'Shea F, Gensler L. Structural disease modification in axial spondyloarthritis. *Best Pract Res Clin Rheumatol.* 2023 Sep; 37(3):101898. doi: 10.1016/j.berh.2023.101898.

- 7. Kim HJ, Seo SJ, Kim JY, et al. IL-17 promotes osteoblast differentiation, bone regeneration, and remodeling in mice. Biochem Biophys Res Commun. 2020 Apr 16;524(4): 1044-50. doi: 10.1016/j.bbrc.2020.02.054. 8. Мазуров ВИ, Гайдукова ИЗ, Эрдес Ш и др. Эффективность и безопасность нетакимаба, моноклонального антитела против интерлейкина-17А, у пациентов с активным анкилозирующим спондилитом. Результаты международного многоцентрового рандомизированного двойного слепого клинического исследования III фазы BCD-085-5/ASTERA. Научно-практическая ревматология. 2020;58(4):376-86. Mazurov VI, Gaydukova IZ, Erdes Sh, et al. Efficacy and safety of netakimab, anti-IL-17A monoclonal antibody, in patients with ankylosing spondylitis. Results of phase III international, multicenter, randomized doubleblind clinical trial BCD-085-5/ASTERA. Nauchno-prakticheskaya revmatologiya. 2020; 58(4):376-386. (In Russ.).
- 9. Мазуров ВИ, Эрдес ШФ, Гайдукова ИЗ и др. Долгосрочная эффективность и безопасность нетакимаба при лечении анкилозирующего спондилита: результаты международного многоцентрового рандомизированного двойного слепого клинического исследования III фазы BCD-085-5/ASTERA. Современная ревматология. 2020;14(4):39-49
- Mazurov VI, Erdes ShF, Gaydukova IZ, et al. Long-term efficacy and safety of netakimab in the treatment of ankylosing spondylitis: results

- of Phase III international, multicenter, randomized double-blind clinical trial BCD-085-5/ASTERA. *Sovremennaya Revmatologiya* = *Modern Rheumatology Journal.* 2020;14(4): 39-49. (In Russ.). doi: 10.14412/1996-7012-2020-4-39-49
- 10. Мазуров ВИ, Эрдес ШФ, Гайдукова ИЗ и др. Долгосрочная эффективность и безопасность нетакимаба у пациентов с активным анкилозирующим спондилитом: результаты трех лет применения в рамках международного многоцентрового рандомизированного двойного слепого клинического исследования III фазы BCD-085-5/ASTERA. Современная ревматология. 2024:18(1):35-46.
- Mazurov VI, Erdes ShF, Gaydukova IZ, at al. Long-term efficacy and safety of netakimab in patients with active ankylosing spondylitis: results of three years of use in the international multicentre, randomized, double-blind, phase III clinical trial BCD-085-5/ASTERA. *Sovremennaya Revmatologiya = Modern Rheumatology Journal*. 2024;18(1):35-46. (In Russ.). doi: 10.14412/1996-7012-2024-1-35-46 11. Ramiro S, Nikiphorou E, Sepriano A, et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. *Ann Rheum Dis*. 2023 Jan;82(1):19-34. doi: 10.1136/ard-2022-223296. 12. Van der Heijde D, Braun J, Deodhar A,
- et al. Modified stoke ankylosing spondylitis spinal score as an outcome measure to assess the impact of treatment on structural progression in ankylosing spondylitis. *Rheumatology*

(Oxford). 2019 Mar 1;58(3):388-400. doi: 10.1093/rheumatology/key128
13. Baraliakos X, Gensler LS, D'Angelo S, et al. Biologic therapy and spinal radiographic progression in patients with axial spondyloarthritis: A structured literature review.

Ther Adv Musculoskelet Dis. 2020 Mar 4;12: 1759720X20906040. doi: 10.1177/175972 0X20906040.

14. Lee TH, Koo BS, Nam B, et al. Age-stratified trends in the progression of spinal radiographic damage in patients with ankylosing spondylitis: a longitudinal study. *Ther Adv Musculoskelet Dis.* 2022 May 23;14:175972 0X221100301. doi: 10.1177/1759720X221100301

15. Ramiro S, Stolwijk C, van Tubergen A, et al. Evolution of radiographic damage in ankylosing spondylitis: a 12 year prospective follow-up of the OASIS study. *Ann Rheum Dis.* 2015 Jan;74(1):52-9. doi: 10.1136/annrheumdis-2013-204055.

16. Baraliakos X , Gensler LS, D'Angelo S, et al. Biologic therapy and spinal radiographic progression in patients with axial spondyloarthritis: A structured literature review. *Ther Adv Musculoskelet Dis.* 2020 Mar 4:12: 1759720X20906040. doi: 10.1177/1759720X20906040.

17. Baraliakos X, Braun J. Imaging Scoring Methods in Axial Spondyloarthritis. *Rheum*

Dis Clin North Am. 2016 Nov;42(4):663-678. doi: 10.1016/j.rdc.2016.07.006.

18. Poddubnyy D, Sieper J. Mechanism of New Bone Formation in Axial Spondyloarthritis. Curr Rheumatol Rep. 2017 Sep; 19(9):55. doi: 10.1007/s11926-017-0681-5.

19. Ashany D, Stein E, Goto R, Goodman S. The effect of TNF inhibition on bone density and fracture risk and of IL17 inhibition on radiographic progression and bone density in patients with axial spondyloarthritis: a systematic literature review. Curr Rheumatol Rep. 2019 Mar 12;21(5):20. doi: 10.1007/s11926-019-0818-9.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 18.07.2025/05.09.2025/11.09.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Статья спонсируется АО «БИОКАД». Конфликт интересов не повлиял на результаты исследования. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article is sponsored by JSC BIOCAD. The conflict of interest has not affected the results of the investigation. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Мазуров В.И. https://orcid.org/0000-0002-0797-2051 Лила A.M. https://orcid.org/0000-0002-6068-3080 Эрдес Ш.Ф. https://orcid.org/0000-0003-3195-5187 Гайдукова И.З. https://orcid.org/0000-0003-3500-7256 Дубинина Т.В. https://orcid.org/0000-0002-1771-6246 Смирнов A.B. https://orcid.org/0000-0001-7418-9369 Пристром A.M. https://orcid.org/0000-0002-5782-8832 Кундер E.B. https://orcid.org/0000-0001-6391-7703 Сорока Н.Ф. https://orcid.org/0000-0002-9915-2965 Кастанаян A.A. https://orcid.org/0000-0002-1170-8691 Поварова Т.В. https://orcid.org/0000-0002-7304-6769 Жугрова E.C. https://orcid.org/0000-0002-8622-5205 Самигуллина P.P. https://orcid.org/0000-0002-6341-3334 Плаксина Т.В. https://orcid.org/0000-0002-6927-1752 Шестерня П.A. https://orcid.org/0000-0001-8652-1410 Кропотина Т.В. https://orcid.org/0000-0002-0689-8646

Антипова О.В. https://orcid.org/0000-0002-6133-4034 Смолярчук E.A. https://orcid.org/0000-0002-2615-7167 Цюпа O.A. https://orcid.org/0000-0002-6297-4279 Абдулганиева Д.И. https://orcid.org/0000-0001-7069-2725 Лапшина C.A. https://orcid.org/0000-0001-5474-8565 Кречикова Д.Г. https://orcid.org/0000-0003-1207-6144 Гордеев И.Г. https://orcid.org/0000-0002-3233-4369 Несмеянова О.Б. https://orcid.org/0000-0002-5599-8248 Иливанова Е.П. https://orcid.org/0000-0002-9312-3768 Стрелкова A.B. https://orcid.org/0000-0002-9077-889X Тыренко В.В. https://orcid.org/0000-0002-0470-1109 Линькова Ю.Н. https://orcid.org/0000-0002-5463-1022 Зинкина-Орихан A.B. https://orcid.org/0000-0002-8499-2232 Фокина E.A. https://orcid.org/0000-0003-2680-1909 Еремеева A.B. https://orcid.org/0000-0002-1267-0074 Пухтинская П.С. https://orcid.org/0000-0001-9790-8207

Длительное многоцентровое наблюдательное исследование препарата Алфлутоп в России: применение у пациентов пожилого возраста с остеоартритом различных локализаций (сообщение 5)

Таскина Е.А.¹, Лила А.М.¹,², Раскина Т.А.³, Алексеева Л.И.¹,², Наумов А.В.⁴,⁵, Кашеварова Н.Г.¹

¹ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва; ³ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России, Кемерово; ⁴ОСП «Российский геронтологический научно-клинический центр» и ⁵кафедра болезней старения ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России (Пироговский Университет), Москва, Россия ¹Россия, 115522, Москва, Каширское шоссе, 34А; ²Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1; ³Россия, 650056, Кемерово, ул. Ворошилова, 22а; ^{4,5}Россия, 129226, Москва, ул. 1-я Леонова, 16

Остеоартрит (OA)— одна из наиболее важных медико-социальных проблем, что обусловлено неуклонным ростом показателей заболеваемости и нетрудоспособности.

Цель исследования — оценить эффективность терапии препаратом Алфлутоп у пациентов пожилого возраста с ОА коленных (КС), и/или тазобедренных (ТБС) суставов, и/или болью в нижней части спины (БНЧС).

Материал и методы. В многоцентровое проспективное когортное наблюдательное исследование, которое проводилось в 163 клинических центрах 58 городов Российской Федерации, вошло 10 927 больных старше 60 лет (из 22 525 включенных в исследование) с ОА различных локализаций и БНЧС. Все пациенты получали препарат Алфлутоп по назначению врача в рамках планового лечения или самостоятельно приобретали его в аптеке. Длительность исследования составила 20—31 день, число визитов — 2. Алфлутоп назначался по 1 мл внутримышечно (в/м) ежедневно №20 или по 2 мл в/м через день №10. Эффективность терапии определяли по времени наступления клинического эффекта (уменьшение боли, по мнению пациента), динамике интенсивности боли в анализируемом суставе при движении и/или БНЧС по визуальной аналоговой шкале (ВАШ), оценке качества жизни по опроснику EQ-5D и оценке состояния здоровья пациентом (ОСЗП) по ВАШ. Изучали приверженность лечению, потребность в нестероидных противовоспалительных препаратах, удовлетворенность лечением (по ВАШ).

Результаты и обсуждение. Результаты исследования основных параметров эффективности терапии продемонстрировали выраженную положительную динамику. На фоне курса терапии у больных ОА КС (n=6138) медиана снижения интенсивности боли (по ВАШ) составила 57,1 [33,3; 75]%, улучшения ОСЗП (по ВАШ) — 40 [14,3; 100]%, оценки удовлетворенности лечением — 80 [60; 90] мм. У большинства пациентов с ОА ТБС (n=4377) под влиянием терапии отмечено существенное улучшение состояния: медиана интенсивности боли снизилась на 50 [33,3; 75]%, ОСЗП повысилась на 40 [14,3; 100]%, медиана оценка удовлетворенности лечением достигла 80 [60; 90] мм. У больных с ОА суставов кистей (n=1346) медиана улучшения по ВАШ составила 60 [37,5; 80]%. Выраженная положительная динамика регистрировалась по EQ-5D и ОСЗП, их медианы увеличились с 0,59 [0,52; 0,69] до 0,82 [0,73; 1,0] балла, p<0,0001 и с 50 [40; 67] до 80 [70; 90] мм, p<0,0001 соответственно. У больных с неспецифической БНЧС (n=5135) отмечались значимое снижение интенсивности боли и улучшение ОСЗП: медиана снижения боли составила 57,1 [37,5; 75]% и ОСЗП — 50 [14,3; 100]%. Хороший ответ на терапию (уменьшение боли на ≥50%) выявлен в 65,1% случаев.

Заключение. Результаты наблюдательного исследования подтверждают симптоматический эффект препарата Алфлутоп и целесообразность его использования у больных старше 60 лет с ОА различных локализаций и БНЧС.

Ключевые слова: пожилой возраст; остеоартрит коленных суставов; остеоартрит тазобедренных суставов; остеоартрит суставов кистей; боль в нижней части спины; лечение; Алфлутоп.

Контакты: Елена Александровна Таскина; braell@mail.ru

Для цитирования: Таскина EA, Лила AM, Раскина TA, Алексеева ЛИ, Наумов AB, Кашеварова НГ. Длительное многоцентровое наблюдательное исследование препарата Алфлутоп в России: применение у пациентов пожилого возраста с остеоартритом различных локализаций (сообщение 5). Современная ревматология. 2025;19(5):52—61. https://doi.org/10.14412/1996-7012-2025-5-52-61

Long-term multicenter observational study of Alflutop in Russia: use in elderly patients with osteoarthritis at various sites (report 5)

Taskina E.A.¹, Lila A.M.^{1,2}, Raskina T.A.³, Alekseeva L.I.^{1,2}, Naumov A.V.^{4,5}, Kashevarova N.G.¹

¹V.A. Nasonova Research Institute of Rheumatology, Moscow; ²Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow; ³Kemerovo State Medical University, Ministry of Health of Russia, Kemerovo; ⁴Russian Gerontology Research and Clinical Center and ⁵Department of Diseases of Aging, Pirogov Russian Research National Medical University, Ministry of Health of Russia, Moscow ¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia; ³22a, Voroshilova Street, Kemerovo 650056, Russia; ^{4,5}16, 1st Leonova Street, Moscow 129226, Russia

Osteoarthritis (OA) is one of the most significant medical and social problems due to a steady increase in its incidence and associated disability rates. **Objective.** To evaluate the efficacy of Alflutop in elderly patients with osteoarthritis (OA) of the knee (KOA) and/or hip (HOA) and/or with low back pain (LBP).

Material and methods. This prospective, multicenter, cohort observational study was conducted in 163 clinical centers across 58 cities of the Russian Federation. Of 22,525 enrolled patients with OA at various sites and/or LBP, 10,927 were ≥60 years and comprised the analysis population. Alflutop was prescribed as part of routine care per physician decision or purchased by patients. Study duration was 20−31 days with two visits. Regimens were either 1 mL intramuscularly (IM) for 20 consecutive days or 2 mL IM every other day totaling 10 injections. Efficacy was assessed by time to clinical effect (patient-reported pain reduction), change in pain intensity during movement in the index joint and/or LBP on a visual analogue scale (VAS), health-related quality of life by EQ-5D, and patient global assessment (PGA) on VAS. Treatment adherence, need for nonsteroidal anti-inflammatory drugs, and treatment satisfaction (VAS) were recorded.

Results and discussion. Primary efficacy parameters showed pronounced improvement over the treatment course. In patients with KOA (n=6138), median pain reduction (VAS) was 57.1 [33.3; 75] %, median improvement in PGA (VAS) was 40 [14.3; 100] %, and treatment satisfaction was 80 [60; 90] mm. In most patients with HOA (n=4377), substantial improvement was observed: median pain decreased by 50 [33.3; 75] %, PGA increased by 40 [14.3; 100] %, and treatment satisfaction was 80 [60; 90] mm. Among patients with hand OA (n=1346), median VAS improvement was 60 [37.5; 80] %. Marked positive dynamics were recorded for EQ-5D and PGA: from 0.59 [0.52; 0.69] to 0.82 [0.73; 1.0] points (p<0.0001) and from 50 [40; 67] to 80 [70; 90] mm (p<0.0001), respectively. In patients with nonspecific LBP (n=5135), pain decreased and PGA improved: median pain reduction was 57.1 [37.5; 75] % and PGA increased by 50 [14.3; 100] %. A good response (≥50% pain reduction) was observed in 65.1% of cases.

Conclusion. This observational study supports the symptomatic effect of Alflutop and its appropriateness for use in patients aged \geq 60 years with OA of various sites and with LBP.

Keywords: elderly; knee osteoarthritis; hip osteoarthritis; hand osteoarthritis; low back pain; treatment; Alflutop.

Contact: Elena Alexandrovna Taskina; braell@mail.ru

For citation: Taskina EA, Lila AM, Raskina TA, Alekseeva LI, Naumov AV, Kashevarova NG. Long-term multicenter observational study of Alflutop in Russia: use in elderly patients with osteoarthritis at various sites (report 5). Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):52–61(In Russ.). https://doi.org/10.14412/1996-7012-2025-5-52-61

Остеоартрит (ОА) является распространенным хроническим заболеванием, при этом у 85% пожилых людей отмечаются симптомы ОА и более чем у 50% — рентгенологические признаки ОА по крайней мере в одном суставе к 65 годам [1]. Чаще всего поражаются коленные (КС), тазобедренные (ТБС) суставы и мелкие суставы кисти [2].

Последние результаты проекта Global Burden of Disease (GBD), опубликованные в мае 2025 г., свидетельствуют о том, что в 2021 г. ОА затронул уже 7,7% мирового населения, или 607 млн человек (95% доверительный интервал, ДИ 538—671). Полученные данные показывают неуклонный рост числа больных ОА [3].

Колоссальные финансовые затраты, связанные с диагностикой, лечением и реабилитацией пациентов с ОА, а также огромные потери рабочего времени тяжким бременем ложатся на экономику. При этом повышение благосостояния населения и связанное с ним увеличение продолжительности жизни создают предпосылки для дальнейшего роста количества больных. В GBD оценивалась частота ОА различных локализаций и анализировался прогноз заболеваемости до 2050 г. Были объединены данные популяционных исследований, полученные из 204 стран с 1990 по 2020 г. относительно ОА КС, ОА ТБС и ОА кистей [4].

Н. Long и соавт. [5] на основании анализа результатов GBD установили, что за 30 лет (с 1990 по 2019 г.) общее количество больных ОА в мире увеличилось с 247,51 до 527,81 млн, т. е. на 113,25%. При этом наблюдался рост числа случаев как ОА КС, так и ОА других локализаций. Прогнозируемые ежегодные изменения частоты заболевания для ОА КС составляют 0,32% (95% ДИ 0,29–0,34), для ОА ТБС — 0,28% (95% ДИ 0,26–0,31), для других вариантов ОА – 0,18% (95% ДИ 0,18–0,19). Так, за прошедшие 30 лет в Австралии число пациентов с ОА ТБС возросло на 171%, с ОА КС — на 126%, с ОА кистей — на 110%, а с ОА других локализаций — на 130%. К 2050 г. по сравнению с 2020 г. ожидается увеличение частоты ОА КС на 75%, ОА кистей на 49%, ОА ТБС на 79%, ОА других локализаций на 95% [6].

ОА сопровождается высокой инвалидизацией пациентов и повышением риска летальности. В 2019 г. представлена информация о 369 заболеваниях и травмах в 204 странах мира, согласно которой ОА занял 18-е место среди основных причин инвалидности у лиц в возрасте 50—74 лет по сравнению с 24-м местом в 1990 г., что свидетельствует о росте за этот период на 114% бремени инвалидности, связанной с ОА [7]. Так, в 2021 г. появились данные об увеличении за

предшествующие 30 лет на 114,5% числа лет, прожитых с инвалидностью (Years Lived with Disability, YLDs) [8]. Для ОА оно достигает 313 лет на 100 тыс. населения и значительно превышает данный показатель для ишемической болезни сердца (ИБС) и сахарного диабета (СД) — 47 лет и 84 года соответственно [6]. Вызванная данным заболеванием инвалидизация обусловливает необходимость максимально раннего его выявления, устранения факторов риска развития, проведения профилактических мероприятий и своевременного активного лечения. Для лиц 70 лет и старше ОА является 7-й причиной в структуре заболеваний, ассоциированных с YLDs. Около 73% пациентов с диагностированным ОА — это люди старше 55 лет [2], что в связи со старением населения позволяет прогнозировать глобальный рост распространенности ОА.

При ОА наблюдается увеличение смертности от всех причин, особенно от сердечно-сосудистых заболеваний (ССЗ). Сегодня очевидно, что ОА и ССЗ — наиболее распространенные состояния у людей пожилого возраста в развитых странах, имеющие высокие показатели летальности и вносящие вклад в глобальное бремя здравоохранения во всем мире из-за боли, инвалидности, потери работы и стоимости лечения. Так, по данным международного метаанализа 2021 г., включавшего 10 723 участника из шести когорт четырех стран, пациенты с симптоматическим ОА имели на 35—37% больший риск летального исхода: относительный риск (ОР) — 1,35 (95% ДИ 1,12—1,63) для лиц с болью и ОР — 1,37 (95% ДИ 1,22—1,54) для лиц с рентгенологическим ОА в сочетании с болью [8].

В метаанализ 15 когортных исследований вошло 358 944 пациента, в том числе 80 911 с ОА и 29 213 с ССЗ. Продемонстрировано, что риск ССЗ у пациентов с ОА выше на 24% (ОР 1,24; 95% ДИ 1,12–1,37) [9]. Основным патогенетическим объяснением взаимосвязи ССЗ и ОА является наличие системного медленно прогрессирующего воспаления, имеющего особое значение у пациентов старших возрастных групп.

В исследование М.М. Rahman и соавт. [10] было включено 40 817 пациентов с ОА (средний возраст — 66 лет, 71% — женщины). Показано, что вероятность возникновения ССЗ у лиц с ОА на 45% выше, чем у пациентов того же возраста, не имеющих ОА. Независимо от пола установлен повышенный риск развития стенокардии (ОР 1,7; 95% ДИ 1,43—2,17 и ОР 1,84; 95% ДИ 1,59—2,14 для мужчин и женщин соответственно) и хронической сердечной недостаточности — ХСН (ОР 1,50; 95% ДИ 1,3—1,97 и ОР 1,81; 95% ДИ 1,49—2,21 для мужчин и женщин соответственно). Частота ишемического инсульта в когорте больных ОА была в 1,5 раза выше, чем в группах сравнения (1,93 против 1,26 на 100 пациенто-лет), скорректированный ОР — 1,34 (95% ДИ 1,09—1,66).

В метаанализе, опубликованном в 2021 г., у больных ОА выявлен повышенный риск возникновения инфаркта миокарда (ОР 1,22; 95% ДИ 1,02—1,45) и инсульта (ОР 1,43; 95% ДИ 1,38—1,48). У пациентов с ОА наблюдалась высокая частота сердечно-сосудистых факторов риска, таких как гипергликемия, повышение уровня общего холестерина и холестерина липопротеинов низкой плотности. В более поздних систематических обзорах показано, что ОА ТБС и КС увеличивает риск развития субклинического атеросклероза (ОР 1,15; 95% ДИ 1,01—1,31), ССЗ (ОР 1,13; 95% ДИ 1,05—1,22) и

артериальной гипертензии — АГ (OP 1,701; 95% ДИ 1,411— 2,052) [11].

Принципиальную позицию в терапии ОА занимают болезнь-модифицирующие препараты (Disease-Modifying Osteoarthritis Drugs, DMOADs). Ранее медикаменты, входящие в эту группу, называли симптоматическими средствами замедленного действия (Symptomatic Slow Acting Drugs for Osteoarthritis, SYSADOA), или «хондропротекторами». В настоящее время их относят к средствам базисной терапии данного заболевания, которые в соответствии с международными и национальными алгоритмами лечения ОА должны назначаться сразу после установления диагноза.

Одним из препаратов класса DMOADs является Алфлутоп, содержащий биоактивный концентрат мелких морских рыб (БКММР). Многокомпонентный состав БКММР обеспечивает комбинированное воздействие на различные звенья патогенеза ОА, прежде всего это касается подавления таких ключевых механизмов, как сигнальный путь NF-кВ и Wnt/b-catenin [12], активация которых играет важную роль в развитии любых вариантов ОА, включая поражение позвоночника.

Под влиянием БКММР снижается высвобождение провоспалительных цитокинов, в частности интерлейкина (ИЛ) 6 и ИЛ8. Он также способен блокировать рецептор ИЛ1β, который играет ведущую роль в развитии воспаления. Хондропротективное действие БКММР связано с подавлением активности металлопротеиназ, опосредующих деградацию суставного хряща. Хондроитина сульфат, являющийся одним из компонентов БКММР, заметно снижает выработку сосудистого эндотелиального фактора роста, сдерживая тем самым развитие неоангиогенеза в хрящевой ткани пораженных суставов.

Кроме того, препарат оказывает антикатаболическое действие за счет повышения экспрессии SOX9, синтеза аггрекана [13] и гиалуроновой кислоты [14, 15].

ОА сопровождается нарушением целостности митохондрий и ухудшением функции электрон-транспортной цепи, что обусловлено развитием митохондриальной дисфункции. Эти изменения способствуют возникновению окислительного стресса за счет повышения выработки активных форм кислорода и приводят к усилению катаболизма хондроцитов с повреждением белков, липидов и ДНК [16]. Введение Алфлутопа сопровождается увеличением активности каталазы, уменьшая одновременно продукцию внутриклеточного супероксид-аниона и пероксида водорода и подавляя апоптоз хондроцитов [17]. Эти механизмы лежат в основе анальгетического и противовоспалительного действия препарата, позволяя также сдерживать прогрессирование структурных изменений суставов.

Данные рандомизированных клинических исследований (РКИ) убедительно подтверждают симптоматический и болезнь-модифицирующий эффект Алфлутопа. В России он используется уже около 30 лет и зарекомендовал себя как высокоэффективное и безопасное средство для лечения различных вариантов ОА и неспецифической боли в нижней части спины (БНЧС). Выраженный анальгетический эффект препарата у больных ОА был продемонстрирован на материалах 37 клинических исследований (n=3676), в которых уже после первого курса лечения наблюдалось уменьшение боли на 40–60% [18].

Однако для повышения валидности этих результатов необходимо изучение эффективности и безопасности БКММР в реальной клинической практике, что позволит получить

более репрезентативную информацию об условиях проведения исследования и популяциях пациентов, чем та, которая содержится в отчетах стандартных РКИ. В частности, в РКИ при ОА часто не оценивается эффективность препарата в когорте пациентов молодого или, напротив, пожилого возраста, при различных рентгенологических стадиях, сопутствующих заболеваниях и т. д.

С ноября 2021 г. по декабрь 2022 г. было проведено крупномасштабное многоцентровое проспективное открытое наблюдательное неинтервенционное исследование ИСКРА (ИСследование: назначение леКарственного препаРата Алфлутоп, раствор для инъекций, при ОА в условиях реальной клинической практики), в котором участвовало 163 клинических центра, расположенных в 58 городах (практически во всех федеральных округах Российской Федерации). Основной задачей данной работы была оценка эффективности терапии препаратом Алфлутоп у пациентов с ОА различной локализации и/или БНЧС при наличии или отсутствии коморбидных заболеваний.

Цель настоящего исследования — оценка эффективности терапии препаратом Алфлутоп у пациентов старше 60 лет с OA различных локализаций.

Материал и методы. Дизайн и цели этого исследования подробно рассмотрены в наших четырех предыдущих публикациях [19—22]. В первом сообщении были представлены данные об эффективности терапии препаратом в общей популяции пациентов с ОА. Во второй статье сделан акцент на эффективности лечения при ОА суставов кистей, ТБС и генерализованной форме заболевания, в третьей препарат оценивался при неспецифической БНЧС, в четвертой — при ОА КС. В настоящей работе дана оценка терапии БКММР у больных старше 60 лет

(10 927 из 22 525 включенных в исследование пациентов) с ОА различных локализаций.

Исследование одобрено локальным этическим комитетом ФГБГУ «Научноисследовательский институт ревматологии им. В.А. Насоновой».

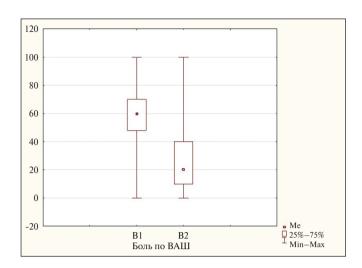
Критерии включения: мужчины и женщины с достоверным диагнозом ОА КС, и/или ТБС, и/или суставов кистей, согласно критериям АСК (American College Rheumatology), и/или БНЧС; ОА любой рентгенологической стадии по Kellgren—Lawrence; пациенты, соблюдающие указания врача и подписавшие форму информированного согласия.

У больных учитывались следующие сопутствующие заболевания: АГ, ИБС (стенокардия напряжения I—II функционального класса, ФК); ХСН Ia—Ib стадии (I—II ФК по NYHA); СД 2-го типа, компенсированный углеводный обмен; метаболический синдром (МС).

Критерии невключения: повышенная чувствительность/аллергические реакции на компоненты препарата; одновременное участие в клинических испытаниях других лекарственных средств; неудовлетворительное общее

состояние или другие причины, по которым пациенту будет трудно совершать визиты в исследовательский центр; тяжелые, декомпенсированные или нестабильные соматические заболевания (любые болезни или состояния, которые угрожают жизни больного или ухудшают прогноз основного заболевания, а также делают невозможным проведение клинического исслелования).

В анализ включено 10 927 пациентов (63,4% женщин и 36,6% мужчин; см. таблицу). Абсолютное большинство больных (67,1%) на начало исследования принимали различные нестероидные противовоспалительные препараты (НПВП). Сопутствующая патология была оценена у 9866 пациентов (за исключением ожирения — у 9993), при этом 1 заболевание регистрировалось у 30,1%, 2 — у 33,9%, 3 — у 22,5%, \geq 4 — у 13,5% больных. Наиболее часто встречалась АГ (почти в 90% случаев), у каждого 3-го пациента выявлены ИБС, СД и ожирение.


Длительность исследования составила от 20 до 31-го дня, число визитов (B) -2: B1 - начало терапии, B2 - в течение 10 дней после завершения курса лечения. Алфлутоп назначался по 1 мл внутримышечно (в/м) ежедневно №20 или по 2 мл в/м через день №10.

Эффективность лечения оценивалась по стандартным критериям эффективности терапии ОА:

- 1) динамика интенсивности боли в анализируемом суставе при движении по визуальной аналоговой шкале (ВАШ 0—100 мм, где 0—отсутствие боли, 100—невыносимая боль);
- 2) время наступления клинического эффекта (снижение интенсивности боли, по мнению пациента);
- 3) оценка качества жизни по опроснику EuroQol-5D (EQ-5D);

Характеристика больных (n=10 927) Characteristics of patients (n=10 927)

Показатель	Значение
Женщины/мужчины, %	63,4/36,6
Возраст, годы, M±SD	67,7±6,1
ИМТ, $\kappa \Gamma/M^2$, $M\pm SD$	28,5±4,6
Длительность ОА, мес, Ме [25-й; 75-й перцентили]	72 [36; 120]
Диагноз, %: ОА КС ОА ТБС ОА суставов кистей БНЧС	56,2 40,1 12,3 47
Боль по ВАШ в наиболее болезненном суставе или БНЧС, мм, Ме [25-й; 75-й перцентили]	60 [43; 70]
Прием НПВП (n=10 268), %	67,1
AΓ (n=9866), %	88,1
ИБС (n=9866), %	33,4
XCH (n=9866),%	14,5
Ожирение (n=9993), %	34
MC (n=9866), %	19,4
СД 2-го типа (n=9866), %	29,1
Примечание. ИМТ — индекс массы тела.	

Рис. 1. Динамика интенсивности боли (по ВАШ) при ОА КС на фоне лечения препаратом

Fig. 1. Dynamics of pain intensity (VAS) in knee OA during therapy

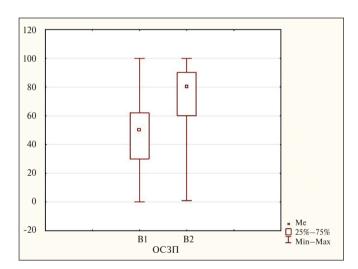
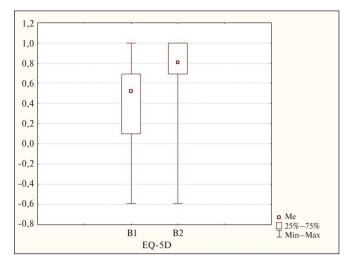



Рис. 3. Динамика ОСЗП (по ВАШ) при ОА КС на фоне лечения препаратом

Fig. 3. Dynamics of patient global assessment (VAS) in knee OA during therapy

- 4) динамика оценки общего состояния здоровья пациентом (ОСЗП) по ВАШ (0-100 мм, где 0 наихудшее состояние, 100 наилучшее);
 - 5) оценка потребности в НПВП;
 - 6) оценка приверженности терапии (0-100%);
- 7) удовлетворенность пациента терапией по ВАШ (0— $100\,$ мм, где 0- отсутствие эффекта или ухудшение, 100- превосходный результат).

Статистическую обработку данных проводили с помощью программного обеспечения Statistica 12.0 (StatSoft, США). Выполнены анализ на нормальность распределения переменных с помощью тестов Колмогорова—Смирнова, Шапиро—Уилка и частотный анализ. Использованы методы описательной статистики с вычислением минимальных, максимальных и средних значений переменных, стандартных отклонений, медианы и интерквартильного интервала (Ме [25-й; 75-й перцентили]), а также параметрический (U-критерий Ман-

Рис. 2. Динамика EQ-5D при OA KC на фоне лечения препаратом **Fig. 2.** Dynamics of EQ-5D in knee OA during therapy

на—Уитни, χ^2) критерии. Дополнительно рассчитывали отношение шансов (ОШ) и 95% ДИ. Различия считали статистически значимыми при p<0,05.

Результаты. Подавляющее большинство пациентов закончили полный курс лечения препаратом. Приверженность терапии составила $95,9\pm12,9\%$, при этом в 92,1% случаев она была >80%.

Эффективность препарата при ОА КС. У 6138 пациентов имелся ОА КС: І рентгенологическая стадия по Kellgren—Lawrence выявлена у 4,1% участников, ІІ — у 55,4%, ІІІ — у 38,6% и IV — у 1,9%.

Результаты исследования основных параметров эффективности терапии продемонстрировали выраженную положительную динамику. На фоне курса терапии значимо снизилась интенсивность боли (на момент В1 медиана боли — 60 [48; 70], B2-20 [10; 40] мм; p<0,0001; puc.1), улучшились качество жизни по EQ-5D (B1 — 0,52 [0,1; 0,69], B2-0,8 [0,69; 1] балла; p<0,0001; puc.2) и OC3П (B1 — 50 [30; 62], B2-80 [60; 90] мм; p<0,0001; puc.3). Соответственно, медиана снижения интенсивности боли (по ВАШ) составила 57,1 [33,3; 75]% и улучшения ОСЗП (по ВАШ) — 40 [14,3; 100]%.

Хороший ответ на терапию (уменьшение боли на ≥50%, n=5928) выявлен у 62,3% пациентов; снижение интенсивности боли по ВАШ до <40 мм наблюдалось у 69,4%. Медиана времени от начала лечения до появления анальгетического эффекта составила 9 [5; 10] дней, медиана оценки удовлетворенности лечением — 80 [60; 90] мм, позитивный эффект терапии, по мнению пациентов, зафиксирован в 97,7% случаев. Полученные результаты подтверждают значимое симптоматическое действие препарата у пациентов старше 60 лет с ОА КС.

Эффективность препарата при ОА ТБС. У пациентов старше 60 лет ОА ТБС выявлен в 4377 случаях. В результате терапии в большинстве наблюдений отмечено существенное улучшение состояния: медиана интенсивности боли снизилась на 50% [33,3; 75] — с 60 [50; 73] до 20 [10; 40] мм, p<0,001 (рис. 4), ОСЗП улучшилась на 40% [14,3; 100] — с 50 [30; 60] до 70 [60; 87] мм (рис. 5). Более половины пациентов (60,8%) продемонстрировали хороший ответ на терапию (уменьшение

Современная ревматология. 2025;19(5):52-61

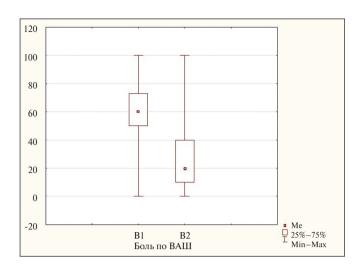
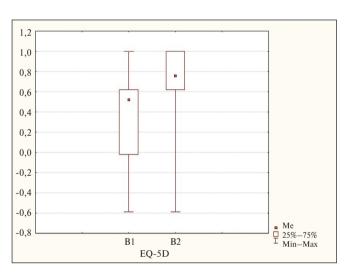



Рис. 4. Динамика интенсивности боли (по ВАШ) при ОА ТБС на фоне лечения препаратом

Fig. 4. Dynamics of pain intensity (VAS) in hip OA during therapy

Рис. 6. Динамика EQ-5D при OA TБС на фоне лечения препаратом **Fig. 6.** Dynamics of EQ-5D in hip OA during therapy

боли при движении ≥50% по сравнению с исходным уровнем). Большинство больных (96,9%) высоко оценили результаты терапии, указав на ее эффективность. Оценка удовлетворенности лечением составила 80 [60; 90] мм, а эффект зарегистрирован уже на 9-й [6; 11] день терапии. У 66,1% пациентов интенсивность боли в ТБС снизилась до <40 мм. Отмечено значительное улучшение качества жизни по EQ-5D: с 0,52 [-0,02; 0,62] до 0,76 [0,62; 1,0] балла (рис. 6). На фоне лечения наблюдалось уменьшение потребности в НПВП с 72,8 до 69,5% (ОШ 1,17; 95 ДИ 1,07−1,3; p=0,001). Следует отметить высокую приверженность пациентов терапии (в среднем 96,4±11,6%), которая была >80% у 93,2% участников.

Эффективность препарата при ОА суставов кистей. На фоне лечения отмечалось статистически значимое снижение интенсивности боли по ВАШ у пациентов старше 60 лет, имеющих ОА суставов кистей (n=1346). Так, если исходно медиана уровня боли составляла 60 [40; 70] мм, то к В2 этот

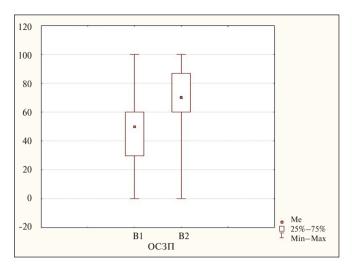


Рис. 5. Динамика ОСЗП (по ВАШ) при ОА ТБС на фоне лечения препаратом

Fig. 5. Dynamics of patient global assessment (VAS) in hip OA during therapy

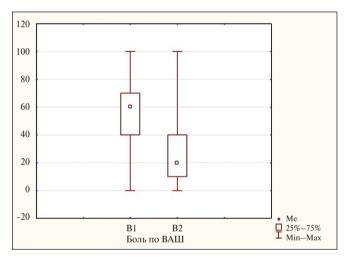


Рис. 7. Динамика интенсивности боли (по BAIII) при ОА суставов кистей на фоне лечения препаратом Fig. 7. Dynamics of pain intensity (VAS) in hand OA during therapy

показатель снизился до 20 [10; 40] мм (p<0,0001; рис. 7), медиана улучшения — 60 [37,5; 80]%. Выраженная положительная динамика регистрировалась по EQ-5D (рис. 8) и ОСЗП (рис. 9): соответственно 0,59 [0,52; 0,69] и 0,82 [0,73; 1,0] балла (p<0,0001); 50 [40; 67] и 80 [70; 90] мм (p<0,0001).

Данные нашего исследования подтверждают высокую приверженность лечению при ОА суставов кистей (97,8±9,1%), и лишь в 3,8% случаев этот показатель был <80%. Медиана времени до наступления анальгетического эффекта составила 10 [5; 12] дней. Интенсивность боли в суставах кистей снизилась у 67,3% участников на ≥50%, у 82,9% данный показатель находился на уровне <40 мм.

Эффективность препарата при неспецифической БНЧС. Неспецифическую БНЧС имели 5135 участников, их возраст составлял в среднем $68,3\pm6,3$ года, ИМТ $-28,7\pm4,7$ кг/м². Согласно полученным результатам, на фоне курса лечения отмечались значимое снижение интенсивности боли (В1 -

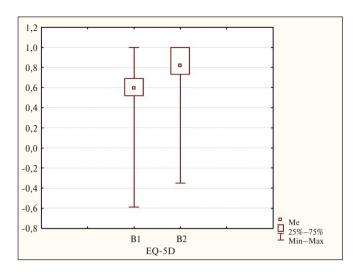


Рис. 8. Динамика EQ-5D при OA суставов кистей на фоне лечения препаратом

Fig. 8. Dynamics of EQ-5D in hand OA during therapy

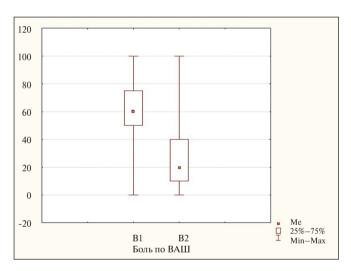
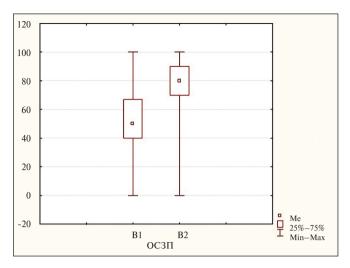


Рис. 10. Динамика интенсивности боли (по ВАШ) при БНЧС на фоне лечения препаратом

Fig. 10. Dynamics of pain intensity (VAS) in low back pain during therapy

60 [50; 75], B2 - 20 [10; 40] мм; p<0,0001; рис. 10), улучшение качества жизни по EQ-5D (B1 - 0,52 [-0,02; 0,59], B2 - 0,76 [0,69; 1] балла; p<0,0001; рис. 11) и повышение ОСЗП (В1 - 50 [30; 60], B2 - 70 [60; 90] мм; p<0,0001; рис. 12). Соответственно, медиана снижения боли (по ВАШ) составила 57,1 [37,5; 75]% и повышения ОСЗП (по ВАШ) - 50 [14,3; 100]%. Хороший ответ на терапию (уменьшение боли на ≥50%) выявлен в 65,1% случаев, снижение боли по ВАШ до <40 мм - в 83,2%.

Полученные результаты подтверждают значимое симптоматическое действие препарата. Так, пациенты отметили анальгетический эффект уже на 9-й [6; 12] день лечения. Медиана оценки удовлетворенности лечением составила 80 [60; 90] мм, позитивный эффект терапии, по мнению пациентов, зафиксирован в 97,4% случаев. Выраженное улучшение, которое наблюдалось у большинства больных, привело к снижению потребности в НПВП: в начале терапии их по-



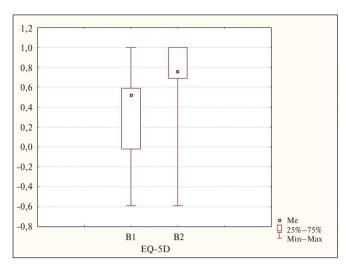

Рис. 9. Динамика ОСЗП (по ВАШ) при ОА суставов кистей на фоне лечения препаратом

Fig. 9. Dynamics of patient global assessment (VAS) in hand OA during therapy

лучали 75,1% пациентов, в конце лечения — 68,9% (ОШ 1,36; 95% ДИ 1,24—1,49; p<0,0001). Обращала на себя внимание высокая приверженность лечению (96,6 \pm 11,6%), которая в 93,7% случаев оказалась >80%.

Обсуждение. Обусловленные ОА хроническая боль и частая инвалидизация больных являются причиной огромных экономических и социальных потерь. Фармакотерапия ОА направлена прежде всего на подавление боли, коррекцию связанных с ней функциональных ограничений и повышение качества жизни. Одним из основных компонентов медикаментозного лечения ОА являются DMOADs, которые могут назначаться как внутрь, так и парентерально. Препараты этого класса позволяют эффективно контролировать имеющуюся у пациента хроническую боль и обладают хорошим профилем безопасности. При этом достигнутое на фоне лечения клиническое улучшение может сохраняться в течении 3-4 мес после окончания терапии (эффект последействия). Помимо уменьшения клинической симптоматики, DMOADs способны сдерживать прогрессирование заболевания благодаря влиянию на патогенетические механизмы. Отсутствие значительных неблагоприятных реакций при использовании DMOADs имеет особенно большое значение для пожилых пациентов, у которых часто встречается коморбидная патология

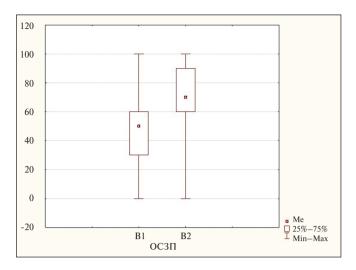

Алфлутоп выпускается на территории Евросоюза в соответствии со стандартами надлежащей производственной практики. Он широко используется для лечения больных ОА как в России, так и за рубежом. Результаты его применения представлены более чем в 40 публикациях, в которых анализируются преимущественно данные РКИ, выполненных на хорошем методическом уровне. Результаты 37 из них (n=3676) обсуждаются в обзоре, который продемонстрировал выраженное уменьшение боли (по ВАШ или индексу WOMAC) в среднем на 43,1% (25-58,6%) при назначении БКММР [18]. Материалы этих работ подтверждают безопасность препарата: терапия не сопровождалась возникновением серьезных нежелательных явлений, больные хорошо переносили лечение даже при многолетнем применении Алфлутопа и наличии сопутствующих заболеваний. Данные РКИ доказывают не только обезболивающее и противовос-

Рис. 11. Динамика EQ-5D при БНЧС на фоне лечения препаратом **Fig. 11.** Dynamics of EQ-5D in low back pain during therapy

палительное действие, но и замедление прогрессирования структурных изменений при назначении этого препарата пациентам с ОА КС [23, 24].

В то же время информация о его применении у больных пожилого возраста пока очень ограниченна. Исследование ИСКРА восполняет этот пробел и демонстрирует благоприятные результаты применения препарата Алфлутоп у пожилых пациентов с различными вариантами ОА на очень большом клиническом материале: в исследование было включено более 10 тыс. пациентов из разных регионов России. У подавляющего большинства из них на фоне терапии Алфлутопом наблюдалось существенное (>50%) уменьшение боли, быстрая положительная динамика ОСЗП (в среднем через 9 дней после назначения препарата) и повышение качества жизни. Пациенты высоко оценили эффект БКМР, что обеспечило хорошую комплаентность. Отмечался также высокий уровень удовлетворенности терапией.

Рис. 12. Динамика ОСЗП (по ВАШ) при БНЧС на фоне лечения препаратом **Fig. 12.** Dynamics of patient global assessment (VAS) in low back pain during therapy

Следует подчеркнуть отсутствие серьезных нежелательных явлений при использовании Алфлутопа, что особенно важно для пожилых пациентов с коморбидной патологией.

Заключение. Материалы масштабного многоцентрового проспективного исследования ИСКРА позволяют обосновать целесообразность применения многокомпонентного препарата Алфлутоп для лечения пожилых пациентов с различными вариантами ОА. Препарат обеспечивает отчетливое симптоматическое улучшение и повышение качества жизни, одновременно снижая потребность в НПВП. Следует также отметить быстрый эффект, благоприятный профиль безопасности Алфлутопа, а также хорошую комплаентность. Значительный интерес может представлять дальнейшее изучение результатов его применения на больших контингентах больных для разработки современных подходов к персонифицированной терапии ОА и повышения качества оказания медицинской помощи пациентам пожилого возраста.

ЛИТЕРАТУРА/REFERENCES

1. Im GI, Kim MK. The relationship between osteoarthritis and osteoporosis. *J Bone Miner Metab*. 2014 Mar;32(2):101-9. doi: 10.1007/s00774-013-0531-0.

2. GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet Rheumatol.* 2023 Aug 21;5(9):e508-e522. doi: 10.1016/S2665-9913(23)00163-7.

3. Xie X, Zhang K, Li Y, et al. Global, regional, and national burden of osteoarthritis from 1990 to 2021 and projections to 2035: A cross-sectional study for the Global Burden of Disease Study 2021. *PLoS One.* 2025 May 27;20(5):e0324296. doi: 10.1371/

journal.pone.0324296.

4. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. *Lancet*. 2020 Oct 17;396(10258):1204-1222. doi: 10.1016/S0140-6736(20)30925-9.

5. Long H, Liu Q, Yin H, et al. Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. *Arthritis Rheumatol*. 2022 Jul;74(7):1172-1183. doi: 10.1002/art.42089.

6. Ackerman IN, Buchbinder R, March L. Global Burden of Disease Study 2019: an opportunity to understand the growing preva-

lence and impact of hip, knee, hand and other osteoarthritis in Australia. *Intern Med J.* 2022 Sep 16. doi: 10.1111/imj.15933. Online ahead of print.

7. Wan J, Qian X, He Z, et al. Epidemiological trends of hand osteoarthritis from 1990 to 2019: Estimates from the 2019 Global Burden of Disease study. *Front Med (Lausanne)*. 2022 Dec 12;9:922321. doi: 10.3389/fmed. 2022.922321. eCollection 2022.

8. Leyland KM, Gates LS, Sanchez-Santos MT, et al. Knee osteoarthritis and time-to all-cause mortality in six community-based cohorts: an international meta-analysis of individual participant-level data. *Aging Clin Exp Res.* 2021 Mar;33(3):529-545. doi: 10.1007/s40520-020-01762-2.

- 9. Wang H, Bai J, He B, et al. Osteoarthritis and the risk of cardiovascular disease: a meta-analysis of observational studies. *Sci Rep.* 2016 Dec 22:6:39672. doi: 10.1038/srep39672.
- 10. Rahman MM, Kopec JA, Cibere J, et al. The relationship between osteoarthritis and cardiovascular disease in a population health survey: a cross-sectional study. *BMJ Open*. 2013 May 14;3(5):e002624. doi: 10.1136/bmjopen-2013-002624.
- 11. Xie Y, Zhou W, Zhong Z, et al. Metabolic syndrome, hypertension, and hyperglycemia were positively associated with knee osteoarthritis, while dyslipidemia showed no association with knee osteoarthritis. *Clin Rheumatol.* 2021 Feb;40(2):711-724. doi: 10.1007/s10067-020-05216-y.
- 12. Chen C, Guo-Feng B, Guanhua X, et al. Altered Wnt and NF-κB Signaling in Facet Joint Osteoarthritis: Insights from RNA Deep Sequencing. *Tohoku J Exp Med.* 2018 May; 245(1):69-77. doi: 10.1620/tjem.245.69 13. Buse E, Dumitriu B, Olariu L, et al. Cellular and Molecular Activity of a Standardized Small Sea Fish Extract in an Experimental Model of Primary Human Cartilage Cells. *Ro J Rheumatol.* 2018;27(1):23-31. doi: 10.37897/RJR.2018.1.4
- 14. Olariu L, Dumitriu B, Craciun L, et al. The in vitro influence of a pharmaceutically active small sea fish extract on apoptosis and proliferation mechanisms amplified by inflammatory conditions. *Farmacia*. 2018;55(3): 524-29.
- 15. Гроппа Л, Мынзату И, Карасава М и др. Эффективность Алфлутопа у больных деформирующим остеоартрозом. Клиническая ревматология. 1995; (3):20-22.
- Groppa L, Mynzatu I, Karasava M, et al. The effectiveness of Alflutope in patients with deforming osteoarthritis. *Klinicheskaya revmatologiya*. 1995;(3):20-22. (In Russ.). 16. Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. *Nat Rev Rheumatol*. 2016 Jul;12(7):412-20. doi: 10.1038/nrrheum.2016.65.
- 17. Олариу Л, Димитриу Б, Мануэла Эне Д и др. In vitro влияние препарата Алфлутоп на механизмы развития остеоартрита. Вестник Академии румынских ученых. 2017;(6)1:82-99.
- Olariu L, Dimitriu B, Manuela Ene D, et al. In vitro effect of Alflutop on the mechanisms

- of osteoarthritis development. *Vestnik Akademii rumynskikh uchenykh*. 2017;(6)1:82-99. (In Russ.).
- 18. Каратеев АЕ. Биоактивный концентрат мелкой морской рыбы: оценка эффективности и безопасности препарата на основании анализа 37 клинических исследований. Современная ревматология. 2020; 14(4);111-24.
- Karateev AE. Bioactive concentrate from small sea fish: Evaluation of the efficacy and safety of the drug on the basis of the analysis of 37 clinical trials. *Sovremennaya revmatologiya = Modern Rheumatology Journal*. 2020;14(4):111-24. (In Russ.). doi: 10.14412/1996-7012-2020-4-111-124.
- 19. Лила АМ, Алексеева ЛИ, Таскина ЕА, Кашеварова НГ. Длительное многоцентровое наблюдательное исследование Алфлутопа в России: предварительные результаты (сообщение 1). Современная ревматология. 2023;17(2):57-64.
- Lila AM, Alekseeva LI, Taskina EA, Kashevarova NG. Alflutop Russian longitudinal multicentre observational study: preliminary results (message 1). *Sovremennaya Revmatologiya = Modern Rheumatology Journal*. 2023;17(2):57-64. (In Russ.). doi: 10.14412/19967012-2023-2-57-64
- 20. Лила АМ, Таскина ЕА, Алексеева ЛИ, Кашеварова НГ. Длительное многоцентровое наблюдательное исследование препарата Алфлутоп в России (сообщение 2). Современная ревматология. 2023; 17(4):75-85.
- Lila AM, Taskina EA, Alekseeva LI, Kashevarova NG. Multicenter Longitudinal Observational Study Pharmaceuticals Alflutop in Russia (message 2). *Sovremennaya Revmatologiya = Modern Rheumatology Journal*. 2023;17(4):75-85. (In Russ.). doi: 10.14412/1996-7012-2023-4-75-85
- 21. Лила АМ, Каратеев АЕ, Алексеева ЛИ и др. Длительное многоцентровое наблюдательное исследование препарата Алфлутоп в России: применение у пациентов с хронической болью в спине (сообщение 3). Современная ревматология. 2024; 18(1):70-75.
- Lila AM, Karateev AE, Alexeeva LI, at al. Alflutop Russian longitudinal multicenter observational study: use in patients with chronic back pain (message 3). *Sovremennaya Revmatologiya = Modern Rheumatology Journal*. 2024;18(1):70-75. (In Russ.). doi: 10.14412/

- 1996-7012-2024-1-70-75.
- 22. Таскина ЕА, Алексеева ЛИ, Кашеварова НГ, Лила АМ. Длительное многоцентровое наблюдательное исследование препарата Алфлутоп в России: применение у пациентов с остеоартритом коленных суставов (сообщение 4). Современная ревматология. 2024;18(4):80-88.
- Taskina EA, Alekseeva LI, Kashevarova NG, Lila AM. Long-term multicenter observational study of the drug Alflutop in Russia: use in patients with knee osteoarthritis (report 4). Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2024;18(4):80-88. (In Russ.). doi: 10.14412/1996-7012-2024-4-80-88
- 23. Алексеева ЛИ, Шарапова ЕП, Таскина ЕА и др. Многоцентровое слепое рандомизированное плацебо-контролируемое исследование симптом- и структурно-модифицирующего действия препарата Алфлутоп у больных остеоартрозом коленных суставов. Сообщение 1 оценка симптоммодифицирующего действия препарата. Научно-практическая ревматология. 2013; 51(5);532-538.
- Alekseeva LI, Sharapova EP, Taskina EA. et al. Multicenter double-blind randomized placebo-controlled trial of the symptom- and structuremodifying effect of Alflutop in patients with knee osteoarthrosis. Communication 1. Evaluation of the symptom-modifying effect of the drug. Nauchno-Prakticheskaya Revmatologia. 2013;51(5):532-538. (In Russ.). 24. Алексеева ЛИ, Шарапова ЕП, Таскина ЕА и др. Многоцентровое слепое рандомизированное плацебо-контролируемое исследование симптом- и структурно-модифицирующего действия препарата Алфлутоп у больных остеоартрозом коленных суставов. Сообщение 2 – оценка структурномодифицирующего действия препарата. Научно-практическая ревматология. 2014; 52(2):174-177.
- Alekseeva LI, Sharapova EP, Taskina EA, et al. A multicenter, blind, randomized, placebocontrolled study of the symptom- and structuremodifying effect of Alflutop in patients with knee osteoarthritis. Report 2: The assessment of the struc ture-modifying effect of the drug. *Nauchno-Prakticheskaya Revmatologia*. 2014; 52(2):174-177. (In Russ.).

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 02.08.2025/23.09.2025/26.09.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Статья подготовлена в рамках научно-исследовательской работы, Государственное задание № РК 125020501433-4.

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared within the framework of the research project, State Assignment № PK 125020501433-4.

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Таскина E.A. https://orcid.org/0000-0001-8218-3223 Лила А.М. https://orcid.org/0000-0002-6068-3080 Раскина Т.А. https://orcid.org/0000-0002-5804-4298 Алексеева Л.И. https://orcid.org/0000-0001-7017-0898 Наумов А.В. https://orcid.org/0000-0002-6253-621X Кашеварова Н.Г. https://orcid.org/0000-0001-8732-2720

Эффективность и безопасность 24 недель терапии моноклональным антителом к TRBV9+ T-лимфоцитам (сенипрутуг) у пациентов с анкилозирующим спондилитом. Данные реальной клинической практики

Василенко Е.А.^{1,2}, Самигуллина Р.Р.^{2,3}, Карибова А.К.^{4,5}, Грабовецкая Ю.Ю.⁶, Мазуров В.И.³

¹ГБУЗ Ленингадской области «Гатчинская клиническая межрайонная больница», Гатчина;
²СПб ГБУЗ «Клиническая ревматологическая больница №25 им. В.А. Насоновой», Санкт-Петербург;
³ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова»
Минздрава России, Санкт-Петербург;
⁴ГБУ Республики Дагестан «Городская клиническая больница»,
Махачкала;
⁵ФГБОУ ВО «Дагестанский государственный медицинский университет», Махачкала;
⁶ГБУЗ «Областная клиническая больница Калинградской области», Калининград
¹Россия, 188300, Гатчина, ул. Рощинская, 15А; ²Россия, 190068, Санкт-Петербург, ул. Большая
Подъяческая, 30; ³Россия, 191015, Санкт-Петербург, ул. Кирочная, 41; ⁴Россия, 367018, Махачкала,
ул. Лаптиева, 89; ⁵Россия, 367000, Махачкала, площадь им. Ленина, 1; ⁶Россия, 236016, Калининград,
ул. Клиническая, 74

В апреле 2024 г. был зарегистрирован первый генно-инженерный биологический препарат (ГИБП), избирательно нацеленный на CD8+ Т-лимфоциты, имеющие в рецепторном аппарате сегмент TRBV9, — сенипрутуг. Новый механизм действия потенциально влияет на начальный иммунопатологический каскад при HLA-B27-ассоциированном анкилозирующем спондилите (AC). В течение 2024 г. 9 пациентам с AC из Европейской части России была инициирована терапия сенипрутугом.

Цель исследования — оценить эффективность и безопасность терапии сенипрутугом у пациентов с AC через 12 и 24 нед (3 и 6 мес) в условиях реальной клинической практики.

Материал и методы. В исследование включено 9 пациентов с AC, среди которых было 7 (77,8%) мужчин и 2 (22,2%) женщины (средний возраст $-37,3\pm12,6$ года). Диагноз AC установлен в соответствии с критериями ASAS (2009) и модифицированными Нью-Йоркскими критериями (1984). У 8 (88,9%) пациентов выявлен активный сакроилиит по данным магнитно-резонансной томографии (MPT), у 7 (77,8%) — спондилит как минимум в одном сегменте позвоночника, при этом у 6 (66,7%) имелись признаки отека костного мозга (MPT-подтвержденный спондилит).

У всех пациентов исходно отмечались высокая активность заболевания (ASDAS составлял в среднем $3,83\pm0,53$ балла, BASDAI — $5,7\pm2,01$ балла) и повышение уровня острофазовых показателей: концентрация СРБ составляла в среднем $49,6\pm36,7$ мг/л (у 8 пациентов она была >5 мг/л); $CO9-56,4\pm28,5$ мм/ч (во всех случаях >15 мм/ч). Пациенты получали внутривенные инфузии сенипрутуга на неделях 0 и 12. Полные данные 12- и 24-недельного наблюдения были доступны у всех 9 пациентов к сентябрю 2025 г.

Результаты и обсуждение. Через 12 нед 8 из 9 пациентов сообщили о субъективном улучшении. Показатели активности снизились: ASDAS в среднем до $2,57\pm0,94$ балла, BASDAI до $3,41\pm1,17$ балла, CPE до $26,79\pm46,35$ мг/л, COЭ до $25,7\pm29$ мм/ч, при этом у 55,6% больных наблюдалась нормализация лабораторных показателей. Низкая активность заболевания по ASDAS и BASDAI зарегистрирована соответственно в 33,3 и 77,8% случаев.

Через 24 нед 8 (88,9%) пациентов достигли ответа ASAS40; среднее значение ASDAS составило 1,59 \pm 0,21 балла, BASDAI — 1,75 \pm 0,81 балла. При этом ASDAS уменьшился в среднем на 2,42 \pm 0,75 балла, BASDAI — на 4,24 \pm 2,0 балла. У всех пациентов, завершивших наблюдение, отмечено выраженное снижение лабораторных маркеров активности (СРБ — в среднем до 3,4 \pm 2,3 мг/л, СОЭ — до 11,6 \pm 7,2 мм/ч). Один пациент, не ответивший на терапию, был переключен на альтернативный ГИБП.

Заключение. Это первое исследование в реальной клинической практике, демонстрирующее значимое клиническое и лабораторное улучшение у пациентов с АС, получавших терапию сенипрутугом. Результаты 24-недельного наблюдения подтверждают особый потенциал данного подхода для воздействия на патогенетический каскад при HLA-B27-ассоциированном АС, что требует дальнейшего изучения в более крупных когортах пациентов

Ключевые слова: спондилоартрит; анкилозирующий спондилит; сенипрутуг; генно-инженерные биологические препараты; моноклональное антитело к TRBV9.

Контакты: Елизавета Алексеевна Василенко; elisaavas@gmail.com

Для цитирования: Василенко EA, Самигуллина PP, Карибова АК, Грабовецкая ЮЮ, Мазуров ВИ. Эффективность и безопасность 24 недель терапии моноклональным антителом к TRBV9+ Т-лимфоцитам (сенипрутуг) у пациентов с анкилозирующим спондилитом. Данные реальной клинической практики. Современная ревматология. 2025;19(5):62—68. https://doi.org/10.14412/1996-7012-2025-5-62-68

Efficacy and safety of 24-week therapy with a monoclonal antibody to TRBV9+ Tlymphocytes (seniprutug) in patients with ankylosing spondylitis: real-world data Vasilenko E.A.^{1,2}, Samigullina R.R.^{2,3}, Karibova A.K.^{4,5}, Grabovetskaya Yu.Yu.⁶, Mazurov V.I.³

¹Gatchina Clinical Interdistrict Hospital, Gatchina; ²Clinical Rheumatology Hospital № 25 named after V.A. Nasonova, St. Petersburg; ³North-Western State Medical University named after I.I. Mechnikov, Ministry of Health of Russia, St. Petersburg; ⁴City Clinical Hospital, Republic of Dagestan, Makhachkala; ⁵Dagestan State Medical University, Makhachkala; ⁶Regional Clinical Hospital of Kaliningrad Region, Kaliningrad ¹15A, Roshchinskaya Street, Gatchina 188300, Russia; ²30, Bolshaya Pod'yacheskaya Street, St. Petersburg 190068, Russia; ³41, Kirochnaya Street, St. Petersburg 191015, Russia; ⁴89, Laptieva Street, Makhachkala 367018, Russia; ⁵1, Lenin Square, Makhachkala 367000, Russia; ⁶74, Klinicheskaya Street, Kaliningrad 236016, Russia

In April 2024, the first biologic agent (seniprutug) selectively targeting CD8+ T lymphocytes bearing the TRBV9 segment was approved. This novel mechanism of action potentially affects the initial immunopathologic cascade in HLA-B27-associated ankylosing spondylitis (AS). During 2024, seniprutug therapy was initiated in 9 patients with AS in the European part of Russia.

Objective. To evaluate the efficacy and safety of seniprutug in patients with AS at 12 and 24 weeks (3 and 6 months) in real-world clinical practice. **Material and methods.** Nine patients with AS were included: 7 men (77.8%) and 2 women (22.2%); mean age 37.3±12.6 years. AS was diagnosed according to ASAS (2009) and the modified New York criteria (1984). Active sacroilitis on magnetic resonance imaging (MRI) was present in 8 patients (88.9%); spondylitis in at least one spinal segment in 7 (77.8%), with bone-marrow edema (MRI-confirmed spondylitis) in 6 (66.7%). Baseline disease activity was high: Ankylosing Spondylitis Disease Activity Score (ASDAS) 3.83±0.53; Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) 5.7±2.01; inflammatory markers were elevated: C-reactive protein (CRP) 49.6±36.7 mg/L (>5 mg/L in 8 patients) and erythrocyte sedimentation rate (ESR) 56.4±28.5 mm/h (>15 mm/h in all patients). Intravenous seniprutug infusions were administered at weeks 0 and 12. Complete 12- and 24-week follow-up data were available for all 9 patients by September 2025.

Results and discussion. At week 12, 8 from 9 patients reported subjective improvement. Mean activity scores decreased: ASDAS to 2.57 ± 0.94 and BASDAI to 3.41 ± 1.17 . CRP and ESR declined to 26.79 ± 46.35 mg/L and 25.7 ± 29 mm/h, respectively; normalization of laboratory indices occurred in 55.6% of patients. Low disease activity by ASDAS and BASDAI was recorded in 33.3% and 77.8% of cases, respectively. At week 24, 8 of 9 patients (88.9%) achieved ASAS40 response; mean ASDAS was 1.59 ± 0.21 and BASDAI 1.75 ± 0.81 . Mean reductions were

At week 24, 8 of 9 patients (88.9%) achieved Assassa response; mean Assassa was 1.39 \pm 0.21 and BASSAT 1.73 \pm 0.81. Mean reductions were \triangle ASDAS (weeks 0–24) 2.42 \pm 0.75 and \triangle BASDAI (weeks 0–24) 4.24 \pm 2.0. In all patients completing follow-up, inflammatory markers markedly decreased (CRP 3.4 \pm 2.3 mg/L; ESR 11.6 \pm 7.2 mm/h). One non-responder was switched to an alternative biologic DMARD.

Conclusion. This first real-world study demonstrates significant clinical and laboratory improvement in AS patients treated with seniprutug. The 24-week data support the potential of this approach to modulate the pathogenic cascade in HLA-B27-associated AS and justify further evaluation in larger cohorts.

Keywords: spondyloarthritis; ankylosing spondylitis; seniprutug; biologic agents; monoclonal antibody to TRBV9.

Contact: Elizaveta Alekseevna Vasilenko; elisaavas@gmail.com

For citation: Vasilenko EA, Samigullina RR, Karibova AK, Grabovetskaya YuYu, Mazurov VI. Efficacy and safety of 24-week therapy with a monoclonal antibody to TRBV9+ T lymphocytes (seniprutug) in patients with ankylosing spondylitis: real-world data. Revmatologiya=Modern Rheumatology Journal. 2025;19(5):62–68 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-62-68

Анкилозирующий спондилит (АС), или рентгенологический аксиальный спондилоартрит, — поздняя стадия хронического воспалительного заболевания из группы спондилоартритов, характеризующаяся поражением опорно-двигательного аппарата (крестцово-подвздошных сочленений, позвоночника, периферических суставов и энтезисов), глаз (передний увеит), кожи и ее придатков (псориаз, псориатическая онихопатия), кишечника (болезнь Крона и язвенный колит) [1].

Диагноз АС устанавливают в соответствии с модифицированными Нью-Йоркскими критериями 1984 г. Одним из немаловажных признаков и классификационных критериев спондилоартритов является носительство аллеля HLA-B27. Позитивность по HLA-B27 может варьироваться в зависимости от популяции. По некоторым данным [2], аллель HLA-B27 может обнаруживаться примерно у 85% пациентов с АС. Носительство этого аллеля влияет на возраст начала заболевания, семейную предрасположенность и в ряде случаев на феноти-

пические особенности течения болезни: наличие тех или иных проявлений, скорость прогрессирования и др. Результаты оценки испанского регистра пациентов с АС (REGISPONSER) показали, что у HLA-B27-позитивных пациентов заболевание дебютировало раньше и имело более выраженную семейную отягощенность по сравнению с HLA-B27-отрицательными больными [3]. Некоторые исследования демонстрируют более агрессивное течение АС в зависимости от пола как пациента, так и его родителей, имеющих этот дагноз [4].

Первой линией терапии аксиальных проявлений спондилоартритов традиционно являются нестероидные противовоспалительные препараты (НПВП). Данная группа лекарственных средств может быть эффективной в отношении боли и снижает интенсивность воспаления. Однако нередко их эффективность ограниченна, и ответ на терапию может быть недостаточным. В таких ситуация необходимо подключение генно-инженерных биологических препаратов (ГИБП), таких как ингибиторы фактора некроза опухоли α ,

Таблица 1. Клинико-демографическая характеристика пациентов (n=9) Table 1. Clinical and demographic characteristics of patients with AS (n=9)

Показатель	Значение
Мужчины, n (%)	7 (77,8)
Возраст, годы, M±SD	37,3±12,6
Длительность заболевания, мес, M±SD	106,2±108,6
Аксиальные, внеаксиальные и внескелетные проявления в анамнезе, n (%): сакроилиит спондилит как минимум в одном отделе позвоночника артрит энтезит увеит	9 (100) 7 (77,8) 9 (100) 3 (33,3) 1 (11,1)

Таблица 2. Объективные признаки активности AC Table 2. Objective parameters of disease activity in patients with AS

Показатель	Значение
СРБ, мг/л, M±SD	49,6±36,7
Уровень CPБ >5 мг/л, n (%)	8 (88,9)
CO9, mm/q, M±SD	56,4±28,5
CO3 >15 mm/ч, n (%)	9 (100)
ASDAS-СРБ, M±SD	3,83±0,53
BASDAI, M±SD	5,7±2,01
Активный сакроилиит, п (%)	8 (88,9)
Активный спондилит, п (%)	6 (66,7)

ингибиторы интерлейкина 17, а также ингибиторы Янускиназ (иЈАК) [5].

Стоит отметить, что назначение ГИБП позволяет достичь контроля над заболеванием не у всех пациентов. Все больше больных сталкиваются с необходимостью последовательной смены нескольких ГИБП с разными механизмами действия, что может объясняться недостаточным влиянием препаратов на все пути патогенеза [6]. Именно поэтому разработка препаратов с альтернативными механизмами действия является одной из приоритетных задач. В ревматологии существует потребность в создании препаратов, которые могли бы обеспечить более выраженный и устойчивый эффект, меньшее количество нежелательных реакций (НР), большую частоту достижения минимальной активности заболевания или ремиссии. Еще один не менее важный аспект терапии — не только достижение субъективного улучшения, но и замедление структурного прогрессирования заболевания.

Для преодоления недостатков имеющихся методов терапии в России была начата разработка препарата с новыми механизмом действия, направленным на сегмент TRBV9+ рецептора аутореактивных CD8+ Т-лимфоцитов, которые могут играть инициирующую роль в иммунопатогенезе спондилоартритов. Препарат BCD-180, международное непатентованное наименование — сенипрутуг (Трибувиа®), представляет собой гуманизированное моноклональное антитело к сегменту TRBV9, которое посредством антителозависимой клеточной цитотоксичности приводит к элиминации TRBV9 Т-лимфоцитов, включая аутореактивные клоны [7]. Согласно результатам 36

и 48 нед клинического исследования ELEFTA, применение сенипрутуга приводит к значительному уменьшению активности заболевания, снижению уровня лабораторных маркеров воспаления, улучшению показателей качества жизни, функции позвоночника, и, что важно, уменьшению выраженности объективных признаков воспаления по данным магнитно-резонансной томографии (MPT) у значительной доли пациентов. Немаловажным результатом исследования является благоприятный профиль безопасности препарата у пациентов с АС [7, 8].

Цель исследования — оценить эффективность и безопасность терапии сенипрутугом у пациентов с АС через 12 и 24 нед (3 и 6 мес) в условиях реальной клинической практики.

Материал и методы. С июля по сентябрь 2024 г. терапия сенипрутугом проведена 9 пациентам с АС. Диагноз АС установлен в соответствии с модифицированными Нью-Йоркскими критериями (1984), все пациенты соответствовали также критериям ASAS (Assessment of SpondyloArthritis International Society, 2009). Для оценки эффективности терапии использовались стандартные индексы активности спондилоартритов: ASDAS-CPБ (Ankylosing Spondylitis Disease Activity Score с опре-

делением уровня СРБ) и BASDAI (Bath Ankylosing Spondylitis Disease Activity Index), а также оценка доли пациентов, достигших 20% и 40% улучшения по критериям ASAS (ASAS20 и ASAS40 соответственно) [9–11]. Для определения динамики достижения целевых показателей активности использовали индекс ASDAS, за низкую активность принимали ASDAS-СРБ <2,1. Выраженность воспалительного процесса оценивали с помощью лабораторных маркеров, включая СОЭ и уровень СРБ, а также анализа МРТ-изображений крестцово-подвядошных суставов (КПС) и позвоночника с использованием режима STIR и T1-SE последовательностей (Т1-взвешенная последовательность «spin echo»). О безопасности терапии судили по частоте и профилю HP.

Среди пациентов было 7 (77,8%) мужчин и 2 (22,2%) женщины, средний возраст — 37,3 \pm 12,6 года. Все пациенты являлись носителями HLA-B27. Определение субаллелей HLA-B27 не проводилось. Никто из пациентов ранее не получал терапию ГИБП или иЈАК. Дополнительные характеристики пациентов представлены в табл. 1.

У всех пациентов исходно выявлены высокая активность заболевания (ASDAS — в среднем 3.83 ± 0.53 балла; BASDAI — 5.7 ± 2.01 балла) и повышенные значения воспалительных маркеров (СРБ — в среднем до 49.6 ± 36.7 мг/л; СОЭ — до 56.4 ± 28.5 мм/ч). У 8.(88.9%) пациентов имелся активный сакроилиит по данным МРТ КПС, у 6.(66.7%) — признаки отека костного мозга как минимум в одном сегменте позвоночника (МРТ-подтвержденный спондилит). Более детальная характеристика признаков активности АС представлена в табл. 2.

Пациенты получали внутривенные инфузии сенипрутуга на неделях 0 и 12. На неделе 0 проводили комплексное обследование пациентов с оценкой активности заболевания (ASDAS-CPБ и BASDAI), лабораторных маркеров (СОЭ и СРБ), данных МРТ трех отделов позвоночника и КПС для выявления структурных изменений и отека костного мозга. После однократного проведения стандартной премедикации (согласно инструкции к препарату) выполняли инфузию сенипрутуга в дозе 3,5 мг/кг. На неделе 12 повторно оценивали индексы активности (ASDAS-СРБ и BASDAI), лабораторные маркеры (СОЭ и СРБ), затем выполняли стандартную премедикацию и инфузию сенипрутуга в дозе 7 мг/кг. На неделе 24 проводили определение индексов активности (ASDAS-СРБ и BASDAI) и лабораторных маркеров активности (СОЭ и СРБ). Оценка безопасности включала изучение частоты и профиля НР, в том числе серьезных (СНР). Полные данные 12- и 24-недельного наблюдения были доступны у всех 9 пациентов к сентябрю 2025 г.

Параметры эффективности на не-

деле 12. У 8 пациентов через 12 нед после начала терапии на фоне продолжающегося использования НПВП и базисных противовоспалительных препаратов, начатого до начала наблюдения, было зарегистрировано снижение показателей активности: ASDAS составил в среднем $2,57\pm0,94$ балла, BASDAI $-3,41\pm1,16$ балла (табл. 3, puc. 1).

Доля пациентов, достигших ответа ASAS20 и ASAS40 на неделе 12, составляла 66,7 и 44,4% соответственно, что свидетельствует о клинической эффективности препарата сенипрутуг в большинстве наблюдений и согласуется с результатами фазы II клинического исследования ELEFTA [7]. Большинство пациентов отметили значительное улучшение клинической симптоматики, выражавшееся в снижении интенсивности боли, утренней скованности и утомляемости.

Помимо субъективного улучшения, у 7 из 9 пациентов выявлена положительная динамика лабораторных показателей — СРБ и СОЭ, у 1 пациента при нормальном уровне СРБ наблюдалось снижение СОЭ. Нормальные значения СРБ и СОЭ отмечены соответственно в 55,6 и 77,8% случаев.

К 12 неделе наблюдения 6 пациентов достигли целевого снижения ASDAS-CPБ (в среднем на ≥1,1), еще у 2 зафиксирована положительная динамика, что послужило основанием для продолжения терапии. Один пациент с учетом отсутствия эффекта лечения, нарастания клинико-лабораторных показателей активности переключен на терапию другим ГИБП. Дальнейшая оценка показателей проводилась для 8 пациентов, продолживших терапию сенипрутугом.

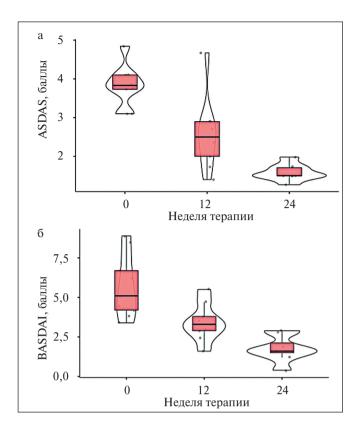
Параметры эффективности на неделе 24. У 8 пациентов, продолживших терапию, через 24 нед после первой инфузии сенипрутуга наблюдалось дальнейшее снижение показателей активности: ASDAS в среднем до 1,59±0,21 балла, BASDAI

Таблица 3. Характеристика показателей активности на неделях 12 и 24 терапии Table 3. Characteristics of activity indices at weeks 12 and 24 of therapy

Показатель	Неделя 12	Неделя 24
СРБ, мг/л, M±SD	11,7±10,1	3,4±2,3
СРБ >5 мг/л, n (%)	4 (44,4)	2 (25,0)
CO9, mm/q, M±SD	25,7±29,0	11,6±7,2
CO9 >15 MM/ч, n (%)	2 (22,2)	4 (50,0)
ASDAS-СРБ, M±SD	2,57±0,94	1,59±0,21
BASDAI, M±SD	3,41±1,16	1,75±0,81
ΔASDAS, M±SD	1,25±1,12	2,42±0,75
ΔBASDAI, M±SD	2,29±1,81	4,24±2,0
ASAS20, n (%)	6 (66,7)	8 (88,9)**
ASAS40, n (%)	4 (44,4)	8 (88,9)**
Низкая активность заболевания (ASDAS-CPБ <2,1), n (%)	3 (33,3)	8 (88,9)**
Достижение целевого снижения ASDAS-СРБ на ≥1,1 балла, п (%)*	6 (66,7)	6 (66,7)**

Примечание. * — снижение ASDAS-СРБ на \ge 1,1 балла в первые 3 мес и на \ge 2,2 балла за 6 мес; ** — расчет проводился от числа пациентов, получивших первую дозу исследуемого препарата.

до $1,75\pm0,81$ балла (см. рис. 1). Все пациенты, продолжившие лечение, достигли ответа ASAS40. ASDAS снизился в среднем на $2,42\pm0,75$ балла, BASDAI — на $4,24\pm2,0$ балла. Ответ ASAS40 на неделе 24 зарегистрирован у 88,9% больных, начавших терапию.


К неделе 24 все 8 пациентов достигли целевого снижения показателей активности ASDAS-CPБ (снижение на \geq 1,1) и/или низкой активности заболевания по ASDAS-CPБ (<2,1 балла; см. табл. 3).

При оценке динамики клинических и лабораторных показателей активности получены результаты, свидетельствующие о наличии статистически значимых различий по ASDAS (p=0,009), BASDAI (p=0,0028), CPБ (p=0,039) и CO \Im (p=0,02) на неделях 0 и 12.

Аналогично значимые различия выявлены по ASDAS (p<0,000001), BASDAI (p=0,0003), CPБ (p=0,009) и COЭ (p=0,003) на неделях 0 и 24

Положительная динамика по данным МРТ КПС и позвоночника. У пациента с нормальным уровнем СРБ перед началом терапии была выполнена МРТ всех отделов позвоночника и КПС для оценки наличия воспалительных изменений, характерных для АС. Были выявлены множественные участки отека костного мозга в КПС (активный сакроилиит) и структурные изменения (эрозии и жировая дегенерация), являющиеся типичными изменениями при АС (рис. 2). Также определялись множественные участки отека костного мозга в трех отделах позвоночника, соответствовавшие проявлениям активного спондилита (рис. 3).

После 24 нед терапии пациенту повторно была выполнена МРТ КПС, по данным которой выявлена положительная динамика в виде купирования участка отека костного мозга (рис. 4).

Рис. 1. Динамика ASDAS (a) и BASDAI (б) **Fig. 1.** Dynamics of ASDAS (a) and BASDAI (b)

Рис. 2. МРТ-изображения КПС с использованием режима STIR (а) и Т1-последовательностей (б). Стрелками выделены патологические изменения: участок гиперинтенсивного сигнала— отек костного мозга (а) и эрозии, жировая дегенерация (б), характерные для АС

Fig. 2. MRI of the sacroiliac joints (SIJs) using STIR (a) and T1-weighted sequences (b). Arrows indicate lesions: hyperintense area — bone marrow edema (a); erosions and fat metaplasia (b), typical for AS

Оценка безопасности терапии. НР на фоне терапии сенипрутугом были выявлены у 66,7% пациентов после первой инфузии и у 11,1% после второй. В большинстве случаев зарегистрированные события соответствовали 1—2-й степени тяжести. Наиболее частыми НР являлись инфузионные реакции во время или сразу после введения сенипрутуга: повышение температуры тела до фебрильных значений (у 3 пациентов), головная боль (у 3), озноб (у 3), рвота (у 1), тошнота (у 2), слабость (у 4). Единственной НР при втором введении сенипрутуга была головная боль, зарегистриро-

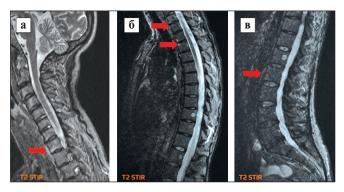


Рис. 3. MPT-изображения шейного (а), грудного (б) и поясничного (в) отделов позвоночника с использованием режима STIR. Стрелками показаны патологические изменения: отек костного мозга— активный спондилит в трех отделах позвоночника

Fig. 3. MRI of the cervical (a), thoracic (b), and lumbar (c) spine using STIR. Arrows show lesions: bone marrow edema — active spondylitis in all three spinal regions

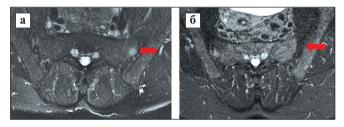


Рис. 4. МРТ-изображения КПС с использованием режима STIR до начала (a) и после 24 нед (б) терапии сенипрутугом. Стрелками отмечены отек костного мозга— активный левосторонний сакроилиит (a) и отсутствие патологических изменений при повторном обследовании (б)

Fig. 4. MRI of the SIJs using STIR before treatment (a) and after 24 weeks (b) of seniprutug therapy. Arrows indicate lesions: bone marrow edema — active left-sided sacroiliitis (a) and absence of pathologic changes (b)

ванная в 1 наблюдении. Инфекционных HP за время исследования не выявлено, что согласуется с концепцией селективного воздействия на субпопуляцию TRBV9+ CD8+ Т-лимфоцитов без значимого подавления остальных звеньев иммунной системы.

Обсуждение. Полученные результаты применения сенипрутуга (Трибувиа®) демонстрируют его высокую клиническую эффективность у пациентов с АС в условиях реальной клинической практики. К 12-й неделе лечения наблюдалось клинически значимое улучшение по показателям активности заболевания (ASDAS-CPБ и BASDAI), а также значимое снижение лабораторных маркеров воспаления, что сопровождалось улучшением самочувствия у большинства пациентов. Достижение ответа ASAS20 и ASAS40 у 66,7 и 44,4% больных соответственно согласуется с результатами клинического исследования фазы II ELEFTA [7, 8], подтверждая воспроизводимость полученных ранее данных в популяции пациентов с АС.

К неделе 24 терапии отмечалось нарастание эффекта: показатели ASDAS и BASDAI снизились более чем в 2 раза относительно исходных значений, а доля пациентов, достигших ответа ASAS40, составила 88,9%. За время наблюдения

Современная ревматология. 2025;19(5):62-68

у большинства пациентов нормализовался уровень СРБ и СОЭ. Важным подтверждением эффективности проводимой терапии оказалась регрессия МРТ-признаков воспалительной активности (отека костного мозга). В то же время у 1 пациента эффект отсутствовал, что указывает на необходимость дальнейшего изучения предикторов ответа на терапию сенипрутугом, включая генетические и иммунологические факторы.

Применение сенипрутуга сопровождалось преимущественно легкими и умеренными HP, основными из которых были инфузионные реакции при первом введении. СНР за время наблюдения не зарегистрировано, что позволяет говорить о благоприятном профиле безопасности препарата в краткосрочной перспективе.

Полученные результаты согласуются с современными представлениями о потенциально ключевой роли CD8+ Т-лимфоцитов в патогенезе HLA-B27-ассоциированных спондилоартритов. Селективное воздействие на малочисленную популяцию CD8+ Т-лимфоцитов, экспрессирующих TRBV9+, может представлять новый терапевтический подход,

способный восполнить существующие недостатки таргетной терапии спондилоартритов, ориентированной преимущественно на воспалительные цитокины [12].

Представленные результаты являются первыми в реальной клинической практике. Для их подтверждения необходимы дальнейшие исследования с большим числом пациентов и длительным периодом наблюдения. Кроме того, остается открытым вопрос о способности сенипрутуга влиять на структурное прогрессирование заболевания, что имеет принципиальное значение для долгосрочных исходов у пациентов с ΔC

Заключение. Терапия сенипрутугом (Трибувиа®) у HLA-B27-позитивных пациентов с АС в условиях реальной клинической практики продемонстрировала значимое снижение активности заболевания, положительную динамику лабораторно-инструментальных показателей и благоприятный профиль безопасности, подтверждая перспективность нового механизма действия и необходимость дальнейшего изучения его долгосрочной эффективности.

ЛИТЕРАТУРА/REFERENCES

- 1. Румянцева ДГ, Эрдес ШФ. Аксиальный спондилоартрит: современный взгляд на концепцию и эволюцию болезни. Современная ревматология. 2019;13(4):4-10. Rumyantseva DG, Erdes ShF. Axial spondyloarthritis: a current look at the concept and evolution of the disease. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2019;13(4):4-10. (In Russ.). doi: 10/14412/1996-7012-2019-4-4-10. 2. Braun J, Sieper J. Fifty years after the discovery of the association of HLA B27 with
- 2. Braun J, Sieper J. Fifty years after the discovery of the association of HLA B27 with ankylosing spondylitis. *RMD Open.* 2023 Aug;9(3):e003102. doi: 10.1136/rmdopen-2023-003102.
- 3. Arevalo M, Gratacys Masmitja J, Moreno M, et al; REGISPONSER group. Influence of HLA-B27 on the Ankylosing Spondylitis phenotype: results from the REGISPONSER database. *Arthritis Res Ther.* 2018 Oct 3;20(1):221. doi: 10.1186/s13075-018-1724-7.
- 4. Van der Linden SM, Khan MA, Li Z, et al. Recurrence of axial spondyloarthritis among first-degree relatives in a prospective 35-year-followup family study. *RMD Open*. 2022;8: e002208. doi:10.1136/rmdopen-2022-002208.
- 5. Ramiro S, Nikiphorou E, Sepriano A, et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. *Ann Rheum Dis.* 2023 Jan;82(1):19-34. doi: 10.1136/ard-2022-223296.

- 6. Juanola X, Ramos MJM, Belzunegui JM, et al. Treatment Failure in Axial Spondyloarthritis: Insights for a Standardized Definition. *Adv Ther.* 2022 Apr;39(4):1490-1501. doi: 10.1007/s12325-022-02064-x.
- 7. Насонов ЕЛ, Мазуров ВИ, Лила АМ и др. Эффективность и безопасность препарата ВСD-180, моноклонального антитела к TRBV9+ Т-лимфоцитам, у пациентов с активным рентгенологическим аксиальным спондилоартритом: результаты 36 недель рандомизированного двойного слепого плацебо-контролируемого клинического исследования фазы 2 ELEFTA. Научно-практическая ревматология. 2024;62(1):71-86.
- Nasonov EL, Mazurov VI, Lila AM, et al. Effectiveness and safety of BCD-180, antiTRBV9+ T-lymphocytes monoclonal antibody in patients with active radiographic axial spondyloarthritis: 36-week results of doubleblind randomized placebo-controlled phase II clinical study ELEFTA. *Nauchno-Prakticheskaya Revmatologia*. 2024;62(1): 71-86. (In Russ.).
- 8. Мазуров ВИ, Лила АМ, Насонов ЕЛ и др. Эффективность и безопасность сенипрутуга при активном рентгенологическом аксиальном спондилоартрите и влияние коморбидности на достижение клинического эффекта: результаты 48 недель клинического исследования ELEFTA. Клиническая фармакология и терапия.

- 2025;34(1):20-32.
- Mazurov VI, Lila AM, Nasonov EL, et al. The efficacy and safety of Seniprutug in active radiographic axial spondyloathritis and the impact of comorbidity on achieving the clinical effect: the results of 48 weeks of ELEFTA study. *Klinicheskaya farmakologiya i terapiya*. 2025;34(1):20-32. (In Russ.).
- 9. Machado P, Landewe R, Lie E, et al; Assessment of SpondyloArthritis international Society. Ankylosing Spondylitis Disease Activity Score (ASDAS): defining cut-off values for disease activity states and improvement scores. *Ann Rheum Dis.* 2011 Jan;70(1):47-53. doi: 10.1136/ard.2010.138594.
- 10. Garrett S, Jenkinson T, Kennedy LG, et al. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. *J Rheumatol.* 1994 Dec;21(12):2286-91.
- 11. Sieper J, Rudwaleit M, Baraliakos X, et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: A guide to assess spondyloarthritis. *Ann Rheum Dis.* 2009 Jun:68 Suppl 2:ii1-44. doi: 10.1136/ard. 2008.104018.
- 12. Britanova OV, Lupyr KR, Staroverov DB, et al. Targeted depletion of TRBV9+ T cells as immunotherapy in a patient with ankylosing spondylitis. *Nat Med.* 2023 Nov;29(11): 2731-2736. doi: 10.1038/s41591-023-02613-z.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 15.08.2025/27.09.2025/29.09.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Статья спонсируется АО «БИОКАД». Конфликт интересов не повлиял на результаты исследования. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article is sponsored by JSC BIOCAD. The conflict of interest has not affected the results of the investigation. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Василенко Е.А. https://orcid.org/0000-0003-2153-5429 Самигуллина Р.Р. https://orcid.org/0000-0002-6341-3334I Карибова А.К. https://orcid.org/0009-0003-3690-3041 Грабовецкая Ю.Ю. https://orcid.org/0000-0003-1758-3065 Мазуров В.И. https://orcid.org/0000-0002-0797-2051

Фармакоэкономический анализ применения левилимаба для терапии ревматоидного артрита в условиях здравоохранения Российской Федерации

Фролов М.Ю.¹, Лила А.М.^{2.3}

¹ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России, Волгоград; ²ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ³ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва

¹Россия, 400066, Волгоград, пл. Павших Борцов, 1; ²Россия, 115522, Москва, Каширское шоссе, 34A; ³Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1

Цель исследования— оценка экономической целесообразности использования левилимаба (ЛВЛ) для терапии ревматоидного артрита (PA) по сравнению с другими ингибиторами интерлейкина 6 (иИЛ6), применяемыми в условиях здравоохранения Российской Федерации.

Материал и методы. Расчет был проведен по методу минимизации затрат, согласно зарегистрированному в Российской Федерации режиму применения для всех рассмотренных иИЛ6, используемых для терапии РА. В расчетах была учтена возможность сокращенного режима применения для ЛВЛ и олокизумаба (OK3) в соответствии с общей характеристикой лекарственного препарата.

Результаты и обсуждение. ЛВЛ демонстрирует наименьшие затраты на терапию PA начиная со 2-го года и далее по сравнению с другими иИЛ6 при условии сопоставимой клинической эффективности по критериям ACR50 и DAS28. Затраты на терапию ЛВЛ во 2-й и последующие годы терапии оказались ниже, чем затраты на терапию ОКЗ на 11,2%, на терапию тоцилизумабом (ТЦЗ) внутривенной формы введения на 26,7% и ТЦЗ подкожной формы введения на 30,9%.

Заключение. Применение ЛВЛ у пациентов с РА является экономически целесообразным с учетом наличия двух режимов лечения. Использование ЛВЛ позволит сократить расходы системы здравоохранения в перспективе 2 лет и более при сопоставимой с другими и ИЛ6 клинической эффективности и, таким образом, провести лечение большего количества пациентов.

Ключевые слова: ревматоидный артрит; генно-инженерные биологические препараты; интерлейкин 6; левилимаб; олокизумаб; тоцилизумаб; клинико-экономическая эффективность.

Контакты: Максим Юрьевич Фролов; clinpharmrussia@yandex.ru

Для цитирования: Фролов МЮ, Лила АМ. Фармакоэкономический анализ применения левилимаба для терапии ревматоидного артрита в условиях здравоохранения Российской Федерации. Современная ревматология. 2025;19(5):69—73. https://doi.org/10.14412/1996-7012-2025-5-69-73

Pharmacoeconomic analysis of levilimab use as rheumatoid arthritis therapy in the healthcare system of the Russian Federation Frolov M. Yu. 1, Lila A.M. 2,3

¹Volgograd State Medical University, Ministry of Health of Russia, Volgograd; ²V. A. Nasonova Research Institute of Rheumatology, Moscow; ³Russian Medical Academy of Continuing Professional Education,

Ministry of Health of Russia, Moscow

¹1, Ploshchad Pavshikh Bortsov, Volgograd 400066, Russia; ²34A, Kashirskoe Shosse, Moscow 115522, Russia; ³2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia

Objective. To assess the economic feasibility of using levilimab (LVL) for the treatment of rheumatoid arthritis (RA) compared with other interleukin-6 inhibitors (IL-6i) currently used in the healthcare system of the Russian Federation.

Material and methods. A cost-minimization analysis was performed according to the approved dosing regimens registered in the Russian Federation for all IL-6i used in RA therapy. The possibility of a reduced dosing regimen for LVL and olokizumab (OKZ), as indicated in the summary of product characteristics, was also considered.

Results and discussion. LVL showed the lowest therapy costs for RA starting from the second year and beyond, compared with other IL-6i, assuming comparable clinical efficacy according to ACR50 and DAS28 criteria. Treatment costs for LVL in the second and subsequent years were 11.2% lower than for OKZ, 26.7% lower than for tocilizumab (TCZ) for intravenous use, and 30.9% lower than for TCZ for subcutaneous use.

Conclusion. LVL therapy in patients with RA is an economically reasonable given its two dosing regimens. The use of LVL can reduce healthcare system expenditures over a 2-year and longer horizon while maintaining comparable clinical efficacy to other IL-6i, thereby enabling treatment of a larger number of patients.

Keywords: rheumatoid arthritis; biologic disease-modifying antirheumatic drugs; interleukin-6; levilimab; olokizumab; tocilizumab; pharmacoeconomic evaluation.

Contact: Maksim Yuryevich Frolov; clinpharmrussia@yandex.ru

For citation: Frolov MYu, Lila AM. Pharmacoeconomic analysis of levilimab use for rheumatoid arthritis therapy in the healthcare system of the Russian Federation. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):69–73 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-69-73

Ревматоидный артрит (РА) относится к классическим аутоиммунным ревматическим заболеваниям и характеризуется хроническим эрозивным артритом и системным поражением внутренних органов [1]. РА является одним из наиболее распространенных аутоиммунных заболеваний, в мире им страдает до 1% населения, чаще болеют женщины [2]. Приводя к ранней инвалидизации и сокращению продолжительности жизни, РА сопряжен с большими социальными и экономическими потерями. Так, в 2018 г. общие затраты на лечение РА в Российской Федерации составили 142,6 млрд руб. [3]. По данным систематического обзора литературы, несмотря на высокие прямые затраты, косвенные затраты, связанные в первую очередь с временной и стойкой нетрудоспособностью, обусловленной этим заболеванием, составляют от 39 до 86% общих затрат [4].

Существенный прогресс в повышении эффективности лечения пациентов с РА был достигнут с появлением генно-инженерных биологических препаратов (ГИБП) и таргетных синтетических базисных противовоспалительных препаратов (БПВП) — ингибиторов Янус-киназ (иЈАК). Согласно национальным и международным клиническим рекомендациям по лечению РА, при неэффективности стандартной терапии БПВП рекомендуется назначать ГИБП или иЈАК, а при выборе препарата учитывать особенности клинической картины у конкретного пациента, немаловажную роль играют также доступность и экономическая составляющая проводимой терапии [5, 6].

Моноклональные антитела, ингибирующие передачу сигнала от интерлейкина 6 (ИЛ6), в настоящее время хорошо изучены и представляют особый интерес среди ГИБП как одно из наиболее эффективных средств терапии РА. В Российской Федерации зарегистрированы три препарата из класса ингибиторов ИЛ6 (иИЛ6): два ингибитора рецептора ИЛ6 (тоцилизумаб, ТЦЗ, и левилимаб, ЛВЛ) и ингибитор самого цитокина ИЛ6 (олокизумаб, ОКЗ). Результаты систематического обзора и сетевого метаанализа сравнительной эффективности ГИБП и иЈАК, применяющихся в нашей стране для лечения РА, продемонстрировали отсутствие статистически значимых различий в большинстве попарных сравнений ГИБП и иЈАК по всем анализируемым исходам, однако иИЛ6 (ЛВЛ, ОКЗ) стабильно отличались более высоким уровнем эффективности при ранжировании [7].

С учетом имеющихся данных о роли ИЛ6 в развитии РА и эффективности иИЛ6, эти препараты потенциально имеют преимущества при лечении пациентов с ярко выраженными общими симптомами РА (полиартрит, продолжительная утренняя скованность, общее недомогание, снижение массы

тела, нарушения сна, лихорадка) и лабораторными отклонениями (высокий уровень СРБ, гиперферритинемия, анемия хронического воспаления, амилоидоз) [8].

Цель исследования — оценить затраты системы здравоохранения при использовании иИЛ6.

Материал и методы. Для проведения фармакоэкономического исследования применения левилимаба по сравнению с другими иИЛ6 для терапии пациентов с РА в Российской Федерации был проведен систематический поиск литературы в базах PubMed, Embase и eLibrary. В результате был найден один сетевой метаанализ, в котором сравнивается эффективность и безопасность антиревматических препаратов, зарегистрированных в Российской Федерации для терапии взрослых пациентов с активным РА. В этом метаанализе в качестве основных показателей эффективности терапии рассматривалась доля пациентов, достигших 50% улучшения по критериям ACR (American College of Rheumatology, ACR50) и ремиссии/низкой активности по DAS28 (Disease Activity Score 28). По данным метаанализа, ЛВЛ не обладает статистически значимыми преимуществами перед ОКЗ и ТЦЗ по частоте ответа ACR50 и ремиссии/низкой активности по DAS28 [7] (табл. 1). Ввиду отсутствия статистически значимых различий между препаратами сравнения для фармакоэкономической оценки был применен метод минимизации затрат.

В связи с наличием в общей характеристике лекарственного препарата (ОХЛП) у ЛВЛ и ОКЗ нескольких режимов применения, оказывающих существенное влияние на величину затрат в течение года терапии РА, в настоящем исследовании была предпринята попытка учесть особенности применения препарата в условиях российской системы здравоохранения.

Так, терапия ЛВЛ начиналась с 1 инъекции 162 мг 1 раз в неделю, а после достижения ремиссии заболевания частота инъекций снижалась до 1 (162 мг) 1 раз в 2 нед. В соответствии с результатами рандомизированного клинического исследования (РКИ) SOLAR на неделе 24 на фоне применения ЛВЛ по 162 мг 1 раз в неделю 27 (26,5%) больных достигли ремиссии по DAS28 и частота инъекций препарата у них была снижена до 162 мг 1 раз в 2 нед, однако к неделе 52 у 4 (14,8%) пациентов не удалось сохранить ремиссии по DAS28. У 35 (34,3%) пациентов, не достигших ремиссии по DAS28 на неделе 24, она была зарегистрирована к неделе 52. При этом в настоящей работе было принято допущение, что у 14,8% больных, достигших ремиссии только к неделе 52, она может в дальнейшем не сохраниться (как и у больных потерявших ремиссию после перевода на более редкие инъек-

ции на неделе 24). Таким образом, доля пациентов, получа-ющих ЛВЛ 1 раз в 2 нед, учтенных в настоящем исследовании, составит 51,7% [9]. Исходя из допущения о равномерном увеличении доли пациентов, достигших ремиссии с 25-й по 52-ю неделю, в среднем за 1-й год 39,1% пациентов перешли на введение левилимаба 1 раз в 2 нед.

Согласно ОХЛП, ОКЗ также может применяться в 2 режимах: 64 мг 1 раз в 4 нед и 64 мг 1 раз в 2 нед. Применение ОКЗ в условиях реальной клинической практики изучалось в 73 центрах Российской Федерации. Были проанализированы данные 1576 пациентов с РА, 83,7% (n=1319) из которых получали препарат каждые 4 нед, а 16,3% (n=257) — каждые 2 нед [10], что также было отражено в настоящем исследовании.

В свою очередь, ТЦЗ имеет две формы выпуска: в/в с режимом применения 8 мг/кг 1 раз в 4 нед и п/к с режимом применения 162 мг 1 раз в неделю. Для обеих форм не предусмотрена возможность изменения дозы и режима применения¹.

Исходя из ОХЛП препаратов сравнения, данных РКИ SOLAR и реальной клинической практики, в табл. 2 включены сведения о режимах применения лекарственных средств, расмотренных в настоящем исследовании.

При расчете затрат на терапию РА стоимость ЛВЛ принималась равной 30 250,00 руб. включая НДС за 1 упаковку 162 мг, 0,9 мл №2, что соответствовало прайс-листу производителя. Стоимость препаратов сравнения рассчитывалась на основе данных реестра предельных отпускных цен с учетом НДС 10%2, а в случае присутствия в перечне жизненно необходимых и важнейших лекарственных препаратов нескольких торговых наименований одного и того же МНН использовалась минимальная зарегистрированная цена за 1 мг. Для препаратов, режим введения которых зависел от массы тела пациента, расчет проводили исходя из средней массы тела 78,3 кг³. В анализе не учитывались сопутствующие расходы, связанные с наблюдением за пациентами и введением лекарственных препаратов, а также коррекцией возможных нежелательных явлений, так как они не оказывали значительного влияния на общую величину затрат. Таким образом, исходя из режима применения и стоимости 1 упаковки препаратов сравнения был проведен расчет затрат на терапию препаратами сравнения (табл. 3).

Результаты. Расчет затрат на терапию препаратами сравнения с учетом различных режимов применения как в 1-й год, так и последующие годы представлен в табл. 4.

Анализ прямых медицинских затрат показал, что хотя в 1-й год затраты на терапию PA ОКЗ оказались ниже таковых

Таблица 1. Отношение рисков достижения клинического эффекта при терапии РА ЛВЛ по сравнению с ОКЗ и ТЦЗ [7]

Table 1. Risk ratio for achieving clinical effect in RA therapy with LVL compared to OKZ and TCZ [7]

Попарное сравнение (режим применения)	Ответ по ACR50	Ремиссия/низкая активность по DAS28
ЛВЛ vs ОКЗ (1 раз в 2 нед)	1,10 (0,45–2,79)	Нд
ЛВЛ vs ОКЗ (1 раз в 4 нед)	1,11 (0,45–2,80)	Нд
ЛВЛ vs ТЦЗ (в/в 8 мг/кг)	1,43 (0,68–2,90)	1,21 (0,19-5,49)
ЛВЛ vs ТЦЗ (п/к 162 мг)	1,45 (0,57-4,52)	12 (0,16–6,56)

Примечание. Нд – нет данных; в/в – внутривенное введение; п/к – подкожное введение.

Таблица 2. Доля пациентов, получавших определенный режим терапии PA, % Table 2. Proportion of patients receiving specific RA therapy regimens, %

МНН	Режим применения	1-24	25-52 He,	целя 53—104	105-156
ЛВЛ	162 мг 1 раз в неделю	0	39,1	48,3	48,3
	162 мг 1 раз в 2 нед	100	60,9	51,7	51,7
ОК3	64 мг 1 раз в 4 нед	84	84	84	84
	64 мг 1 раз в 2 нед	16	16	16	16
ТЦ3	8 мг/кг в/в 1 раз в 4 нед	100	100	100	100
	162 мг п/к 1 раз в неделю	100	100	100	100

для ЛВЛ на 7.8% (55 100,65 руб.), начиная со 2-го года и далее затраты на терапию ОКЗ были выше на 11,2% (65 284,27 руб.).

Среди иИЛ6 терапия π/κ формой ТЦЗ оказалась наименее экономичной, превысив затраты на терапию ЛВЛ на 8,5% в 1-й год и на 30,9% во 2-й и последующие годы.

Таким образом, ко 2-му году терапии за счет возможности сократить частоту введения при достижении ремиссии ЛВЛ демонстрирует экономические преимущества по сравнению со всеми препаратами сравнения.

Обсуждение. В ходе информационного поиска обнаружены ранее опубликованные фармакоэкономические исследования, посвященные применению иИЛ6 в лечении РА. Так, в работе С.К. Зырянова и соавт. [11] сравнивались между собой две формы ТЦЗ, но сравнение с другими препаратами из группы иИЛ6 не проводилось. В фармакоэкономическом анализе ТЦЗ, выполненном А.С. Колбиным и соавт. [12], также отсутствует его сравнение с новыми препаратами из группы иИЛ6, доступными для терапии РА в настоящее время. Мы не обнаружили отечественных фармакоэкономических исследований, касающихся применения ЛВЛ и ОКЗ в рассмотренной клинической ситуации.

В нашей работе использовались данные РКИ SOLAR [9], демонстрирующие динамику переключения пациентов со стандартного режима дозирования ЛВЛ на режим введения 1 раз в 2 нед, который применяется в случае достижения ремиссии заболевания. Отсутствие данных о динамике переключения пациентов между режимами дозирования ОКЗ могло привести к некоторым отличиям в затратах по сравнению

¹Государственный реестр лекарственных препаратов. https://grls.minzdrav.gov.ru/Default.aspx

²Государственный реестр предельных отпускных цен. https://grls.rosminzdrav.ru/pricelims.aspx

³Центр экспертизы и контроля качества медицинской помощи Минздрава России. https://t.me/rosmedex

Таблица 3. Затраты на терапию PA препаратами сравнения в расчете на 1 пациента Table 3. Per-patient treatment costs for RA with comparator drugs

МНН	Неделя	Режим применения	Стоимость 1 упаковки с НДС, руб.	Затраты на терапию, руб.					
лвл	1–24 25–52 52–104	162 мг 1 раз в неделю 162 мг 1 раз в неделю 162 мг 1 раз в 2 нед 162 мг 1 раз в неделю 162 мг 1 раз в 2 нед	30 250,00	363 000,00 257 911,50 82 794,25 380 141,67 203 179,17					
ОК3	1—52 и 53—104	64 мг 1 раз в 2 нед 64 мг 1 раз в 4 нед	42 900,00	466 794,90 181 810,20					
ТЦ3	1—52 и 53—104	8 мг/кг в/в 1 раз в 4 нед	7 106,97	739 124,67					
ТЦ3	1-52 и 53-104	162 мг п/к 1 раз в неделю	58 735,57	763 562,37					

Таблица 4. Затраты на терапию PA препаратами сравнения Table 4. Costs for RA therapy with comparator drugs

МНН (форма выпуска)	1 затраты на 1-й год, руб.	-й год разница, руб.	разница, %	2-й и пос затраты на 1-й год, руб.	ледующие годы разница, руб.	разница, %
ЛВЛ (п/к)	703 705,75	-	-	583 320,83	-	-
ОКЗ (п/к)	648 605,10	-55 100,65	-7,8	648 605,10	65 284,27	11,2
ТЦЗ (в/в)	739 124,67	35 418,92	5,0	739 124,67	155 803,84	26,7
ТЦ3 (π/к)	763 562,37	59 856,62	8,5	763 562,37	180 241,54	30,9

с реальной практикой, однако в 2-летней перспективе терапия РА с применением ЛВЛ характеризовалась меньшими затратами системы здравоохранения (затраты на терапию ОКЗ были выше на 11,2%, ТЦЗ — на 26,7—30,9%) при отсутствии статистически значимых различий в клиническом эффекте, что позволяет сделать вывод о лучших клинико-экономических показателях ЛВЛ. Тем не менее при выборе наиболее предпочтительной схемы лечения необходимо учитывать не только доступность лекарственных средств, их клинико-экономические характеристики, но и индивидуальные особенности пациентов, что обусловлено потребностью в достижении максимальной эффективности и безопасности лечения, минимизации побочных эффектов, а также учете специфики РА, сопутствующих патологий, возраста, аллергических реакций, генетической предрасположенности и образа жизни пациента.

Ограничения

Настоящее исследование имеет ряд ограничений, которые необходимо учитывать при интерпретации его результатов. Так, результаты расчета затрат могут незначительно отличаться от затрат в реальной клинической практике Российской Федерации. Как указано выше, одной из причин таких отклонений может послужить отсутствие данных о начале применения ОКЗ в режиме 1 раз в 2 нед, кроме того, при исполь-

зовании ЛВЛ врач, исходя из клинической ситуации, может не сразу после достижения ремиссии принять решение о переключении пациента на режим применения 1 раз в 2 нед. Однако в долгосрочной перспективе данные ограничения незначительно влияют на выводы исследования.

Несмотря на высокий уровень доказательности данных, полученных в РКИ SOLAR [9], они могут отличаться от реальной клинической практики в Российской Федерации, что в итоге также может повлиять на затраты на лекарственную терапию РА.

Еще одним ограничением исследования может служить отсутствие учета затрат на введение препарата и купирование нежелательных явлений, однако на фоне затрат на лекарственную терапию данные ограничения не внесут существенного вклада в результаты исследования.

Заключение. В условиях реальной клинической практики применение ЛВЛ в терапии РА является экономически обоснованным с учетом наличия двух режимов введения. Анализ затрат демонстрирует более высокие (11,2—30,9%) затраты на терапию РА препаратами сравнения начиная со 2-го года лечения. Таким образом, в перспективе 2 лет и более расширение практики применения ЛВЛ позволит пролечить большее количество пациентов при сопоставимой эффективности терапии.

ЛИТЕРАТУРА/REFERENCES

1. Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научнопрактическая ревматология. 2018;56(3):263-71.

Nasonov EL, Olyunin YuA, Lila AM.

Rheumatoid arthritis: problems of remission and resistance to therapy. *Nauchno-prakticheskaya revmatologiya*. 2018;56(3):263-71. (In Russ.).

2. Almutairi K, Nossent J, Preen D, Keen H, Inderjeeth C. The global prevalence of

rheumatoid arthritis: a meta-analysis based on a systematic review. *Rheumatol Int.* 2021 May;41(5):863-877. doi: 10.1007/s00296-020-04731-0.

3. Лила AM, Древаль PO, Шипицын BB. Оценка организации медицинской помо-

щи и лекарственного обеспечения при ревматических заболеваниях и социально-экономического бремени этих болезней в Российской Федерации. Современная ревматология. 2018;12(3):112-119. Lila AM, Dreval' RO, Shipitsyn VV. Assessment of the organization of medical care and drug provision for rheumatic diseases and the socio-economic burden of these diseases in the Russian Federation. Sovremennaya revmatologiya = Modern Rheumatology Journal. 2018;12(3):112-119. (In Russ.).

- 4. Hsieh PH, Wu O, Geue C, et al. Economic burden of rheumatoid arthritis: a systematic review of literature in biologic era. *Ann Rheum Dis.* 2020 Jun;79(6):771-777. doi: 10.1136/annrheumdis-2019-216243.
- 5. Насонов ЕЛ, редактор. Ревматология: Российские клинические рекомендации. Москва: ГЭОТАР-Медиа; 2017: 464 с. Nasonov EL, editor. Rheumatology: Russian clinical guidelines. Moscow: GEOTAR-Media; 2017: 464 р.
- 6. Smolen JS, Landewe RBM, Bergstra SA, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. *Ann Rheum Dis.* 2023 Jan;82(1):3-18. doi: 10.1136/ard-2022-223356.
- 7. Соколова ВД, Младов ВВ, Саблева НА, Толкачева ДГ. Эффективность биологических и таргетных синтетических базисных противовоспалительных препаратов, зарегистрированных в Российской Федерации

для терапии взрослых пациентов с активным ревматоидным артритом: систематический обзор и сетевой метаанализ. Медицинские технологии. Оценка и выбор. 2022;44(1):50-64.

Sokolova VD, Mladov VV, Sableva NA, Tolkacheva DG. The effectiveness of biological and targeted synthetic basic anti-inflammatory drugs registered in the Russian Federation for the treatment of adult patients with active rheumatoid arthritis: a systematic review and a network meta-analysis. *Meditsinskie tekhnologii. Otsenka i vybor.* 2022;44(1):50-64.

8. Каратеев ДЕ, Лучихина ЕЛ. Ингибиторы интерлейкина 6 в терапии ревматоидного артрита. Эффективная фармакотерапия. 2022;18(8):16-21.

Karateev DE, Luchikhina EL. Interleukin 6 inhibitors in the treatment of rheumatoid arthritis. *Effektivnaya farmakoterapiya*. 2022;18(8):16-21. (In Russ.).

- 9. Mazurov VI, Nasonov EL, Lila AM, et al. Efficacy and Safety of Levilimab in Combination with Methotrexate in Patients with Active Rheumatoid Arthritis: 56-Week Results of Phase III Randomized Double-Blind Placebo-Controlled Trial SOLAR. *Dokl Biochem Biophys*. 2024 Oct;518(1):403-416. doi: 10.1134/S1607672924701072.
- 10. Шестерня ПА, Загребнева АИ, Антипова ОВ и др.. Применение прямого ингибитора интерлейкина 6 олокизумаба в терапии ревматоидного артрита: данные реальной клинической практики. Современ-

ная ревматология. 2025;19(2):39-49. Shesternya PA, Zagrebneva AI, Antipova OV, et al.. Primenenie pryamogo ingibitora interleikina 6 olokizumaba v terapii revmatoidnogo artrita: dannye real'noi klinicheskoi praktiki. $Sovremennaya\ revmatologiya = Modern$ Rheumatology Journal. 2025;19(2):39-49. (In Russ.). doi: 10.14412/1996-7012-2025-2-39-49 11. Зырянов СК, Чеберда АЕ, Белоусов ДЮ. Фармакоэкономический анализ применения препарата тоцилизумаб в форме для подкожного введения у пациентов с ревматоидным артритом. Качественная клиническая практика. 2015:(4):33-41. Zyryanov SK, Cheberda AE, Belousov DYu. Pharmacoeconomic analysis of the use of tocilizumab in subcutaneous injection in patients with rheumatoid arthritis. Kachestvennaya klinicheskaya praktika. 2015;(4):33-41. (In Russ.).

12. Колбин АС, Курылёв АА, Мишинова СА и др. Фармакоэкономический анализ препарата тоцилизумаб при терапии пациентов с ревматоидным артритом и юношеским артритом с системным началом. Качественная клиническая практика. 2020:(1):23-34.

Kolbin AS, Kurylev AA, Mishinova SA, et al. Pharmacoeconomic analysis of tocilizumab in the treatment of patients with rheumatoid arthritis and juvenile arthritis with systemic onset. *Kachestvennaya klinicheskaya praktika*. 2020;(1):23-34. (In Russ.).

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 10.08.2025/26.09.2025/29.09.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Статья спонсируется АО «БИОКАД». Конфликт интересов не повлиял на результаты исследования. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article is sponsored by JSC BIOCAD. The conflict of interest has not affected the results of the investigation. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Фролов M.Ю.https://orcid.org/0000-0002-0389-560X Лила A.M. https://orcid.org/0000-0002-6068-3080

Оценка влияния комбинации глюкозамина и хондроитина сульфата, дополненной нативным (неденатурированным) коллагеном 2-го типа, экстрактом имбиря, витаминами группы В, аскорбиновой кислотой, на клинические проявления остеоартрита при различных фенотипах заболевания

Таскина Е.А.¹, Лила А.М.^{1,2}, Алексеева Л.И.^{1,2}, Кашеварова Н.Г.¹, Стребкова Е.А.¹, Савушкина Н.М.¹, Шарапова Е.П.¹, Короткова Т.А.¹, Хальметова А.Р.¹

¹ΦГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²ΦГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва

¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1

Цель исследования — оценка эффективности и безопасности фармаконутрицевтика Терафлекс Ультра по сравнению с препаратом Терафлекс® у пациентов с различными фенотипами остеоартрита (OA).

Материал и методы. В проспективное сравнительное рандомизированное исследование включено 80 женщин в возрасте 40—75 лет с достоверным диагнозом ОА коленных суставов (КС) I—III стадии по Kellgren—Lawrence, с болью при ходьбе ≥40 мм по визуальной аналоговой шкале (ВАШ). Длительность исследования — 9 мес (6 мес — лечение и 3 мес — оценка эффекта последействия). Пациентки были рандомизированы в две группы. Участницы 1-й группы (п=40) получали Терафлекс Ультра внутрь по 2 капсулы 2 раза в день. Больным 2-й группы (п=40) назначался Терафлекс® внутрь по 1 капсуле 3 раза в день в течение 3 нед, затем по 1 капсуле 2 раза в день. Все пациентки «по требованию» могли принимать нестероидные противовоспалительные препараты: Тералив 275 (напроксен) до 3 таблеток в день. Эффективность лечения оценивалась по динамике интенсивности боли по ВАШ, индекса WOMAC и шкалы KOOS, опросника качества жизни EQ-5D.

Результаты и обсуждение. Исследование продемонстрировало эффективность фармаконутрицевтика и препарата в уменьшении боли при ходьбе по ВАШ, индекса WOMAC как суммарного, так и всех его составляющих, улучшении KOOS и EQ-5D (p<0,05). Вместе с тем более значимый и быстрый клинический эффект отмечен в группе Терафлекс Ультра. Так, выявлены значимые межгрупповые различия по следующим показателям: боль по ВАШ и по шкале KOOS уже через 1 мес терапии (соответственно 38 [26; 47] против 44,5 [37; 53] мм, p=0,02 и 61 [56; 72] против 56 [44; 68]%, p=0,04); боль по WOMAC через 1, 3 и 9 мес (соответственно 149 [114; 196] против 197 [122,5; 254] мм, p=0,036; 104 [57; 172] против 158,5 [91,5; 253] мм, p=0,037; 66,5 [39; 106] против 111,5 [44,5; 170,5] мм, p=0,04); скованность по WOMAC через 1, 3 и 9 мес (соответственно 68 [35; 90] против 85 [53; 110,5] мм, p=0,04; 42,5 [18; 79] против 77 [25; 102] мм, p=0,03; 24,5 [15; 51] против 43,5 [17; 86] мм, p=0,04); функциональная недостаточность по WOMAC и суммарный WOMAC через 9 мес (соответственно 252 [148; 440] против 417 [159; 705] мм, p=0,02 и 326,5 [243; 543] против 555,5 [240; 914,5] мм, p=0,03).

Заключение. Результаты исследования указывают на возможность достижения более быстрого и выраженного клинического эффекта при использовании Терафлекс Ультра по сравнению с Терафлекс® у больных с различными фенотипами ОА.

Ключевые слова: остеоартрит; фенотипы; лечение.

Контакты: Елена Александровна Таскина; braell@mail.ru

Для цитирования: Таскина ЕА, Лила АМ, Алексеева ЛИ, Кашеварова НГ, Стребкова ЕА, Савушкина НМ, Шарапова ЕП, Короткова ТА, Хальметова АР. Оценка влияния комбинации глюкозамина и хондроитина сульфата, дополненной нативным (неденатурированным) коллагеном 2-го типа, экстрактом имбиря, витаминами группы В, аскорбиновой кислотой, на клинические проявления остеоартрита при различных фенотипах заболевания. Современная ревматология. 2025;9(5):74—83. https://doi.org/10.14412/1996-7012-2025-5-74-83

Evaluation of the effect of a combination of glucosamine and chondroitin sulfate supplemented with native (undenatured) type 2 collagen, ginger extract, B vitamins, and ascorbic acid on the clinical manifestations of different phenotypes of osteoarthritis Taskina E.A.¹, Lila A.M.^{1,2}, Alekseeva L.I.^{1,2}, Kashevarova N.G.¹, Strebkova E.A.¹, Savushkina N.M.¹, Sharapova E.P.¹, Korotkova T.A.¹, Khalmetova A.R.¹

¹V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia; ²Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russia, Moscow, Russia

¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²2/1 Barrikadnaya Street, Build. 1, Moscow 125993, Russia

Objective. To evaluate the efficacy and safety of Teraflex Ultra compared with Teraflex® in patients with different phenotypes of osteoarthritis (OA). Material and methods. A prospective comparative randomized study included 80 women aged 40-75 years with a confirmed diagnosis of knee OA (Kellgren—Lawrence stages I—III) and pain on walking ≥ 40 mm on a visual analogue scale (VAS). The study duration was 9 months (6 months of treatment and 3 months of follow-up). Patients were randomized into two groups. Group 1 (n=40) received Theraflex Ultra orally, 2 capsules twice daily. Group 2 (n=40) received Theraflex® orally, 1 capsule three times daily for 3 weeks, followed by 1 capsule twice daily. All patients were allowed to take nonsteroidal anti-inflammatory drugs (NSAIDs) as required: Theraleve 275 (naproxen) up to 3 tablets per day. Treatment efficacy was assessed by changes in pain intensity on the VAS, WOMAC index, KOOS scale, and EQ-5D quality-of-life questionnaire. Results and discussion. The trial demonstrated efficacy of pharmaconutraceutical and the drug in reducing pain on walking (VAS), total WOMAC and its subscales, as well as improving KOOS and EQ-5D scores (p<0.05). However, a more pronounced and rapid clinical effect was observed in the Theraflex Ultra group. Significant differences between the groups were found in the following parameters: pain on the VAS and KOOS after 1 month of therapy (38 [26; 47] vs. 44.5 [37; 53] mm, p=0.02 and 61 [56; 72] vs. 56 [44; 68]%, p=0.04, respectively); pain on the WOMAC after 1, 3, and 9 months (149 [114; 196] vs. 197 [122.5; 254] mm, p=0.036; 104 [57; 172] vs. 158.5 [91.5; 253] mm, p=0.037; 66.5 [39; 106] vs. 111.5 [44.5; 170.5] mm, p=0.03; 24.5 [15; 51] vs. 43.5 [17; 86] mm, p=0.04; functional impairment and total WOMAC after 9 months (252 [148; 440] vs. 417 [159; 705] mm, p=0.03 and 326.5 [243; 543] vs. 555.5 [240; 914.5] mm, p=0.03).

Conclusion. The results indicate that Theraflex Ultra provides a faster and more pronounced clinical effect compared with Theraflex® in patients with different phenotypes of OA.

Keywords: osteoarthritis; phenotypes; treatment.

Contact: Elena Aleksandrovna Taskina; braell@mail.ru

For citation: Taskina EA, Lila AM, Alekseeva LI, Kashevarova NG, Strebkova EA, Savushkina NM, Sharapova EP, Korotkova TA, Khalmetova AR. Evaluation of the effect of a combination of glucosamine and chondroitin sulfate supplemented with native (undenatured) type 2 collagen, ginger extract, B vitamins, and ascorbic acid on the clinical manifestations of different phenotypes of osteoarthritis. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):74-83. (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-74-83

Остеоартрит (ОА) — социально-значимое заболевание, которое остается важнейшей проблемой для мирового здравоохранения вследствие эпидемических темпов прироста распространенности и глобального медико-социального ущерба, обусловленного снижением трудоспособности, качества жизни пациентов и повышением рисков инвалидизации и летальности.

ОА рассматривается как гетерогенное, многофакторное заболевание, при котором в патологический процесс вовлекается весь организм. Это привело к осознанию того, что для повышения эффективности лечения необходимо персонализировать терапевтические стратегии в зависимости от фенотипа и/или эндотипа ОА. Сегодня активные усилия исследователей и клиницистов направлены на выделение различных субтипов ОА, что позволит не только оптимизировать лечение, но и разработать превентивные меры, основанные на фенотипически детерминированных факторах риска для разных групп пациентов. В частности, недавно состоялось международное мультидисциплинарное совещание экспертов, в ходе которого выработано согласие в отношении определения шести основных клинических фенотипов ОА: метаболический (единогласно), воспалительный (единогласно), остеопоротический (единогласно), посттравматический (большинство экспертов), микрокристаллический (большинство экспертов), смешанный (большинство экспертов) [1].

На прошедшем в этом году конгрессе ESCEO (European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases) также одной из ключевых тем стало фенотипирование ОА, при этом акцент был сделан на первостепенной важности изучения метабо-

лического и воспалительного вариантов заболевания. Действительно, эти фенотипы наиболее изучены, известны патофизиологические механизмы их развития, разрабатываются подходы к лечению. Ключевая роль при воспалительном варианте отводится хроническому синовиту [2], а при метаболическом — метаболическому синдрому (МС) и/или сахарному диабету (СД) [3]. Большое внимание уделяется и остеопоротическому варианту заболевания, характеризующемуся наличием у пациента остеопороза (ОП) и/или остеопении.

В настоящее время имеются единичные работы, посвященные эффективности болезнь-модифицирующих препаратов для лечения остеоартрита — DMOADs (Disease-Modifying Osteoarthritis Drug) при данных субтипах заболевания. При этом хондроитина сульфат (ХС) и глюкозамин (ГА), являющиеся наиболее изученными представителями этой группы, обладают рядом плейотропных эффектов, что делает их перспективными кандидатами для терапии указанных фенотипов [4]. Еще больший интерес вызывает оценка эффективности и безопасности нового фармаконутрицевтика Терафлекс Ультра, который содержит не только ГА 1500 мг и ХС 1000 мг, но и неденатурированный (нативный) коллаген (НК) 2-го типа 40 мг, комплекс витаминов группы В, витамин С и экстракт корня имбиря 300 мг. Представляется, что синергическое действие хорошо изученных активных компонентов данного фармаконутрицевтика может способствовать более эффективному уменьшению клинической симптоматики ОА, чем использование просто комбинации ХС и ГА [5].

Цель настоящего исследования — оценка эффективности и безопасности Терафлекс Ультра по сравнению с фиксиро-

ванной комбинацией ГА и XC (Терафлекс®) у пациентов с различными фенотипами ОА.

Материал и методы. В проспективное сравнительное рандомизированное исследование включено 80 женщин 40—75 лет с достоверным в соответствии с критериями АСК (American College of Rheumatology) диагнозом ОА коленных суставов (КС) I—III стадии по Kellgren—Lawrence, которые наблюдались амбулаторно в ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой». Все больные имели метаболический, воспалительный, остеопоротический или смешанный фенотип заболевания. Все они подписали информированное согласие на участие в исследовании.

Критерии включения в исследование: пациенты мужского и женского пола 40—75 лет; первичный ОА КС по критериям АСR; рентгенологически подтвержденный ОА КС I—III стадии по Kellgren—Lawrence; боль при ходьбе в КС ≥40 мм по визуальной аналоговой шкале (ВАШ); метаболический, воспалительный, остеопоротический или смешанный фенотип ОА; соблюдение пациентом указаний врача; согласие пациента на использование надежных методов контрацепции на протяжении всего исследования; наличие подписанного и датированного информированного согласия на участие в исследовании.

Критерии невключения: наличие в анамнезе гиперчувствительности к любому из компонентов исследуемого препарата; боль при ходьбе в анализируемом суставе <40 и >90 мм по ВАШ; рентгенологически подтвержденное поражение КС IV стадии по Kellgren-Lawrence; индекс массы тела (ИМТ) ≥40 кг/м²; сопутствующий ОА тазобедренного и/или голеностопного суставов в тяжелой стадии, который может затруднить оценку интенсивности боли в КС или эффективности лечения; прием пероральных и парентеральных DMOADs для лечения ОА, в том числе БАДов (XC, ГА, диацереин, препараты на основе неомыляемых соединений плодов авокадо и масел соевых бобов — НСАС и др.), за 3 мес до скрининга; внутрисуставное введение любых препаратов в течение 6 мес до скрининга или 5 периодов полураспада (в зависимости от того, что было дольше); внутривенное/внутримышечное введение глюкокортикоидов на протяжении 3 мес или пероральный прием системных глюкокортикоидов в течение 1 мес до скрининга; вторичный ОА (инфекционный артрит, воспалительные заболевания суставов, подагра, пирофосфатная артропатия, болезнь Педжета, внутрисуставные переломы, охроноз, акромегалия, гемохроматоз, болезнь Вильсона, первичный хондроматоз и др.), а также воспалительные заболевания суставов (ревматоидный артрит, псориатический артрит, анкилозирующий спондилит и пр.); хирургическое лечение целевого сустава в анамнезе; неконтролируемая артериальная гипертензия и/или ишемическая болезнь сердца, хроническая сердечная недостаточность На-IIb, III стадии (III-IV функциональный класс по NYHA); декомпенсированный СД 2-го типа или СД 1-го типа; заболевания, проявляющиеся повышенной кровоточивостью (геморрагический диатез, гемофилия, тромбоцитопения и т. д.), или состояния с высоким риском развития кровотечения; тяжелые, декомпенсированные или нестабильные соматические заболевания (любые заболевания или состояния, которые угрожают жизни больного или ухудшают прогноз основного заболевания, а также делают невозможным проведение клинического исследования); язва желудка или две-

надцатиперстной кишки в анамнезе и/или эрозивный гастрит, выявленный менее 1 мес назад; тяжелая почечная недостаточность (клиренс креатинина <30 мл/мин), прогрессирующие заболевания почек; наличие в анамнезе злокачественных образований, за исключением случаев, когда рецидив заболевания не наблюдался в течение последних 5 лет; полное или неполное сочетание бронхиальной астмы, рецидивирующего полипоза носа или околоносовых пазух и непереносимости ацетилсалициловой кислоты и других нестероидных противовоспалительных препаратов (НПВП), в том числе в анамнезе; злоупотребление наркотиками или алкоголем на момент скрининга или в прошлом, которое, по мнению исследователя, делает неприемлемым участие пациента в исследовании; неспособность читать или писать, нежелание понять и следовать процедурам протокола исследования, а также любые другие сопутствующие медицинские или серьезные психические состояния, которые делают неприемлемым участие пациента в исследовании, ограничивают правомерность получения информированного согласия или могут повлиять на способность пациента участвовать в исследовании; одновременное участие в клиническом испытании других лекарственных средств; беременные или кормящие женщины или пациентки, планирующие беременность во время клинического исследования; отсутствие письменного согласия на участие в исследовании

В соответствии со схемой рандомизации (методом непрозрачных запечатанных и последовательно пронумерованных конвертов) пациентки были распределены в две группы. Больные 1-й группы (n=40) получали Терафлекс Ультра внутрь по 2 капсулы 2 раза в день. Больным 2-й группы (n=40) назначалась терапия препаратом сравнения — Терафлекс® внутрь по 1 капсуле 3 раза в день в течение 3 нед, затем по 1 капсуле 2 раза в день. Все пациентки «по требованию» могли принимать НПВП — Тералив 275 (напроксен) до 3 таблеток в день.

Исследование проводилось в течение 9 мес, за это время пациентки посетили врача 5 раз: визит (В) 0 — скрининг; В1 — начало терапии (совпадает с В0); В2 — через 1 мес после начала терапии; В3 — через 3 мес после начала терапии; В4 — завершение лечения через 6 мес; В5 (заключительный) — через 9 мес (оценка эффекта последействия на протяжении 3 мес после завершения терапии).

Эффективность лечения определялась по динамике интенсивности боли в целевом КС при ходьбе по ВАШ; индекса WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index), суммарного и его составляющих, и шкалы КООЅ (Кпее Injury & Osteoarthritis Outcome Score — шкала оценки функции коленного сустава и активности пациента в повседневной и активной спортивной жизни); показателей опросника качества жизни EQ-5D (EuroQol-5 Dimensions). Дополнительно учитывались оценка общего состояния здоровья пациентом (ОСЗП) по ВАШ и оценка эффективности лечения врачом и пациентом (значительное улучшение, улучшение, отсутствие эффекта и ухудшение), потребность в НПВП.

Всем больным исходно, через 1 и 6 мес проводилось биохимическое исследование крови: уровень мочевой кислоты (МК), аланинаминотрансферазы (АЛТ), аспартатаминотрансферазы (АСТ), креатинина. Также у всех больных в начале и в конце терапии была изучена концентрация hsCPБ.

Таблица 1. Сравнительная характеристика больных, включенных в исследование Table 1. Comparative characteristics of patients included in the study

Показатель	1-я группа (Терафлекс Ультра), n=40	2-я группа (Терафлекс®), n=40	p
Возраст, годы, М±SD	61,8±7,8	58,6±8,7	0,09
Длительность ОА, годы, Ме [25-й; 75-й перцентили]	6 [3; 9]	5 [4; 10]	0,54
ИМТ, кг/м², M±SD	30,4±5,3	30,7±5,4	0,8
Боль по ВАШ В1, мм, Ме [25-й; 75-й перцентили]	58,5 [52; 74]	55 [50; 66]	0,38
WOMAC суммарный В1, мм, Ме [25-й; 75-й перцентили]	1221 [783; 1485]	1130,5 [836; 1470]	0,78
КООЅ суммарный В1, %, Ме [25-й; 75-й перцентили]	47 [39,5; 50,5]	41,5 [37; 53]	0,58
EQ-5D B1, баллы, Ме [25-й; 75-й перцентили]	0,59 [0,52; 0,62]	0,52 [0,52; 0,62]	0,99
ОСЗП В1, мм, Ме [25-й; 75-й перцентили]	50 [41; 62,5]	50 [40; 60]	0,84

В качестве показателей безопасности определяли частоту и характер неблагоприятных явлений (НЯ), в том числе клинически значимых отклонений лабораторных параметров, развившихся за период наблюдения, их связь с исследуемым препаратом.

Для *статистической обработки предварительных резуль- татов* применяли программное обеспечение Statistica 12.0 (StatSoft Inc., США). Проведены анализ на нормальность распределения переменных с помощью тестов Колмогорова—

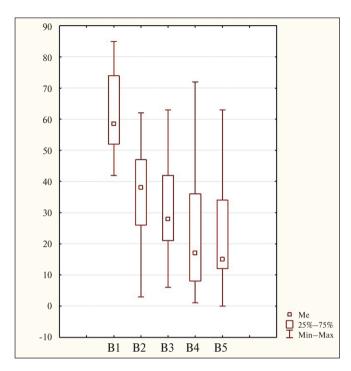
Таблица 2. Сравнительная характеристика групп больных ОА, применявших Терафлекс Ультра и Терафлекс, Ме [25-й; 75-й перцентили] Table 2. Comparative characteristics of OA patient groups using Theraflex Ultra and Theraflex, Me [25th; 75th percentile]

Показатель	1-я группа (Терафлекс Ультра), n=40	2-я группа (Терафлекс®), n=40	p
Боль по ВАШ, мм: В1 В2 В3 В4	58,5 [52; 74]	55 [50; 66]	0,38
	38 [26; 47]*	44,5 [37; 53]*	0,02
	28 [21; 42]*	32,5 [22; 50]*	0,3
	17 [8; 36]*	28,5 [14,5; 40,5]*	0,17
	15 [12; 34]*	23,5 [12; 37]*	0,22
Боль по WOMAC, мм: В1 В2 В3 В4 В5	221 [150; 303]	217 [172; 301]	0,75
	149 [114; 196]*	197 [122,5; 254]*	0,036
	104 [57; 172]*	158,5 [91,5; 253]*	0,037
	74,5 [40; 152]*	128,5 [49,5; 201,5]*	0,17
	66,5 [39; 106]*	111,5 [44,5; 170,5]*	0,04
Скованность по WOMAC, мм: В1 В2 В3 В4 В5	93 [57; 127]	97 [64,5; 122]	0,79
	68 [35; 90]*	85 [53; 110,5]*	0,04
	42,5 [18; 79]*	77 [25; 102]*	0,03
	32 [14; 74]*	56 [20,5; 99,5]*	0,08
	24,5 [15; 51]*	43,5 [17; 86]*	0,04
ФН по WOMAC, мм: В1 В2 В3 В4	904 [531; 1075,5]	775,5 [591,5; 1067,5]	0,88
	658 [399; 755]*	696 [472,5; 891,5]*	0,23
	432 [271; 674]*	558,5 [356,5; 855,5]*	0,16
	288,5 [181; 585]*	514,5 [356,5; 855,5]*	0,19
	252 [148; 440]*	417 [159; 705]*	0,02
WOMAC суммарный, мм: B1 B2 B3 B4 B5	1221 [783; 1485]	1130,5 [836; 1470]	0,78
	878 [536; 1014]*	973 [666,5; 1239,5]*	0,13
	570 [352; 925]*	778,5 [515; 1218,5]*	0,1
	388 [242; 763]*	763,5 [389; 1090]*	0,13
	326,5 [243; 543]*	555,5 [240; 914,5]*	0,03
КООЅ симптомы, %: В1 В2 В3 В4	61 [46; 68]	55,5 [43; 69,5]	0,32
	68 [50; 75]*	62,5 [54; 71]	0,67
	73 [64; 79]*	68 [57; 79]*	0,24
	82 [68; 86]*	73,5 [62,5; 84]*	0,19
	79 [71; 86]*	75 [64; 86]*	0,29

Показатель	1-я группа (Терафлекс Ультра), n=40	2-я группа (Терафлекс®), n=40	p
КООЅ боль, %: B1 B2 B3 B4 B5	54,5 [45,5; 61] 61 [56; 72]* 69 [58; 79]* 72 [61; 81]* 75 [64; 83]*	51,5 [42; 62,5] 56 [44; 68] 62,5 [50; 76,5] 67 [54,5; 80]* 75 [58; 82]*	0,44 0,04 0,23 0,3 0,5
КООЅ функция, %: В1 В2 В3 В4	55 [46; 64] 62 [54; 68]* 69 [59; 78]* 72 [57; 84]* 74 [62; 84]*	49 [41; 61] 54 [46; 67]* 62 [52,5; 70,5]* 63 [53,5; 78,5]* 73 [59,5; 85]*	0,38 0,22 0,13 0,19 0,88
КООS спорт, %: B1 B2 B3 B4 B5	25 [5; 27,5] 30 [20; 50]* 35 [25; 50]* 37,5 [25; 50]* 37,5 [25; 50]*	30 [12,5; 35] 30 [15; 40] 30 [25; 47,5]* 35 [22,5; 50]* 42,5 [25; 57,5]*	0,15 0,76 0,57 0,5 0,66
КООS качество жизни, %: B1 B2 B3 B4 B5	44 [25; 50] 44 [31; 56]* 50 [44; 63]* 56 [50; 69]* 56 [50; 75]*	41 [25; 50] 44 [31; 53]* 50 [41; 63]* 50 [41; 67]* 50 [44; 69]*	0,93 0,97 0,98 0,18 0,11
КООЅ суммарный, %: В1 В2 В3 В4 В5	47 [39,5; 50,5] 51 [42; 60]* 59 [50; 65]* 62,5 [55; 72]* 64 [54; 74]*	41,5 [37; 53] 48 [39,5; 59,5]* 54 [43,5; 66]* 55,5 [47; 71]* 61 [50,5; 76,5]*	0,58 0,34 0,42 0,18 0,79
EQ-5D, баллы, M: B1 B2 B3 B4 B5	0,59 [0,52; 0,62], 0,49 0,59 [0,52; 0,69]*, 0,61 0,66 [0,59; 0,69]*, 0,65 0,66 [0,59; 0,85]*, 0,68 0,69 [0,59; 0,76]*, 0,7	0,52 [0,52; 0,62], 0,56 0,59 [0,52; 0,64], 0,58 0,59 [0,52; 0,72]*, 0,64 0,62 [0,59; 0,73]*, 0,66 0,64 [0,59; 0,78]*, 0,68	0,99 0,37 0,45 0,29 0,54
OC3П, мм: B1 B2 B3 B4 B5	50 [41; 62,5] 60 [50; 70]* 67,5 [60; 75]* 75 [65; 80]* 77,5 [65; 85]*	50 [40; 60] 58 [50; 65]* 60 [55; 71,5]* 70 [60; 80]* 75 [62,5; 86,5]*	0,84 0,19 0,19 0,36 0,89
Срок наступления эффекта, дни	21 [12,5; 34,5]	28 [14; 60,5]	0,055

Примечание. М — среднее значение; * — значимое снижение исследуемого параметра по сравнению с В1 (p<0,05). ФН — функциональная недостаточность.

Смирнова, Шапиро—Уилка и частотный анализ. Использованы методы описательной статистики с вычислением минимальных, максимальных и средних значений переменных, стандартных отклонений, медианы и интерквартильного интервала (Ме [25-й; 75-й перцентили]), а также параметрические (t-тест Стьюдента) и непараметрические (тест Вилкоксона, χ^2) критерии. Различия считали статистически значимыми при p<0,05.


В исследование включено 80 женщин в возрасте от 42 до 75 лет (средний возраст — $60,2\pm8,4$ года), ИМТ — $30,4\pm5,3$ кг/м², медиана длительности ОА — 5 [3,5; 9] лет. У большинства обследованных (72,5%) имелась II рентгенологическая стадия ОА КС по Kellgren—Lawrence, у 13,75% — I стадия и у 13,75% — III стадия.

Почти все больные (n=77, 96,3%) имели клинически значимые сопутствующие заболевания, среди которых чаще всего

диагностировались заболевания сердечно-сосудистой системы (гипертоническая болезнь — у 76,3%, дислипидемия — у 68,8%), ожирение (у 82,5%), МС (у 73,8%) и СД 2-го типа (у 13,8%). При этом у 22 пациенток отмечено 1 коморбидное заболевание, у 23 — 2, у 20 — 3, у 7 — 4, у 4 — 5, у 1 — 7 и в 3 случаях коморбидная патология отсутствовала.

Метаболический фенотип заболевания выявлен у 57,5% больных, воспалительный (хронический синовит КС) — у 13,75%, остеопоротический (остеопороз и/или остеопения в осевом скелете) — у 11,25% и смешанный — у 17,5%.

Результаты. Популяция больных, проходивших лечение (Intent-to-Treat, ITT), включала всех пациенток (n=80), которые получили не менее 1 капсулы Терафлекс Ультра или Терафлекс®. Популяция ITT являлась основной для анализа эффективности терапии. Популяцию по протоколу

Рис. 1. Динамика интенсивности боли в КС по ВАШ на фоне применения Терафлекс Ультра, мм¹

Fig. 1. Dynamics of pain intensity in the knee on the VAS during treatment with Theraflex Ultra, mm

(Per-Protocol, PP) составили все больные популяции ITT, которые полностью завершили исследование, имели оценки для первичного анализа эффективности и считались комплаентными. К комплаентным относились больные, у которых не зафиксировано нарушений протокола исследования. В популяцию PP вошли 74 пациентки: 34/40 (85%) из 1-й группы и 40/40 (100%) из 2-й группы. Причинами исключения больных из популяции PP в 4 случаях было снижение ежедневной дозы фармаконутрицевтика с 4 до 2 капсул, а в 2 — развитие НЯ (см. ниже). Результаты оценки эффективности терапии представлены только для популяции ITT, поскольку популяции ITT и PP существенно не различались.

Больные обеих групп были сопоставимы по возрасту, ИМТ, длительности ОА, оценке интенсивности боли при ходьбе по ВАШ, индексам WOMAC, EQ-5D, шкале KOOS, а также по ОСЗП (табл. 1).

Результаты исследования продемонстрировали эффективность фармаконутрицевтика и препарата (табл. 2, рис. 1, 2) в уменьшении боли при ходьбе по ВАШ, индекса WOMAC как суммарного, так и всех его составляющих, суммарного KOOS, в том числе KOOS функция и качество жизни, улучшении ОСЗП уже через 1 мес после начала терапии (р<0,05 для всех значений). Вместе с тем в группе Терафлекс Ультра отмечалось статистически значимое (р<0,05) снижение показателей боли по ВАШ, ФН и суммарного WOMAC, улучшение симптоматики и качества жизни по шкале KOOS, в том числе суммарного KOOS, на протяжении всего периода лечения (6 мес). В группе Терафлекс® положительная динамика этих параметров зарегистрирована только в первые

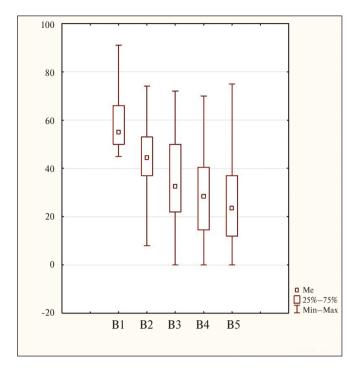


Рис. 2. Динамика интенсивности боли в КС по ВАШ на фоне лечения Терафлекс®, мм

Fig. 2. Dynamics of pain intensity in the knee on the VAS during treatment with Theraflex®, mm

3 мес терапии, далее значения оставались неизменными. В последующие 3 мес наблюдения изучаемые параметры не претерпели значимых изменений, что подтверждает эффект последействия Терафлекс Ультра и Терафлекс®. При этом в 1-й группе отмечалось улучшение качества жизни по шкале KOOS на протяжении всего периода исследования. Во 2-й группе к концу наблюдения зарегистрированы значимое снижение Φ H и суммарного WOMAC по сравнению с 3-месячным периодом (р<0,05), а также увеличение суммарного показателя KOOS к В5 по сравнению с В4 (р=0,0009).

При применении фармаконутрицевтика пациенты отметили более раннее улучшение (p<0,05) качества жизни по EQ-5D, по KOOS боль и физическая активность (KOOS спорт) — уже через 1 мес против 3 мес в группе Терафлекс®. В обеих группах эффект сохранялся в течение всего периода лечения.

Наши данные также демонстрируют более значимый и быстрый клинический эффект Терафлекс Ультра. Так, выявлены значимые межгрупповые различия (p<0,05) по следующим показателям: боль по ВАШ и по KOOS — через 1 мес терапии; боль и скованность по WOMAC — через 1, 3 и 9 мес; ФН по WOMAC и суммарный WOMAC — через 9 мес (см. табл. 2).

Несмотря на указанные различия, в обеих группах отмечалась схожая положительная динамика по ряду показателей. В частности, уменьшение боли по WOMAC и улучшение ОСЗП регистрировалось на протяжении 6 мес (p<0,05), снижение скованности по WOMAC и улучшение функции по KOOS — в течение 3 мес (p<0,05). При отмене препарата боль по WOMAC не нарастала, а скованность по

Современная ревматология. 2025;19(5):74-83

 $^{^{1}}$ Цветные рисунки см. на сайте журнала: mrj.ima-press.net

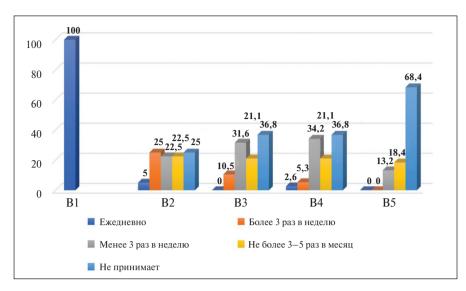
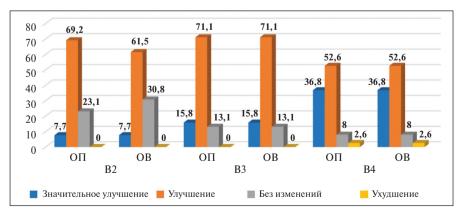



Рис. 3. Потребность в НПВП на фоне применения Терафлекс Ультра Fig. 3. Need for NSAIDs during therapy with Theraflex Ultra

Рис. 4. Потребность в НПВП на фоне терапии Терафлекс® **Fig. 4.** Need for NSAIDs during therapy with Theraflex®

Рис. 5. Эффективность лечения, по мнению врача и пациента, на фоне применения Терафлекс Ультра. Здесь и на рис. 6, 7: ОП — оценка пациента; ОВ — оценка врача **Fig. 5.** Treatment efficacy, according to physician and patient, during therapy with Theraflex Ultra. Here and in Figs. 6, 7: ОП — patient's assessment; OB — physician's assessment


данному индексу значимо снизилась по сравнению с B3 в обеих группах (p<0,05). К завершению терапии снижение интенсивности боли до <40 мм по BAШ было зарегистрировано у 84,2% пациенток в 1-й группе и у 76,9% — во 2-й (p>0,05); к концу исследования — у 86,8 и 82,5% соответственно (p>0,05).

Анализ лабораторных показателей (АЛТ, АСТ, МК, креатинин) не выявил межгрупповых различий как на старте терапии, так и через 1 и 3 мес лечения (р>0,05). При оценке уровня hsCPБ в сыворотке крови также не отмечено значимых межгрупповых и внутригрупповых различий: в начале терапии в 1-й группе — 1,55 [0,6; 3,2] и во 2-й — 2,1 [0,9; 3,7] мг/л (р=0,38), в конце — 1,5 [0,9; 4,2] и 1,5 [0,9; 4,1] мг/л (р=0,84) соответственно.

Всем пациенткам была предоставлена возможность приема НПВП «по требованию», в частности препарата Тералив 275 мг (напроксен) до 3 таблеток в сутки. Анализ потребности в НПВП не выявил статистически значимых межгрупповых или внутригрупповых различий как при качественной (рис. 3,4), так и при количественной оценке (p>0,05). К концу исследования 68,4% больных 1-й группы и 67,5%-2-й отказались от приема НПВП (p>0,05).

Эффективность терапии была высоко оценена как врачами, так и больными (рис. 5-7). К моменту завершения лечения большинство пациенток указали на улучшение или значительное улучшение состояния. В 1-й группе об улучшении сообщили 52,6% больных, а о значительном улучшении - 36,8% (см. рис. 5). Во 2-й группе, по мнению врачей, улучшение было достигнуто в 70% случаев, а по мнению самих пациенток, - в 72,5%. Значительное улучшение и врачами, и пациентками было отмечено в одинаковом числе случаев в 10% (см. рис. 6). В период наблюдения в обеих группах сохранялась высокая оценка результатов терапии: значительное улучшение регистрировалось в 39,5% случаев, а улучшение в 55,3% (см. рис. 7). Эти данные подтверждают наличие выраженного эффекта последействия у Терафлекс Ультра и Терафлекс®.

За период исследования было выявлено 26 НЯ у 16 пациенток. В группе Терафлекс Ультра отмечалось 12 НЯ (n=11), в группе сравнения — 14 НЯ (n=5). Связь с исследуемыми препа-

Рис. 6. Эффективность лечения, по мнению врача и пациента, на фоне терапии Tерафлекс $^{\otimes}$

Fig. 6. Treatment efficacy, according to physician and patient, during therapy with Theraflex®

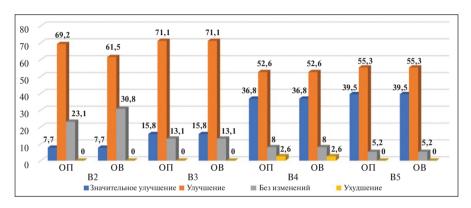


Рис. 7. Эффективность лечения, по мнению врача и пациента, в конце наблюдения Fig. 7. Treatment efficacy, according to physician and patient, at the end of follow-up

ратами была расценена как возможная для 12 НЯ. Серьезных неблагоприятных явлений (СНЯ) не зафиксировано ни в одной группе.

НЯ, приведшие к отмене терапии на момент В2, зарегистрированы у 2 пациенток из группы Терафлекс Ультра: у одной развилась аллергическая реакция в виде першения в горле и сухого кашля, у другой — выраженная изжога. Следует отметить, что изжога была наиболее частым НЯ в группе Терафлекс Ультра. В большинстве случаев она купировалась на фоне коррекции режима приема фармаконутрицевтика (во время или сразу после еды) или применения ингбиторов протонного насоса. У 4 участниц проявления изжоги исчезли только после снижения дозы препарата с 4 до 2 капсул в сутки. В группе Терафлекс® зарегистрированно 1 НЯ, расцененное как возможно связанное с приемом препарата, характеризовавшееся изжогой, горечью во рту и болью в правом подреберье, которое разрешилось самостоятельно.

Обсуждение. Результаты проведенного исследования свидетельствуют о возможности достижения более быстрого и выраженного клинического эффекта при использовании фармаконутрицевтика Терафлекс Ультра по сравнению с препаратом Терафлекс[®] у пациентов с различными фенотипами ОА. Выявлены значимые межгрупповые различия не только в краткосрочном периоде наблюдения (более выраженное снижение боли по ВАШ, КООЅ и WOMAC, скованности по WOMAC через 1 мес терапии), но и в конце исследования (более низкие показатели как суммарного WOMAC, так и всех его составляющих: боль, скованность и ФН). Однако, учитывая лучшую переносимость препарата Терафлекс[®],

целесообразно использовать персонализированный подход к лечению: при развитии НЯ на фоне Терафлекс Ультра переходить на прием препарата Терафлекс®.

Более выраженный клинический эффект фармаконутрицевтика обусловлен его составом, обеспечивающим потенцирование положительных фармакологических эффектов компонентов. Среди всех DMOADs именно у XC и ГА имеется самая большая доказательная база, основанная на серии метаанализов и систематических обзоров, свидетельствующая о том, что их прием приводит к симптоматическому улучшению и замедлению рентгенологического прогрессирования. Считается. что одновременное использование ХС и ГА оказывает синергическое действие и позволяет добиться большего эффекта, чем применение отдельных препаратов в качестве монотерапии [6].

Систематический обзор и метаанализ Z. Мепg и соавт. [7], включавший анализ 8 рандомизированных контролируемых исследований (РКИ) с участием 3793 больных ОА, показал, что комбинированное применение ХС и ГА (n=1067) имеет преимущество по сравнению с другими видами лечения (n=2726), включая монотерапию ХС

или ГА. Комбинация XC и ГА приводила к статистически значимому снижению суммарного индекса WOMAC (средняя разница, Mean Difference, MD =-12,04; 95% ДИ от -22,33 до -1,75; p=0,02), скованности по WOMAC (MD=-4,70; 95% ДИ от -8,57 до -0,83; p=0,02), а также к замедлению рентгенологического прогрессирования OA (MD =-0,09; 95% ДИ от -0,18 до -0,00; p=0,04).

Другим важным компонентом изучаемого фармаконутрицевтика является НК 2-го типа, который сам по себе оказывает быстрое и значимое анальгетическое действие при ОА КС. За последнее время появились неопровержимые доказательства эффективности и безопасности НК 2-го типа при лечении этого заболевания [8]. В обзоре R. Китаг и соавт. [9], объединившем данные 8 РКИ продолжительностью от 3 до 6 мес (n=243), продемонстрирована эффективность НК 2-го типа по сравнению с плацебо, ХС, ГА и ацетаминофеном. Анализ показал, что прием данного препарата способствует значимому снижению интенсивности боли по ВАШ по сравнению с плацебо (МD=-1,65; 95% ДИ от -2,77 до -0,54; р=0,004) и индекса WOMAC по отношению к другими препаратам (MD=-8,91; 95% ДИ от -13,74 до -4,08; p=0,0003). A. Gupta и N. Maffulli [10] при оценке 12 исследований подтвердили безопасность и эффективность НК 2-го типа (40 мг/сут), отметив уменьшение болевого синдрома, снижение воспаления, улучшение функциональной активности и диапазона движений в КС, а также улучшение общего качества жизни пациентов.

Еще одним компонентом Терафлекс Ультра является экстракт корня имбиря 300 мг. На протяжении трех ты-

сячелетий имбирь ценится не только как пряность, но и как эффективное растительное лекарственное средство [11]. Его корневище богато биоактивными соединениями, широко применяемыми в медицине. Фармакологические свойства имбиря обусловлены его уникальным составом, включающим многочисленные активные фитосоединения. Среди них выделяется гингерол и его производные, обладающие выраженными противовоспалительными и анальгетическими свойствами. При ОА имбирь способствует уменьшению высвобождения провоспалительных цитокинов, таких как фактор некроза опухоли α, интерлейкин (ИЛ) 1В, ИЛ2, ИЛ4, ИЛ6 и ИЛ17, и выработки матриксных металлопротеиназ – ММП (ММП1, ММП3 и ММП13), экспрессии NF-кВ в тканях сустава, а также снижению уровней циклооксигеназы 2, оксида азота и СРБ [12]. В метаанализе 5 РКИ (n=593) установлено, что пероральный прием экстракта имбиря сопровождается значимым снижением боли по сравнению с плацебо (стандартизированная разница средних, Standardized Mean Difference, SMD=-0,30; 95% ДИ от -0,50 до -0,09; p=0,005) [13]. По мнению исследователей, он характеризуется хорошим профилем безопасности, не вызывает развития СНЯ, но у небольшой части пациентов может возникнуть изжога [12]. С целью минимизации риска появления и выраженности данного побочного эффекта рекомендуется принимать Терафлекс Ультра во время или сразу после еды, запивая достаточным количеством воды. Кроме того, целесообразно предварительно оценивать индивидуальную переносимость имбиря у пациентов, которым планируется назначение данного фармаконутрицевтика.

Следующими компонентами являются витамины группы В и С. Витамин С, также известный как L-аскорбиновая кислота, является водорастворимым незаменимым пита-

тельным веществом. Показано, что внутриклеточный витамин С действует как незаменимый кофактор для пролилгидроксилазы — двух ключевых ферментов, участвующих в синтезе коллагена. Кроме того, L-аскорбиновая кислота играет важную роль в хондрогенной дифференцировке и синтезе внеклеточного матрикса [14].

В последнее время наблюдается растущий интерес к исследованию роли витаминов группы В в терапии ОА, подкрепленный рядом экспериментальных и клинических исследований. В частности, было показано, что ежедневный прием витамина В₁ (тиамин) способствует снижению воспаления за счет уменьшения синтеза хемокина ССL2 макрофагами и концентрации ММР13 в хондроцитах, что указывает на его антиостеоартритный потенциал [15]. Витамин В₆ (пиридоксин) позитивно влияет на метаболизм экстрацеллюлярного матрикса (*in vivo* и *in vitro*), снижает экспрессию апоптоз-индуциирующих белков, повышает уровень ингибитора апоптоза ВсІ-2 [16]. В другом исследовании установлено, что комбинированное применение пиридоксина, тиамина и цианкобаламина (витамин В₁₂) усиливает анальгетический эффект НПВП у пациентов с ОА [17].

Таким образом, результаты нашей работы подтверждают, что применение многокомпонентного фармаконутрицевтика обеспечивает более эффективный контроль клинических проявлений ОА по сравнению с использованием отдельных компонентов, входящих в его состав.

Заключение. Полученные данные свидетельствуют об эффективности Терафлекс Ультра и Терафлекс® в терапии различных фенотипов ОА: метаболического, воспалительного, остеопоротического и смешанного. Более быстрое и выраженное клиническое улучшение, достигаемое при применении Терафлекс Ультра, делает его привлекательным выбором для включения в комплексную терапию этого заболевания.

ЛИТЕРАТУРА/REFERENCES

1. Мазуров ВИ, Лила АМ, Алексеева ЛИ и др. Мультиморбидность при остеоартрите и плейотропные эффекты симптоматических средств замедленного действия. Резолюция международного мультидисциплинарного совета экспертов. Современная ревматология. 2023;17(5):123-131. Mazurov VI, Lila AM, Alekseeva LI, et al. Multimorbidity in osteoarthritis and pleiotropic effects of slow-acting symptomatic drugs. Resolution of the multidisciplinary International Expert Council. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2023;17(5):123-131. (In Russ.). doi: 10.14412/1996-7012-2023-5-123-131. 2. Лила АМ, Алексеева ЛИ, Таскина ЕА и др. Опыт применения олокизумаба у пациентов с воспалительным фенотипом остеоартрита. Современная ревматология. 2024;18(3):14-24.

Lila AM, Alekseeva LI, Taskina EA, et al. Experience with olokizumab use in patients with inflammatory phenotype of osteoarthritis. *Sovremennaya Revmatologiya = Modern Rheumatology Journal*. 2024;18(3):14–24. (In Russ.). doi: 10.14412/1996-7012-2024-3-

14-24.

3. Алексеева ЛИ, Таскина ЕА, Кашеварова НГ и др. Остеоартрит коленных суставов и метаболический синдром: новые подходы к терапии. Научно-практическая ревматология. 2018;56(2):157-163. Alekseeva LI, Taskina EA, Kashevarova NG, et al. Knee osteoarthritis and metabolic syndrome: new approaches to therapy. *Nauchnoprakticheskaya revmatologiya*. 2018;56(2): 157-163. (In Russ.).

4. Лила АМ, Таскина ЕА, Алексеева ЛИ и др. Симптоматические препараты замедленного действия (SYSADOA): новые возможности применения. Современная ревматология. 2022;16(2):99-106.

Lila AM, Taskina EA, Alekseeva LI, et al. Symptomatic slow-acting drugs (SYSADOA): new applications. *Sovremennaya Revmatologiya = Modern Rheumatology Journal*. 2022; 16(2):99-106. (In Russ.). doi: 10.14412/1996-7012-2022-2-99-106.

5. Лила АМ, Алексеева ЛИ, Таскина ЕА и др. Оценка влияния комбинации глюкозамина и хондроитина сульфата, дополненной нативным (неденатурированным) коллагеном II типа, экстрактом имбиря, витаминами группы В и аскорбиновой кислотой на клинические проявления ОА при различных фенотипах заболевания (предварительные результаты). Современная ревматология. 2024;18(6):124-127. Lila AM, Alekseeva LI, Taskina EA, et al. Evaluation of the effect of a combination of glucosamine and chondroitin sulfate supplemented with native (undenatured) type II collagen, ginger extract, B vitamins and ascorbic acid on clinical manifestations of OA in different disease phenotypes (preliminary results). Sovremennaya Revmatologiya = ModernRheumatology Journal. 2024;18(6):124-127. (In Russ.). doi: 10.14412/1996-7012-2024-6-124-127.

6. Wang Z, Wang R, Yao H, et al. Clinical efficacy and safety of chondroitin combined with glucosamine in the treatment of knee osteoarthritis: a systematic review and meta-analysis. *Comput Math Methods Med.* 2022 Jul 25: 2022:5285244. doi: 10.1155/2022/5285244. 7. Meng Z, Liu J, Zhou N. Efficacy and safety of the combination of glucosamine and chondroitin for knee osteoarthritis: a systematic re-

view and meta-analysis. *Arch Orthop Trauma Surg.* 2023 Jan;143(1):409-421. doi: 10.1007/s00402-021-04326-9.

8. Martinez-Puig D, Costa-Larrion E, Rubio-Rodriguez N, et al. Collagen supplementation for joint health: the link between composition and scientific knowledge. *Nutrients*. 2023 Mar 8;15(6):1332. doi: 10.3390/nu15061332. 9. Kumar P, Bansal P, Rajnish RK, et al. Efficacy of undenatured collagen in knee osteoarthritis: review of the literature with limited meta-analysis. *Am J Transl Res*. 2023 Sep 15; 15(9):5545-5555.

10. Gupta A, Maffulli N. Undenatured type II collagen for knee osteoarthritis. *Ann Med.* 2025 Dec;57(1):2493306. doi: 10.1080/07853890.2025.2493306.

11. Sharma S, Shukla MK, Sharma KC, et al. Revisiting the therapeutic potential of ginge-

rols against different pharmacological activities. *Naunyn Schmiedebergs Arch Pharmacol.* 2023 Apr;396(4):633-647. doi: 10.1007/s00210-022-02372-7.

12. Szymczak J, Grygiel-Gorniak B, Cielecka-Piontek J. Zingiber officinale Roscoe: the antiarthritic potential of a popular spice — preclinical and clinical evidence. *Nutrients*. 2024 Mar 5;16(5):741. doi: 10.3390/nu16050741. 13. Bartels EM, Folmer VN, Bliddal H, et al. Efficacy and safety of ginger in osteoarthritis patients: a meta-analysis of randomized placebo-controlled trials. *Osteoarthritis Cartilage*. 2015 Jan;23(1):13-21. doi: 10.1016/j.joca.2014.09.024.

14. Dunlap B, Patterson GT, Kumar S, et al. Vitamin C supplementation for the treatment of osteoarthritis: perspectives on the past, present, and future. *Ther Adv Chronic Dis.*

2021 Oct 20:12:20406223211047026. doi: 10.1177/20406223211047026. 15. Shen S, Liang Y, Zhao Y, et al. Dietary supplementation of vitamin B1 prevents the pathogenesis of osteoarthritis. *Proc Natl Acad Sci U S A*. 2024 Jul 23;121(30):e2408160121. doi: 10.1073/pnas.2408160121.

16. Fang Z, Hu Q, Liu W. Vitamin B6 alleviates osteoarthritis by suppressing inflammation and apoptosis. *BMC Musculoskelet Disord*. 2024 Jun 6;25(1):447. doi: 10.1186/s12891-024-07530-x.

17. Magaca-Villa MC, Rocha-Gonzalez HI, Fernandez del Valle-Laisequilla C, et al. B-vitamin mixture improves the analgesic effect of diclofenac in patients with osteoarthritis: a double-blind study. *Drug Res (Stuttg)*. 2013 Jun;63(6):289-92. doi: 10.1055/s-0033-1334963.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 17.08.2025/25.09.2025/29.09.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Статья подготовлена в рамках научно-исследовательской работы, государственное задание № РК 125020501433-4.

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared within the framework of the research work, State assignment № PK 125020501433-4.

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Таскина Е.А. https://orcid.org/0000-0001-8218-3223 Лила А.М. https://orcid.org/0000-0002-6068-3080 Алексеева Л.И. https://orcid.org/0000-0001-7017-0898 Кашеварова Н.Г. https://orcid.org/0000-0001-8732-2720 Шарапова Е.П. https://orcid.org/0000-0003-4242-8278 Стребкова Е.А. https://orcid.org/0000-0001-8130-5081 Савушкина Н.М. https://orcid.org/0000-0001-8562-6077 Короткова Т.А. https://orcid.org/0000-0003-0394-9249 Хальметова А.Р. https://orcid.org/0000-0002-0447-4110

Коррекция дефицита витамина D у пациентов с подагрой, принимающих фебуксостат (пилотное исследование)

Елисеев М.С., Желябина О.В., Кузьмина Я.И., Чикина М.Н.

ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва Россия, 115522, Москва, Каширское шоссе, 34A

Цель исследования— оценить влияние коррекции гиповитаминоза D на показатели урикемии, воспаления и паратиреоидной функции у пациентов с подагрой, получающих фебуксостат.

Материал и методы. В проспективное наблюдательное исследование включено 79 пациентов с подагрой, получавших фебуксостат в адекватных дозах ≥2 нед. У всех пациентов определены сывороточные уровни мочевой кислоты (МК), паратгормона (ПТГ), витамина D и СРБ. В случаях дефицита витамина D (25(OH)D <30 нг/мл) пациентам рекомендовали принимать холекальциферол 4000 ME/сут на протяжении 3 мес. Затем исследовали динамику указанных параметров у больных, получавших холекальциферол (1-я группа), и пациентов с нормальным уровнем витамина D (2-я группа).

Результаты и обсуждение. У 65 (83%) из 79 пациентов уровень MK сыворотки составлял <360 мкмоль/л, доза фебуксостата — от 40 до 120 мг/сут. У 63 (80%) пациентов уровень 25(OH)D был <30 нг/мл, 19 (30%) из них принимали холекальциферол (1-я группа). После завершения приема препарата содержание 25(OH)D увеличилось (p=0,0013), концентрация $\Pi T\Gamma$ снизилась (p=0,0077). Динамика уровня MK сыворотки в двух группах была сопоставимой (p=0,72). Корреляция между Δ витамина D и Δ MK у пациентов с гиповитаминозом D отсутствовала (r= -0,26, p>0,05). В 1-й группе медиана Δ СРБ была статистически значимо большей, чем во 2-й группе (p=0,027). Число пациентов с уровнем СРБ >2 мг/л в 1-й группе сократилось с 11 (58%) до 5 (26%), p=0,049.

Заключение. Коррекция дефицита витамина D у пациентов с подагрой при оптимальной уратснижающей терапии способствует уменьшению концентрации СРБ, но не влияет на уровень МК в сыворотке крови. Для значительной части пациентов доза фебуксостата 40 мг/сут является достаточной.

Ключевые слова: подагра; витамин D; мочевая кислота; холекальциферол; фебуксостат; C-реактивный белок.

Контакты: Максим Сергеевич Елисеев; elicmax@yandex.ru

Для цитирования: Елисеев МС, Желябина ОВ, Кузьмина ЯИ, Чикина МН. Коррекция дефицита витамина D у пациентов с подагрой, принимающих фебуксостат (пилотное исследование). Современная ревматология. 2025;19(5):84—89. https://doi.org/10.14412/1996-7012-2025-5-84-89

Correction of vitamin D deficiency in patients with gout receiving febuxostat (pilot study) Eliseev M.S., Zhelyabina O.V., Kuzmina Ya.I., Chikina M.N.

V.A. Nasonova Research Institute of Rheumatology, Moscow 34A, Kashirskoe Shosse, Moscow 115522, Russia

Objective. To evaluate the effect of correcting vitamin D deficiency on uricemia, inflammation, and parathyroid function in patients with gout receiving febuxostat.

Material and methods. This prospective observational study included 79 patients with gout who had been receiving febuxostat at adequate doses for ≥ 2 weeks. Serum levels of uric acid (UA), parathyroid hormone (PTH), vitamin D, and C-reactive protein (CRP) were measured in all patients. In cases of vitamin D deficiency (25(OH)D < 30 ng/ml), patients were advised to take cholecalciferol 4000 IU/day for 3 months. The dynamics of these parameters were then assessed in patients who received cholecalciferol (Group 1) and those with normal vitamin D levels (Group 2).

Results and discussion. In 65 (83%) of 79 patients, serum UA level was <360 μ mol/L; febuxostat dose ranged from 40 to 120 mg/day. In 63 (80%) patients, 25(OH)D level was <30 ng/ml; of these, 19 (30%) received cholecalciferol (Group 1). After treatment, the level of 25(OH)D increased (p=0.0013), and level of PTH decreased (p=0.0077). Changes in serum UA were comparable between groups (p=0.72). No correlation was found between Δ vitamin D and Δ UA in patients with vitamin D deficiency (r=-0.26, p>0.05). In Group 1, the median Δ CRP was significantly greater than in Group 2 (p=0.027). The number of patients with CRP >2 mg/L in Group 1 decreased from 11 (58%) to 5 (26%) (p=0.049). Conclusion. Correction of vitamin D deficiency in gout patients receiving optimal urate-lowering therapy reduces CRP levels but does not affect serum UA. For a substantial proportion of patients, a febuxostat dose of 40 mg/day is sufficient.

Keywords: gout; vitamin D; uric acid; cholecalciferol; febuxostat; C-reactive protein.

Contact: Maksim Sergeevich Eliseev; elicmax@vandex.ru

For citation: Eliseev MS, Zhelyabina OV, Kuzmina YaI, Chikina MN. Correction of vitamin D deficiency in patients with gout receiving febuxostat (pilot study). Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):84–89 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-84-89

Подагра — одно из наиболее распространенных ревматических заболеваний, опосредованное воспалением в местах отложения кристаллов моноурата натрия у лиц с гиперурикемией (ГУ), связанное с сердечно-сосудистыми заболеваниями и рядом обменных нарушений [1, 2]. Основа успешного контроля подагры – поддержание уровня мочевой кислоты (МК) сыворотки крови <360 мкмоль/л [3], что, помимо подбора оптимальных доз уратснижающих препаратов, определяет необходимость учитывать влияние на уровень урикемии отдельных пищевых продуктов и лекарственных средств, назначаемых с целью терапии коморбидных заболеваний [4]. При этом перечень заболеваний, связанных с ГУ и подагрой, продолжает расширяться и предполагается, что к ним относится и гиповитаминоз D. По данным Национального обследования здоровья и питания (National Health and Nutrition Examination Survey, NHANES, США), уровень витамина D (25(OH)D) <30 нг/мл выявляется более чем у 75% пациентов с ГУ при обратной корреляции между уровнем витамина D и содержанием МК [5], хотя в более ранней популяционной работе такой связи не обнаружено [6].

Помимо регуляции костного и минерального обмена, витамин D оказывает влияние на врожденный и адаптивный иммунитет, участвуя в регуляции синтеза провоспалительных цитокинов, а также на экспрессию уратных транспортеров в почках (URAT1 и GLUT9), повышая урикозурию [3]. В условиях хронического воспаления, характерного для подагры, он может выполнять иммуномодулирующую роль, снижая уровни интерлейкина (ИЛ) 6, фактора некроза опухоли α (ФНО α) и СРБ [7]. Следует предположить, что адекватная коррекция гиповитаминоза D может влиять на уровень урикемии и интенсивность хронического воспаления, однако подобные работы отсутствуют.

Цель данного пилотного исследования — установить связь между коррекцией гиповитаминоза D и динамикой уровня MK в крови у пациентов с подагрой.

Материал и методы. В проспективное наблюдательное исследование включено 79 пациентов с подагрой, обратившиеся в ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой» (НИИР им. В.А. Насоновой).

Критерии включения: возраст ≥18 лет; диагноз подагры (критерии American College of Rheumatology / European Alliance of Associations for Rheumatology, 2015); прием фебуксостата в адекватной дозе (40-120 мг/сут) не менее 2 нед до скринингового визита.

Критерии невключения: хроническая болезнь почек ≥4-й стадии; онкологическая патология в течение 5 лет, предшествовавших исследованию; необходимость увеличения дозы фебуксостата; прием препаратов витамина D менее чем за 6 мес до начала исследования.

Протокол исследования был одобрен локальным этическим комитетом НИИР им. В.А. Насоновой. Все пациенты подписали информированное согласие на участие в исследовании.

У всех пациентов определяли уровни МК, витамина D, паратгормона (ПТГ), СРБ, креатинина, аланинаминотрансферазы (АЛТ), аспартатаминотрансферазы (АСТ), щелочной фосфатазы (ЩФ), общего кальция (Са), оценивали индекс массы тела (ИМТ). Скорость клубочковой фильтрации (СКФ) рассчитывали по формуле СКD-ЕРІ. За дефицит и оптимальный уровень витамина D принимали концентрацию

25(OH)D в сыворотке крови соответственно <30 нг/мл (<75 нмоль/л) и >30 нг/мл (>75 нмоль/л).

Всем пациентам с сывороточным уровнем витамина D <30 нг/мл был рекомендован прием холекальциферола 4000 МЕ/сут в течение 3 мес. Больные, соблюдавшие данное предписание, составили 1-ю группу, пациенты с нормальным уровнем витамина D вошли во 2-ю группу. Через 3 мес была проведена сравнительная динамическая оценка лабораторных показателей в группах.

На протяжении исследования доза фебуксостата оставалась неизменной у всех пациентов.

Статистический анализ данных. При нормальном распределении данные описывали как среднее значение (M) и стандартное отклонение (SD) с указанием 95% доверительного интервала (95% ДИ), в случае отклонения от нормального распределения — как медиану и интерквартильный интервал (Ме [25-й; 75-й перцентили]). Оценивали разницу (Δ) между медианами показателей после и до терапии.

Для выявления различий между двумя независимыми группами применялись: t-критерий Стьюдента при нормальном распределении и U-критерий Манна—Уитни при ненормальном. Сравнение долей между двумя группами проводилось с использованием χ^2 -критерия Пирсона. Для отдельных показателей выполнялся корреляционный анализ Спирмена. Статистически значимыми считались различия при р<0,05.

Результаты. Клиническая характеристика включенных в исследование пациентов представлена в табл. 1.

Большинство пациентов составляли мужчины (91%). Сывороточный уровень витамина D был ниже референсных значений у 80% пациентов, концентрация МК только у 17% больных превышала целевой уровень (<360 мкмоль/л). 19 (24%) пациентов принимали фебуксостат в дозе 40 мг/сут, 40 (51%) — 80 мг/сут и 20 — 120 мг/сут (25%). У 14 пациентов, получавших фебуксостат в максимальной дозе (120 мг/сут), сывороточный уровень МК превышал целевые показатели, при этом у 10 больных он был близок в целевому (360—420 мкмоль/л) и лишь у 1 составлял >480 мкмоль/л (485,4 мкмоль/л). У 44% пациентов сывороточный уровень СРБ был >2 мг/л.

Корреляция между уровнями ПГТ и МК отсутствовала (r=-0.06), доля лиц с уровнем МК ниже целевого среди пациентов с ПТГ >65 и <65 пг/мл была сопоставимой (p=0.92).

Через 3 мес были проанализированы данные 19 пациентов, получавших терапию холекальциферолом (1-я группа), и 16 пациентов с исходно нормальным уровнем витамина D (2-я группа). Прием холекальциферола был рекомендован 44 пациентам, но они не выполняли данное предписание и были исключены из дальнейшего наблюдения. Сравнительная характеристика пациентов двух групп представлена в табл. 2.

Различий по возрасту, уровням МК, СРБ и другим клинико-лабораторным показателям в группах не отмечалось. Значения АСТ, АЛТ, Щ Φ , Са, креатинина, СК Φ , не представленные в табл. 2, в группах существенно не различались и почти не изменились относительно исходных.

Вторичный гиперпаратиреоз (ГПТ, ПТГ >65 пг/мл) наблюдался у 6 пациентов 1-й группы.

В табл. 3 приведена динамика показателей в группах через 3 мес. В обеих группах наблюдалось незначительное сопоставимое снижение уровня МК относительно исходных значений (p=0,72). В 1-й группе его медиана составила

Таблица 1. Клиническая характеристика пациентов (n=79) Table 1. Clinical characteristics of patients (n=79)

Показатель	Значение
Мужчины/женщины, n (%)	72/7 (91/9)
Возраст, годы, M±SD	48,8±11,2
ИМТ, кг/м², М±SD	30,3±5,8
ИМТ 30,0 кг/м², n (%)	37 (47)
Лабораторные показатели	
MK , мкмоль/л, $M\pm SD$	314,5±65,4
MK >360 мкмоль/л, n (%)	14 (17)
Витамин D, нг/мл, Ме [25-й; 75-й перцентили]	21,7 [17,0; 26,8]
Витамин D <30 нг/мл, n (%)	63 (80)
ПТГ, пг/мл, Ме [25-й; 75-й перцентили]	40,7 [29,9; 62,9]
ПТГ >65 пг/мл, n (%)	16 (20)
Ca, ммоль/л, M±SD	2,42±0,10
АЛТ, ед/л, Ме [25-й; 75-й перцентили]	30,7 [20,1; 41,8]
АСТ, ед/л, Ме [25-й; 75-й перцентили]	22,9 [18,3; 31,4]
СРБ, мг/л, Ме [25-й; 75-й перцентили]	1,7 [0,9; 3,3]
СРБ 2 мг/л, n (%)	35 (44)
Креатинин, мкмоль/л, М±SD	92,5±18,0
СКФ, мл/мин/1,73м², M±SD	83,7±20,9
ЩФ, ед/л, М±SD	82,3±20,8

-18,8 [-46,2; -4,5] мкмоль/л (p=0,022), в 2-й группе — -23,9 [-34,5; -0,1] мкмоль/л (p=0,008). Число пациентов с достигнутым целевым уровнем МК не изменилось.

Сывороточный уровень витамина D в 1-й группе статистически значимо увеличился (p=0,0013), концентрация ПТГ снизилась (p=0,0077); во 2-й группе эти показатели остались почти неизменными. Корреляция между Δ витамина D и Δ MK у пациентов 1-й группы оказалась крайне слабой (r=-0,26, p>0,05).

Снижение сывороточного уровня СРБ наблюдалось в обеих группах, но его динамика в 1-й группе была более существенной (p=0,027). Число пациентов с уровнем СРБ >2 мг/л в 1-й группе сократилось с 11 (58%) до 5 (26%), p=0,049.

Обсуждение. Общепризнано, что дефицит витамина D является глобальной проблемой, которая влияет не только на состояние опорно-двигательного аппарата, но и на широкий спектр острых и хронических заболеваний. Однако скепсис в отношении «внескелетной» пользы приема витамина D взрослыми лицами сохраняется [8], а вопрос об оптимальном его уровне и терапевтических дозах в сыворотке крови не решен [9], в том числе и у пациентов с ГУ и подагрой [10].

Механизмы связи между витамином D и МК остаются неясными, но существует несколько возможных их объяснений. Так, МК подавляет экспрессию белка 1α-гидроксилазы и мРНК в клетках проксимальных канальцев, тем самым

снижая концентрацию 1,25(OH)2D, а лечение фебуксостатом (все пациенты в нашем исследовании получали его в адекватной дозе) может полностью восстановить экспрессию белка 1α -гидроксилазы и частично обратить вспять нарушение функции почек [11]. По данным R. Vanholder и соавт. [12], у пациентов с хронической почечной недостаточностью уровень МК снижался, а концентрация 1,25(OH)2D увеличивалась при приеме аллопуринола.

Чтобы исключить потенциальное влияние фебуксостата на уровень витамина D, мы сознательно отбирали в исследование только пациентов, принимавших фебуксостат в неизменной дозе, необходимой для достижения целевого уровня МК в крови. Мы обнаружили, что четверть пациентов получала фебуксостат в дозе 40 мг/сут и этой дозы было достаточно для поддержания целевого уровня МК. Хотя оценка эффективности фебуксостата не являлась целью нашей работы, этот факт заслуживает особого внимания в контексте различий в отдельных рекомендациях по лечению подагры [13], и возможность выбора в качестве стартовой дозы 40 мг/сут, особенно в случае умеренного повышения уровня МК, представляется оправданной. Так, эта доза сопоставима по силе уратснижающего эффекта с 300 мг/сут аллопуринола и, по некоторым данным, может быть эффективной более чем у 50% пациентов [14]. В Российской Федерации представлены препараты фебуксостата, которые позволяют использовать такую дозу, например делимая таблетка 80 мг Аденурик®. В целом лишь небольшая часть наших пациентов имела незначительное превышение уровня МК в крови (18%), в большинстве случаев доза 40-80 мг/сут оказалась достаточной (75%).

Дефицит витамина D часто вызывает вторичный ГПТ, что приводит к повышению концентрации ПТГ. Последний может подавлять экспрессию экспортера уратов ABCG2 в кишечнике и почках, тем самым снижая экскрецию уратов [15]. У 20 наших пациентов отмечалось умеренное повышение уровня ПТГ в крови, но ни корреляции между уровнями ПТГ и МК, ни различий по содержанию МК в сыворотке и частоте достижения целевого уровня МК при сравнении пациентов с вторичным ГПТ и без него мы не выявили.

Кроме того, витамин D оказывает известное противовоспалительное действие [16]. В настоящей работе мы попытались установить, имеет ли клиническое значение медикаментозная коррекция гиповитаминоза D у пациентов с подагрой в отношении уровня МК и выраженности хронического воспаления, оцененного по концентрации СРБ.

Хотя высокая распространенность гиповитаминоза D при подагре была нами показана и ранее у нелеченых пациентов, достоверной связи между уровнем витамина D и выраженностью ГУ у них не выявлено [17]. Это контрастирует с данными последних эпидемиологических исследований, в которых была установлена не только высокая частота дефицита витамина D, но и положительная корреляция между ГУ, подагрой и риском дефицита витамина D [5, 10]. Одной из причин этого могут быть разные диапазоны как уровней МК, так и витамина D: например, в недавнем исследовании Ү. Нап и соавт. [5] медиана сывороточного уровня витамина D составляла 16,5 нг/мл, тогда как в нашей выборке -21,7 нг/мл. Кроме того, целью настоящего исследования было достижение нормативных значений концентрации 25(ОН) D в сыворотке крови за счет приема стандартной дозы витамина D (4 000 ME/сут) у пациентов, получающих уратснижающие препараты в оптимальной

Таблица 2. Исходная сравнительная характеристика пациентов с дефицитом витамина D и нормальным его уровнем Table 2. Baseline comparative characteristics of patients with vitamin D deficiency and with normal vitamin D levels

Показатель	1-я группа, дефицит витамина D (n=19)	2-я группа, нормальный уровень витамина D (n=16)	p
Пол, мужчины, п (%)	3 (16)	15 (94)	0,38
Возраст, годы, Ме [25-й; 75-й перцентили]	52,0 [42,0; 58,0]	48,0 [38,5; 56,5]	0,57
ИМТ, кг/м², Ме [25-й; 75-й перцентили]	31,0 [28,1; 33,9]	29,6 [25,3; 33,0]	0,33
ИМТ ≥30,0 кг/м², n (%)	11 (58)	8 (50)	0,64
Витамин D, нг/мл, Ме [25-й; 75-й перцентили]	19,2 [15,3; 23,0]	49,0 [37,5; 51,4]	<0,0001
МК, мкмоль/л, Ме [25-й; 75-й перцентили]	305,4 [276,7; 357,0]	319,5 [265,3; 367,5]	0,36
MK >360 мкмоль/л, n (%)	1 (5)	4 (25)	0,10
ПТГ, пг/мл, Ме [25-й; 75-й перцентили]	40,7 [33,1; 71,6]	37,3 [28,1; 50,1]	0,25
ПТГ >65 пг/мл, п (%)	6 (32)	0	0,014
СРБ, мг/л, Ме [25-й; 75-й перцентили]	2,8 [1,1; 6,3]	1,4 [0,9; 6,5]	0,53
СРБ >2 мг/л, n (%)	11 (58)	7 (44)	0,40

Таблица 3. Динамика лабораторных показателей у пациентов с дефицитом и нормальным уровнем витамина D после 3 мес наблюдения Table 3. Dynamics of laboratory parameters in patients with vitamin D deficiency and normal vitamin D levels after 3 months of follow-up

Показатель	1-я группа, дефицит витамина D (n=19)	2-я группа, нормальный уровень витамина D (n=16)	p
МК, мкмоль/л, Ме [25-й; 75-й перцентили]	279,9 [251,3; 312,1]	301,3 [250,7; 345,9]	0,37
Δ МК, мкмоль/л, Ме [25-й; 75-й перцентили]	-18,8 [-46,2; -4,5]	-23,9 [-34,5; -0,1]	0,72
MK >360 мкмоль/л, n (%)	1 (10)	4 (25)	0,10
ПТГ, пг/мл, Ме [25-й; 75-й перцентили]	37,0 [32,5; 40,0]	45,5 [35,3; 48,1]	0,26
Витамин D, нг/мл, Ме [25-й; 75-й перцентили]	35,5 [31,3; 39,0]	45,3 [36,6; 49,2]	0,024
Витамин D≥30 нг/мл, п (%)	2 (13)	1 (5)	0,42
СРБ, мг/л, Ме [25-й; 75-й перцентили]	1,3 [0,7; 2,6]	1,2 [0,7; 4,5]	0,90
Δ СРБ, мг/л, Ме [25-й; 75-й перцентили]	-1,5 [-2,1; -0,5]	-0,4 [-1,0; 0,2]	0,027

или близкой к оптимальной дозе, тогда как в цитируемых выше работах изучался не собственно уратснижающий эффект витамина D, а ассоциация между указанными обменными нарушениями, при этом расчетные дозы потребления витамина D были низкими [5, 10]. Выбор дозы холекальциферола 4000 МЕ/сут был обусловлен современными подходами к коррекции дефицита витамина D у пациентов с ожирением и хроническим воспалением. Согласно консенсусу 6-й Международной конференции, посвященной противоречиям в отношении витамина D, именно такая доза рекомендуется как безопасная и эффективная [18]. После 3 мес терапии витамином D в данной дозе уровень 25(OH)D ≥30 нг/мл наблюдался у 87% пациентов. Обращает на себя внимание, что холекальциферол принимали менее трети всех обследованных, что можно объяснить как низкой комплаентностью пациентов с подагрой [19], так и плохой приверженностью терапии витамином D, особенно при ежедневном приеме [20].

H. Nimitphong и соавт. [21] обнаружили, что прием витамина D (холекальциферол 15 000 МЕ/нед или эрго-

кальциферол 20 000 МЕ/нед) был связан с достоверным снижением концентрации МК в сыворотке крови через 12 нед, но лишь у участников с исходным уровнем МК >6 мг/дл (>360 мкмоль/л). В нашем случае лишь у 1 пациента, принимавшего витамин D, сывороточный уровень МК был выше указанного значения.

Важной находкой стало снижение уровня СРБ в сыворотке у пациентов, принимавших холекальциферол: медиана Δ СРБ составила -1,5 мг/л в основной группе и лишь -0,4 мг/л в контрольной (p=0,027), а доля пациентов с уровнем СРБ >2 мг/л, считающимся проатерогенным [22], среди получавших терапию витамином D сократилась с 58 до 26% (p=0,049). Иммуномодулирующее действие витамина D, вероятно, реализуется через подавление синтеза провоспалительных цитокинов (ИЛ6, Φ HO α), регуляцию врожденного иммунитета, ингибирование транскрипционного фактора NF-кВ и экспрессии TLR-рецепторов [23]. И хотя уровень СРБ в крови у пациентов с подагрой во внеприступном периоде не позволяет прогнозировать новые обострения арт-

рита [24], можно предположить, что противовоспалительный эффект витамина D будет важен как минимум для профилактики сердечно-сосудистых заболеваний [25].

Значимые эффекты коррекции дефицита витамина D проявились и в динамике уровня ПТГ, снижение которого наблюдалось при приеме холекальциферола (p=0,0077). Хотя существуют теоретические предпосылки для прямой связи урикемии с уровнем ПТГ [26], вероятно, клиническое значение будут иметь именно ГПТ [27] и его глобальная коррекция, например в результате паратиреоидэктомии [28], либо терапия высокими дозами терипаратида [29], тогда как незначительные колебания уровня ПТГ, как и в нашем случае, скорее всего, не оказывают влияния на концентрацию МК.

Ограничениями настоящего исследования являются малый объем выборки, отсутствие группы сравнения с дефицитом витамина D без лечения, контроля за факторами

образа жизни и относительно небольшой срок наблюдения. Однако исследование отражает реалии амбулаторной практики и обладает высокой внешней валидностью, что повышает его практическую значимость.

Заключение. Таким образом, несмотря на отсутствие значимого уратснижающего эффекта, скрининг и коррекция дефицита витамина D у пациентов с подагрой, особенно при наличии признаков системного воспаления, имеют важное значение. Для уточнения терапевтической роли витамина D в комплексном ведении больных подагрой необходимы дальнейшие исследования. Дополнительным результатом работы следует считать позитивную динамику сывороточного уровня СРБ у пациентов с подагрой, принимавших холекальциферол, а также, эффективность низких доз фебуксостата (40 мг/сут) в значительной части случаев.

ЛИТЕРАТУРА/REFERENCES

- 1. Елисеев МС, Барскова ВГ. Метаболический синдром при подагре. Вестник Российской академии медицинских наук. 2008;(6):29-32.
- [Eliseev MS, Barskova VG. Metabolic syndrome in gout. *Vestnik Rossiiskoi akademii meditsinskikh nauk*. 2008;(6):29-32. (In Russ.).
- 2. FitzGerald JD, Dalbeth N, Mikuls T, et al. 2020 American College of Rheumatology Guideline for the Management of Gout. *Arthritis Care Res (Hoboken)*. 2020 Jun;72(6): 744-760. doi: 10.1002/acr.24180.
- 3. Chen W, Roncal-Jimenez C, Lanaspa M, et al. Uric acid suppresses 1 alpha hydroxylase *in vitro* and in vivo. *Metabolism*. 2014 Jan; 63(1):150-60. doi: 10.1016/j.metabol. 2013.09.018.
- 4. Елисеев МС, Елисеева МЕ. Современные аспекты патогенеза и коррекции гиперурикемии, а также ассоциированных с ней состояний. Эффективная фармакотерапия. 2019;15(8):32-40.
- Eliseev MS, Eliseeva ME. Modern Aspects of Pathogenesis and Correction of Hyperuricemia and Associated Conditions. *Effektivnaya farmakoterapiya*. 2019;15(8):32-40. (In Russ.).
- 5. Han Y, Han X, Zhao H, et al. The exploration of the relationship between hyperuricemia, gout and vitamin D deficiency. *J Nutr Biochem.* 2025 Apr;138:109848. doi:10.1016/j.jnutbio.2025.109848. 6. Al-Naqeeb J, Saeed M, Dye B, et al. Association of Gout with Vitamin D: A Population-Based Study [abstract]. *Arthritis Rheumatol.* 2019;71(suppl 10).
- Rheumatol. 2019;71(suppl 10).

 7. Ritchlin CT, Haas-Smith SA, Li P, et al. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. *J Clin Invest.* 2003 Mar;111(6):821-31. doi:10.1172/JCI16069.

 8. Goswami C, Law S, Zhang H, et al. Are there prophylactic effects of vitamin D among healthier adult patients? A systematic review

- of randomized controlled trials. *BMC Nutr.* 2025 Jul 4;11(1):118. doi:10.1186/s40795-025-01107-0.
- 9. Charoenngam N, Holick MF. Immunologic Effects of Vitamin D on Human Health and Disease. *Nutrients*. 2020 Jul 15;12(7):2097. doi:10.3390/nu12072097.
- 10. Zhang YY, Qiu HB, Tian JW. Association Between Vitamin D and Hyperuricemia Among Adults in the United States. *Front Nutr.* 2020 Nov 20;7:592777. doi:10.3389/fnut. 2020.592777.
- 11. Chen W, Roncal-Jimenez C, Lanaspa M, et al. Uric acid suppresses 1 alpha hydroxylase in vitro and in vivo. *Metabolism*. 2014 Jan; 63(1):150–60. doi:10.1016/j.metabol. 2013.09.018.
- 12. Vanholder R, Patel S, Hsu CH. Effect of uric acid on plasma levels of 1,25(OH)2D in renal failure. *J Am Soc Nephrol JASN*. 1993 Oct;4(4):1035–8. doi:10.1681/asn.V441035. 13. Елисеев МС. Комментарии к обновленным рекомендациям Американской коллегии ревматологов по лечению подагры. Уратснижающие препараты (часть 1). Современная ревматология. 2020;14(3): 117-124.
- Eliseev MS. Commentaries on the updated American College of Rheumatology guidelines for the management of gout. Uratelowering drugs (Part 1). Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2020;14(3):117-124. (In Russ.). doi:10.14412/1996-7012-2020-3-117-124. 14. O'Dell JR, Brophy MT, Pillinger MH, et al. Comparative Effectiveness of Allopurinol and Febuxostat in Gout Management. NEJM Evid. 2022 Mar; 1(3):10.1056/ evidoa2100028. doi:10.1056/evidoa2100028. 15. Lin KM, Lu CL, Hung KC, et al. The Paradoxical Role of Uric Acid in Osteoporosis. Nutrients. 2019 Sep 5;11(9):2111. doi:10.3390/nu11092111.
- 16. Murdaca G, Tonacci A, Negrini S, et al. Emerging role of vitamin D in autoimmune

- diseases: An update on evidence and therapeutic implications. *Autoimmun Rev.* 2019 Sep;18(9):102350. doi:10.1016/j.autrev. 2019.102350.
- 17. Елисеев МС, Желябина ОВ, Кузьмина ЯИ и др. Гиповитаминоз витамина D у пациентов с подагрой (данные пилотного исследования). Медицинский алфавит. 2024;(29):46-49.
- Eliseev MS, Zhelyabina OV, Kuzmina YaI, et al. Hypovitaminosis of vitamin D in patients with gout (data from a pilot study). *Meditsinskii alfavit.* 2024;(29):46-49. (In Russ.).
- 18. Giustina A, Bilezikian JP, Adler RA, et al. Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. *Endocr Rev.* 2024 Sep 12; 45(5):625-54. doi: 10.1210/endrev/bnae009. 19. Chattranukulchai Shantavasinkul P, Nimitphong H. Vitamin D and Visceral Obesity in Humans: What Should Clinicians Know? *Nutrients*. 2022 Jul 27;14(15):3075. doi:10.3390/nu14153075.
- 20. Елисеев МС, Барскова ВГ, Денисов ИС. Динамика клинических проявлений подагры у мужчин (данные 7-летнего ретроспективного наблюдения). Терапевтический архив. 2015;87(5):10 15.
- Eliseev MS, Barskova VG, Denisov IS. Time course of changes in the clinical manifestations of gout in men: Data of a 7-year retrospective follow-up. *Terapevticheskii arkhiv*. 2015;87(5):10 15. (In Russ.).
- 21. Nimitphong H, Saetung S, Chailurkit LO, et al. Vitamin d supplementation is associated with serum uric acid concentration in patients with prediabetes and hyperuricemia. *J Clin Transl Endocrinol.* 2021 Apr 2; 24:100255. doi: 10.1016/j.jcte.2021.100255.
- 22. Lawler PR, Bhatt DL, Godoy LC, et al. Targeting cardiovascular inflammation: next steps in clinical translation. *Eur Heart J.* 2021 Jan 1;42(1):113-31. doi:10.1093/eurheartj/ehaa099.

23. Chan F, Cui C, Peng Y, et al The associations among serum vitamin D concentration, systemic immune-inflammation index, and lifestyle factors in Chinese adults: a cross-sectional analysis. *Front Nutr.* 2025 May 30;12: 1543925. doi: 10.3389/fnut.2025.1543925. 24. Alissa EM. Vitamin D and cardiovascular diseases: A narrative review. *J Family Med Prim Care*. 2024 Apr;13(4):1191-9. doi:10.4103/jfmpc.jfmpc_1481_23. 25. Елисеев МС, Денисов ИС, Маркелова ЕИ и др. Независимые факторы риска развития тяжелых сердечно-сосудистых осложнений у мужчин с подагрой: результаты 7-летнего проспективного исследо-

вания. Терапевтический архив. 2017;89(5):10-9. Eliseev MS, Denisov IS, Markelova EI, et al. Independent risk factors for severe cardiovascular events in male patients with gout: Results of a 7-year prospective study. *Terapevticheskii arkhiv*. 2017;89(5):10 19. (In Russ.). 26. Hui JY, Choi JW, Mount DB, et al. The independent association between parathyroid hormone levels and hyperuricemia: a national population study. *Arthritis Res Ther*. 2012 Mar 10;14(2):R56. doi:10.1186/ar3769. 27. Broulik PD. Broulikova A. Adamek S.

et al. Improvement of hypertension after

parathyroidectomy of patients suffering from primary hyperparathyroidism. *Int J Endocrinol.* 2011;2011:309068. doi:10.1155/2011/309068.

28 Ishay A, Herer P, Luboshitzky R. Effects of successful parathyroidectomy on metabolic cardiovascular risk factors in patients with severe primary hyperparathyroidism. *Endocr Pract.* 2011 Jul-Aug;17(4):584-90. doi:10.4158/EP10321.OR.
29. Miller PD, Schwartz EN, Chen P, et al. Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. *Osteoporos Int.* 2007 Jan;18(1): 59-68. doi: 10.1007/s00198-006-0189-8.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 03.08.2025/22.09.2025/29.09.2025

Заявление о конфликте интересов/Conflict of Interest Statement

Статья подготовлена в рамках научного государственного задания по теме №123041800013-3.

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared as a part of the research work №123041800013-3.

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Елисеев М.С. https://orcid.org/0000-0003-1191-5831 Желябина О.В. https://orcid.org/0000-0002-5394-7869 Кузьмина Я.И. https://orcid.org/0009-0006-6138-9736 Чикина М.Н. https://orcid.org/0000-0002-8777-7597

Госпитальная смертность в когорте кыргызских пациентов с системной красной волчанкой

Койлубаева Г.М.¹, Асеева Е.А.², Соловьев С.К.², Лила А.М.^{2,3}, Глухова С.И.²

¹Национальный центр кардиологии и терапии им. акад. Мирсаида Миррахимова при Министерстве здравоохранения Кыргызской республики, Бишкек; ²ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ³ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва ¹Кыргызская Республика, 720040, Бишкек, ул. Тоголока Молдо, 3; ²Россия, 115522, Москва, Каширское шоссе, 34A; ³Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1

Наиболее частыми причинами госпитализации пациентов с системной красной волчанкой (СКВ) считаются высокая активность, поражение жизненно важных органов, тяжелые обострения и инфекции. У азиатов, афро- и латиноамериканцев отмечается более высокая частота госпитальной летальности (ГЛ) по сравнению с пациентами европеоидной расы. В азиатских когортах наиболее распространенными причинами ГЛ являются инфекции, тяжелые формы волчаночного нефрита (ВН) и нейропсихических проявлений.

Цель исследования — изучить структуру смертности и прогностические факторы, связанные с повышенным риском летального исхода у госпитализированных пациентов с СКВ.

Материал и методы. В исследование включено 800 пациентов с достоверным диагнозом СКВ, леченных в клинике Национального центра кардиологии и терапии им. акад. Мирсаида Миррахимова с января 2012 г. по декабрь 2024 г. Для анализа структуры и причин ГЛ использована электронная база данных о летальным случаях. С целью проведения сравнительного анализа клиниколабораторных проявлений СКВ и определения предикторов ГЛ пациенты были разделены на две группы — группу выживших и группу умерших. Всем пациентам проведены общепринятые клиническое, лабораторное и инструментальное исследования.

Результаты и обсуждение. В кыргызской популяции больных СКВ ГЛ достигала 3,3%. Подавляющее большинство умерших пациентов — молодые женщины (88,5%) с острым вариантом течения (53,9%), высокой активностью (73,1%), поражением почек (76,9%), центральной нервной системы — ЦНС (50%) и органов дыхания (34,6%). Максимальное число случаев ГЛ было связано с тяжелым течением ВН (30,8%), сочетанным поражением почек и ЦНС (15,4%). Независимыми предикторами ГЛ являлись ВН с признаками выраженной хронической почечной недостаточности (ХПН), необратимое повреждение органов (НПО) и гипокоплементемия по С3. **Заключение.** Основными причинами ГЛ были тяжелая форма ВН (30,8%), сочетанное поражение почек и ЦНС (15,4%), а независимыми предикторами — ВН с выраженной ХПН, НПО и гипокоплементемия по С3.

Ключевые слова: системная красная волчанка; активность; азиаты; госпитальная летальность; инфекция; волчаночный нефрит; предикторы.

Контакты: Гулазык Маликовна Койлубаева; makmal@rambler.ru

Для цитирования: Койлубаева ГМ, Асеева ЕА, Соловьев СК, Лила АМ, Глухова СИ. Госпитальная смертность в когорте кыргызских пациентов с системной красной волчанкой. Современная ревматология. 2025; 19(5):90—97. https://doi.org/10.14412/1996-7012-2025-5-90-97

Hospital mortality in a cohort of Kyrgyz patients with systemic lupus erythematosus Koilubaeva G.M.¹, Aseeva E.A.², Soloviev S.K.², Lila A.M.^{2,3}, Glukhova S.I.²

¹National Center of Cardiology and Therapy named after academician Mirsaid Mirrahimov, Ministry of Health of Kyrgyz Republic, Bishkek; ²V.A. Nasonova Research Institute of Rheumatology, Moscow; ³Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow ¹3, Togolok Moldo Street, Bishkek 720040, Kyrgyz Republic; ²34A, Kashirskoe Shosse, Moscow 115522, Russia; ³2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia

High disease activity, major organ involvement, severe exacerbations, and infections are considered the most common causes of hospitalization in patients with systemic lupus erythematosus (SLE). Hospital mortality (HM) is higher among Asian, African, and Latin American patients compared with Caucasians. In Asian cohorts, the most frequent causes of HM are infections, severe lupus nephritis (LN), and neuropsychiatric manifestations.

Objective. To analyze the structure of mortality and prognostic factors associated with increased risk of death in hospitalized SLE patients. **Material and methods.** The study included 800 patients with a confirmed diagnosis of SLE treated at the National Center of Cardiology and Therapy named after academician Mirsaid Mirrahimov from January 2012 to December 2024. An electronic database of fatal cases was used to assess the structure and causes of HM. For comparative analysis of clinical and laboratory manifestations of SLE and to identify predictors of HM,

patients were divided into survivor and non-survivor groups. All patients underwent standard clinical, laboratory, and instrumental examinations. **Results and discussion.** In the Kyrgyz SLE population, HM reached 3.3%. The vast majority of deceased patients were young women (88.5%) with acute disease course (53.9%), high activity (73.1%), kidney involvement (76.9%), central nervous system (CNS) involvement (50%), and lung involvement (34.6%). The main causes of HM were severe LN (30.8%) and combined kidney and CNS involvement (15.4%). Independent predictors of HM were LN with advanced chronic kidney disease (CKD), irreversible organ damage, and C3 hypocomplementemia.

Conclusion. The main causes of HM were severe LN (30.8%) and combined kidney and CNS involvement (15.4%). Independent predictors of HM included LN with advanced CKD, irreversible organ damage, and C3 hypocomplementemia.

Keywords: systemic lupus erythematosus; activity; Asians; hospital mortality; infection; lupus nephritis; predictors.

Contact: Gulazyk Malikovna Koilubaeva; makmal@rambler.ru

For citation: Koilubaeva GM, Aseeva EA, Solovyev SK, Lila AM, Glukhova SI. Hospital mortality in a cohort of Kyrgyz patients with systemic lupus erythematosus. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):90–97 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-90-97

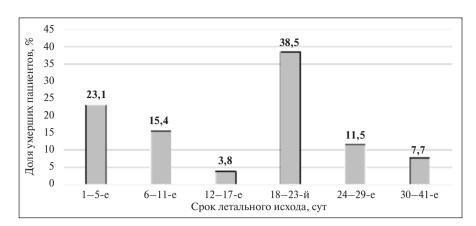
Системная красная волчанка (СКВ) – системное аутоиммунное ревматическое заболевание неизвестной этиологии. характеризующееся гиперпродукцией органонеспецифических аутоантител к различным компонентам клеточного ядра и развитием иммуновоспалительного повреждения внутренних органов [1]. Достижения последних десятилетий в терапии пациентов с СКВ обеспечили улучшение выживаемости, высокую частоту стойкой ремиссии, снижение случаев госпитализации, необратимых повреждений органов (НПО) и смертности [2-4]. Однако, несмотря на улучшение прогноза и выживаемости, смертность при СКВ в 1,5-3 раза выше, чем в общей популяции [5], и превышает таковую у пациентов с другими иммуновоспалительными ревматическими заболеваниями (ИВРЗ), такими как системная склеродермия, болезнь Шегрена, идиопатические воспалительные миопатии и системные васкулиты, ассоциированные с антинейтрофильными цитоплазматическими антителами [6]. В последние годы в структуре смертности при СКВ существенно сократилась доля проявлений активности и полисиндромного поражения, в то же время возросла роль инфекционных, онкологических и сердечно-сосудистых заболеваний [7-12]. Наиболее распространенными причинами госпитализации пациентов с СКВ считаются высокая активность, частые обострения и тяжелые инфекции [13–18]. Результаты большинства популяционных и когортных исследований свидетельствуют о тяжелом течении СКВ и высокой смертности у госпитализированных азиатов, афро- и латиноамериканцев по сравнению с пациентами европеоидной расы [19-22].

Цель исследования — изучить структуру смертности и прогностические факторы, связанные с повышенным риском летального исхода у госпитализированных пациентов с CKB .

Материал и методы. В когортное проспективное исследование включено 800 пациентов с достоверным диагнозом СКВ, соответствовавших классификационным критериям SLICC (Systemic Lupus International Collaborating Clinics, 2012) [23], леченных в клинике Национального центра кардиологии и терапии им. акад. Мирсаида Миррахимова при Министерстве здравоохранения Кыргызской республики (НЦКиТ) с января 2012 г. по декабрь 2024 г. Пациентов включали на разных этапах исследования по мере первичной госпитализации в НЦКиТ.

Все пациенты подписали информированное согласие на участие в исследовании. Дизайн исследования и использованные методы обследования одобрены локальным этическим комитетом при НЦКиТ в 2012 г.

Критерии включения: достоверный диагноз СКВ; подписанное информированное согласие на участие в исследовании; возраст ≥18 лет.


Критерии невключения: возраст <18 лет.

Пациенты были разделены на две группы (выживших и умерших) для проведения сравнительного анализа клини-ко-лабораторных проявлений и определения предикторов госпитальной летальности (ГЛ). Аутопсия не проводилась в связи с отказом родственников от патологоанатомического вскрытия, в основном по религиозным причинам. Детальный анализ структуры и причин ГЛ выполнялся на основании электронной базы данных о летальных случаях и посмертных эпикризов из официальных медицинских документов. ГЛ рассчитывалась как отношение числа умерших пациентов с СКВ ко всем госпитализированным с данным заболеванием за 1 год [24].

Всем пациентам проведено общепринятое клиническое, стандартное лабораторное и инструментальное исследование. Вариант дебюта заболевания в соответствии с классификацией В.А. Насоновой (1972) [25] оценивали как острый, подострый или хронический. Активность СКВ определяли по SLEDAI-2K (Systemic Lupus Erythematosus Disease Activity Index в модификации 2000 г.): 0- нет активности, 1-5- низкая, 6-10- средняя, 11-19- высокая и >20 баллов — очень высокая [26]. НПО оценивали с помощью индекса повреждения (ИП) SLICC/ACR (American College of Rheumatology) [27]: отсутствие повреждений — 0 баллов, низкий ИП — 1 балл, средний ИП — 2-4 балла, высокий ИП — >4 баллов. Пациенты были стратифицированы на группы ранней (<6 мес) и поздней (≥ 6 мес) диагностики СКВ после начала болезни [28, 29].

Диагностика нейропсихических проявлений СКВ (НПСКВ) проводилась в соответствии с модифицированными классификационными критериям АСR 2001 г. [30]. Волчаночный нефрит (ВН) диагностировали по критериям АСR (2004) [31]. Клинико-лабораторные проявления ВН оценивали с помощью клинической классификации И.Е. Тареевой (1976) [32]. Для выявления острого повреждения почек (ОПП) использовали критерии KDIGO (Kidney Disease: Improving Global Outcomes) [33]. Для определения степени снижения скорости клубочковой фильтрации (СКФ) и выраженности протеинурии применяли классификацию хронической болезни почек (ХБП) по KDIGO (2012) [34].

Статистическая обработка данных проводилась в программах Statistica 10.0 (Stat Soft Inc., США) и SPSS, 23 версия (IBM, США). Количественные переменные с нормальным распределением представлены в виде М±SD, переменные с распределением, отличным от нормального, — в виде медианы с интерквартильным интервалом (Ме [25-й; 75-й перцентили]). При сравнительном анализе данных с нормальным распределением применялся непарный t-test.

Puc. 1. Распределение умерших пациентов с СКВ по срокам ГЛ в 2012—2024 гг. (n=26) **Fig. 1.** Distribution of deceased patients by timing of HM in 2012—2024 (n=26)

При отсутствии нормального распределения количественных параметров использован критерий Манна—Уитни. Качественные переменные сравнивались с помощью критерия χ^2 , двусторонних критериев Фишера и Пирсона с поправкой Йейтса.

Независимые предикторы ГЛ определялись с помощью логистического регрессионного анализа с вычислением отношения шансов (ОШ) и 95% доверительного интервала (ДИ) и представлением данных на графике форест-плот. Различия считались значимыми при p < 0.05.

Результаты. Число госпитализированных пациентов при СКВ было существенно выше, чем при других ИВРЗ, и варьировалось от 13,8 до 21% в год. За анализируемый период во время госпитализации умерли 26 (3,3%) пациентов. Медиана длительности СКВ до летального исхода составила 20,5 [5,0; 96,0] мес, а средняя длительность госпитализации до летального исхода $-13,31\pm8,93$ дней. Анализ ГЛ по срокам пребывания умерших пациентов в стационаре представлен на рис. 1. Так, в первые 5 сут госпитализации умерли 6 (23,1%), на 6-11-е сутки -4 (15,4%) больных. Наибольшее количество летальных исходов приходилось на 8-23-и сутки (38,5%).

Основные исходные клинические характеристики пациентов представлены в табл. 1. В обеих группах преобладали женщины молодого возраста. ГЛ у женщин (88,5%) была выше, чем у мужчин (11,5%), p=0,0009. Умершие мужчины были значительно моложе по сравнению с выжившими пациентами мужского пола (средний возраст — соответственно 22,0 \pm 4,3 и 34,0 \pm 10,4 года; p<0,001). Самая высокая ГЛ отмечалась в возрастной группе 18—23 лет (30,8%).

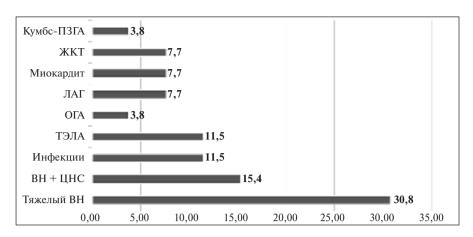
Умершие пациенты чаще, чем выжившие, имели острый вариант течения СКВ (в 53,9 и 32,7% случаев соответственно;

Таблица 1. Сравнительная характеристика выживших и умерших пациентов с СКВ Table 1. Comparative characteristics of survivors and non-survivors with SLE

Показатель	Выжившие пациенты (n=774)	Умершие пациенты (n=26)	p
Женщины/мужчины, n (%)	712 (92)/62 (8)	23 (88,5)/3 (11,5)	0,51
Национальность, n (%): кыргызы/другие азиаты /славяне	685 (88,5)/58 (7,5)/31 (4)	22 (84,6)/3 (11,5)/1 (3,9)	0,87
Возраст пациентов на момент госпитализации, годы, M±SD женщины мужчины	35,4±12,1 35,5±12,2 34,0±10,4	33,7±14,4 35,2±14,5 22,0±4,3	0,26 0,91 <0,001
Длительность СКВ на момент госпитализации, мес, Ме [25-й; 75-й перцентили]	25 [7; 72]	24,5 [5; 96]	0,84
Длительность СКВ на момент установления диагноза, мес, Ме [25-й; 75-й перцентили]	12 [4; 48]	8,5 [3; 96]	0,82
Диагностика СКВ, n (%): ранняя поздняя	255 (33) 519 (67)	10 (38,4) 16 (61,6)	0,68 0,79
Течение СКВ, n (%): острое подострое хроническое	253 (32,7) 278 (35,9) 243 (31,4)	14 (53,9) 3 (11,5) 9 (34,6)	0,02 0,01 0,67
Активность СКВ по SLEDAI-2K, n (%): ремиссия низкая умеренная высокая очень высокая	5 (0,7) 55 (7,1) 227 (29,3) 285 (36,8) 202 (26,1)	0 0 2 (7,7) 5 (19,2) 19 (73,1)	0,68 0,17 0,05 0,18 <0,001
ИП SLICC: n (%) M±SD	135 (17,4) 0,27±0,68	20 (76,9) 1,77±1,31	<0,001

Таблица 2. Сравнительная характеристика клинико-лабораторных проявлений СКВ у выживших и умерших пациентов, n (%) Table 2. Comparative characteristics of clinical and laboratory manifestations of SLE in survivors and non-survivors, n (%)

Показатель	Выжившие (n=774)	Умершие (n=26)	p
	Клиническая симптомат	ика	
Конституциональные проявления	437 (56,5)	18 (69,2)	0,19
Алопеция	544 (70,3)	21 (80,8)	0,25
Кожно-слизистый синдром	724 (93,5)	24 (92,3)	0,96
Васкулит	194 (25,1)	7 (26,9)	0,87
Артрит	354 (45,7)	7 (26,9)	0,06
Серозит (перикардит/плеврит)	347 (44,8)	22 (84,6)	<0,001
Поражение сердца	25 (3,2)	2 (7,7)	0,21
Поражение ЖКТ	37 (4,8)	4 (15,4)	0,02
Поражение жи	37 (1,0)	1 (13,1)	0,02
	Поражение нервной системы	(n=183)	
НПСКВ	170 (22)	13 (50)	0,01
ЦНС,	86 (11,1)	13 (50)	< 0,001
в том числе:		• •	ŕ
асептический менингит	1 (0,1)	0 (0)	0,85
ШВБ	8 (1,0)	3 (11,5)	< 0.001
миелопатия	11 (1,4)	0 (0)	0,54
судорожный синдром	16 (2,1)	5 (19,2)	<0,001
острый делирий	4 (0,5)	0 (0)	0,71
когнитивная дисфункция	1 (0,1)	0 (0)	0,85
психоз	45 (5,8)	5 (19,2)	0,01
ПНС	84 (10,8)	0(0)	0,09
inic	04 (10,0)	0 (0)	0,09
	Поражение почек (n=3		
ВН	319 (41,2)	20 (76,9)	0,03
Протеинурия >500 мг/сут	212 (27,4)	19 (73,1)	<0,001
Нефротический синдром	55 (7,1)	2 (7,7)	0,91
БПГН	34 (4,4)	15 (57,7)	<0,001
ОПП	11 (1,4)	13 (50)	<0,001
Тяжелая ХБП (4-5-й стадии)	44 (5,6)	15 (57,7)	<0,001
	Пополучило опролог и мусли	· (n=79)	
Поражение легких	Поражение органов дыхания 69 (8,9)	9 (34,6)	0,002
Пневмонит	34 (4,4)	4 (15,4)	0,03
ИЗЛ	17 (2,2)	0(0)	0,94
ЛАГ	14 (1,8)	1 (3,9)	0,39
ТЭЛА	3 (0,4)	3 (11,5)	<0,001
ОГА	0 (0)	1 (3,9)	0.03
ЯНЛТ		0 (0)	0,03
инли	1 (0,13)	0 (0)	0,99
Гематологические нарушения (n=276)			
Гематологические нарушения,	259 (93,8)	17 (6,2)	0,03
в том числе:			
изолированные	183 (70,7)	10 (58,8)	0,19
сочетанные	76 (29,3)	7 (41,2)	0,01
	П	- (
A IIIIV	Иммунологические нарушения		0.60
Анти-дсДНК	534 (69)	17 (65,4)	0,68
Гипокомплементемия	449 (58)	22 (84,6)	0,69


Примечание: БПГН — быстропрогрессирующий гломерулонефрит; ИЗЛ — интерстициальное заболевание легких; ЛАГ — легочная артериальная гипертензия; ТЭЛА — тромбоэмболия легочной артерии; ОГА — острый геморрагический альвеолит; ЯНЛТ — язвенно-некротический ларинготрахеит; анти-дсДНК — антитела к двуспиральной ДНК.

p=0,02). На момент исходной госпитализации ремиссия и низкая активность по SLEDAI-2K регистрировались только в группе выживших (в 0,7 и 7,1% случаев соответственно). Умеренная и высокая активность у выживших отмечалась несколько чаще, чем у умерших (в 29,3 и 7,7%; 36,8 и 19,2% случаев соответственно), однако эти различия не были статистически значимыми. В то же время очень высокая активность в группе умерших встречалась значимо чаще, чем в группе выживших (в 73,1 и 26,1% случаев соответственно; p<0,001).

Статистически значимые различия (p<0,05) были выявлены по частоте ВН, НПСКВ, поражения органов дыхания и желудочно-кишечного тракта (ЖКТ), наблюдавшихся пре-

имущественно в группе умерших пациентов (табл. 2). Частота НПСКВ, связанных с тяжелым поражением центральной нервной системы (ЦНС), в группе умерших была значимо выше, чем в группе выживших (соответственно 50 и 11,1%; p<0,001). Эти нарушения проявлялись психозом (19,2%) и судорожным синдромом (19,2%), несколько реже — цереброваскулярной болезнью (ЦВБ, 11,5%). Поражение периферической нервной системы (ПНС) встречалось главным образом у выживших пациентов (10,8%).

ВН диагностирован у 319 (41,2%) выживших и 20 (76,9%) умерших больных (p=0,037). Активный ВН без признаков терминальной почечной недостаточности (ТПН) выявлялся преимущественно у выживших пациентов (97,2%).

Рис. 2. Структура ГЛ у пациентов с CKB (n=26), % **Fig. 2.** Structure of HM in SLE patients (n=26), %

В группе умерших больных значительно чаще, чем в группе выживших, отмечались БПГН, тяжелые (4—5-я) стадии ХБП, низкая СКФ и ОПП (p<0,001). У 13 (65%) из 20 умерших пациентов с ВН развилось ОПП на фоне тяжелых стадий ХБП (3б стадия — у 3 и 4-я стадия — у 10 больных), а у 5 (25%) имелась терминальная 5-я стадия ХБП.

Тяжелая легочная патология встречалась преимущественно в группе умерших пациентов (34,6%; p=0,002). У них значимо чаще, чем у выживших больных, наблюдались волчаночный пневмонит и ТЭЛА: соответственно в 15,4 и 4,4% случаев (p=0,031) и в 11,5 и 0,4% (p<0,001). ЛАГ в обеих группах выявлялась редко (у 1,8% у выживших и 3,9% умерших пациентов; p>0,05).

В группе выживших пациентов чаще, чем в группе умерших, имелись гематологические нарушения, но реже встречались их сочетанные формы (в 93,8 и 6,2%; p<0,05; 29,3 и 41,2% случаев соответственно; p<0,05). Иммунологическая активность у выживших и умерших пациентов значимо не различалась (p>0,05), частота выявления анти-дсДНК и ги-

покомплементемии по С3 и С4 была сопоставима (69 и 65,4%; 58 и 84,6% соответственно; p>0,05).

Наиболее распространенной причиной ГЛ оказалась тяжелая форма ВН (n=8, 30,8%; рис. 2). У 5 (62,5%) пациентов смерть наступила вследствие ОПП на фоне ХБП 4-й стадии, у остальных 3 (37,5%) — в результате ТПН. Второе место среди основных причин ГЛ занимало тяжелое сочетанное поражение почек и ЦНС (n=4, 15,4%). У 3 (75%) из этих пациентов с длительно текущим ВН наблюдалось развитие мозговой комы вследствие острого нарушения мозгового кровообращения (ОНМК) по ишемическому и геморрагическому типу, и у 1 пациента после серий гене-

рализованных судорожных эпилептических приступов возник отек головного мозга с переходом в мозговую кому. На третьем место среди причин ГЛ стоят инфекции (11,5%) и ТЭЛА (11,5%). В 1 случае имелся диссеминированный туберкулез легких с менингоэнцефалитом, еще в 2 — септическая пневмония. ТЭЛА стала причиной смерти 2 пациентов с выраженной ХПН и 1 больного с сочетанным поражением почек (БПГН) и легких (пневмонит). У 1 пациентки с ХБП наблюдалась картина ОГА с легочным кровотечением. В результате ЛАГ с декомпенсированной хронической сердечной недостаточностью (ХСН) умерли 2 пациента, а вследствие диффузного миокардита с признаками выраженной сердечной недостаточности и острого отека легких – еще 2 больных. В 2 наблюдениях ГЛ была вызвана патологией ЖКТ: в одном развился острый панкреонекроз с синдромом полиорганной недостаточности (СПОН), а в другом – острая печеночная кома, обусловленная декомпенсированным билиарным циррозом печени. Еще у 1 пациентки с тяжелой Кумбс-позитивной гемолитической анемией (Кумбс-ПЗГА) причиной

ГЛ стал СПОН с острым отеком легких.

Для определения вероятных предикторов ГЛ применялся одномерный логистический регрессионный анализ с вычислением ОШ и 95% ДИ и представлением данных в виде графика форест-плот (рис. 3). Наиболее высокий риск ГЛ у наших пациентов отмечался при наличии тяжелого поражения ЦНС (ОШ 6,898; 95% ДИ 3,107—15,312; p<0,001), почек (ОШ 4,754; 95% ДИ 1,888-11,972; p<0,001) и органов дыхания (ОШ 4,614; 95% ДИ 1,935-11,005; р<0,001). Менее значимое повышение риска ГЛ было связано с патологией ЖКТ (ОШ 3,662; 95% ДИ 1,187— 11,048; p=0,024), гематоло-

Рис. 3. Клинико-лабораторные показатели активности СКВ как факторы риска ГЛ Fig. 3. Clinical and laboratory indicators of SLE activity as risk factors for HM

гическими нарушениями (ОШ 3,756; 95% ДИ 1,652—8,542; p=0,002) и гипокомплементемией по C3 (ОШ 2,615; 95% ДИ 1,123—6,085; p=0,026).

Анализ логистической регрессии показал, что статистически значимыми независимыми предикторами риска развития ГЛ в кыргызской когорте пациентов с СКВ (р <0,05) являются низкая СКФ, наличие НПО и гипокомплементемия по СЗ (табл. 3).

Обсуждение. В разных когортах частота госпитализации при СКВ варьируется от 8,6 до 50% и зависит от ряда факторов, включая тяжесть состояния больного, наличие осложнений, этническую принадлежность, социальный статус и доступность высокоспециализированной медицинской помощи [35–37]. Исследований, посвященных изучению причин и структуры ГЛ при СКВ, немного, что объясняется недостаточно полными сведениями из лечебных учреждений третичного уровня или небольшой выборкой госпитализированных пациентов [9, 10]. Согласно результатам ранних популяционных исследований, проведенных в 70— 80-е годы прошлого столетия, частота ГЛ у азиатов была в 3-5 раз выше, чем у белых пациентов [38-42]. В более поздних когортных исследованиях, охватывающих два периода наблюдений (с 1998 по 2002 г. и с 2003 по 2011 г.), представлены более подробные данные о причинах и структуре ГЛ у пациентов с СКВ, проживающих в США. Так, частота ГЛ при СКВ в конце 90-х — начале 2000-х годов не превышала 3,1% [11]. Более 50% случаев смерти наблюдалось в первые 7 дней госпитализации, второй пик приходился на 33-й день и третий — на 57-й день. По данным L.B. Goss и соавт. [12], азиатов и афроамериканцев госпитализировали почти в 3 раза чаще, чем белых пациентов. ГЛ у мужчин была выше по сравнению с женщинами (2,6 и 1,8% соответственно). Средний возраст умерших составил 51,5 года (95% ДИ 50,6— 52,3) в 2003 г. и 51,3 года (95% ДИ 50,6-52,0) в 2011 г. По данным других исследований, с середины 90-х годов прошлого столетия вплоть до 2017 г. причинами частой госпитализации при СКВ в странах Западной Европы, США и Канаде были инфекции и тяжелое обострение СКВ [7-9].

Данные о ГЛ в азиатских когортах несколько отличаются от таковых для европеоидной расы. К примеру, в малазийской когорте соотношение заболевших СКВ женщин и мужчин составило 10:1, средний возраст пациентов — 30.5 ± 12.2 года, а средняя продолжительность заболевания $-36,5\pm51,6$ мес [43]. Среди клинических проявлений в данной популяции преобладали гематологические нарушения (73,3%), ВН (70,9%) и специфическое поражение кожи (67,3%). Частота ГЛ у малазийских пациентов с СКВ была высокой (10,4%) в связи с тяжелыми обострениями (19%) и фатальными инфекциями (19%). К числу прогностически неблагоприятных факторов, повышающих риск ГЛ у малазийских пациентов, относились частые обострения СКВ (ОШ 5,56) и высокие значения НПО (ОШ 1,91). В иорданской когорте частота госпитализаций, связанных с СКВ, с 2002 по 2017 г. достигала 28,6%, а ГЛ — 14,1% [44]. Средний возраст начала заболевания составлял 34±12,5 года, соотношение женщин и мужчин -8,4:1. Высокая частота ГЛ в данной когорте была обусловлена серьезными инфекционными осложнениями и прогрессированием НПО (42,5 и 40% соответственно).

Таблица 3. Независимые предикторы ГЛ у пациентов с СКВ (n=26) Table 3. Independent predictors of HM in SLE patients (n=26)

Показатель	ОШ	95% ДИ	p
Низкая СКФ	0,98	0,97-0,99	0,01
Гипокомплементемия по С3	4,12	1,41-12,1	0,01
ИП SLICC	2,67	1,51-4,7	<0,001
Чувствительность — 50% Специфичность — 99,5%			

В нашем исследовании частота СКВ в общей популяции у женщин была в 11 раз выше, чем у мужчин (91,9 и 8,1% соответственно). В кыргызской когорте статистически значимые различия были выявлены в частоте ВН, НП СКВ, поражения органов дыхания и ЖКТ, наблюдавшихся в основном в группе умерших пациентов, за исключением полисерозита, диагностированного преимущественно у выживших. За анализируемый 12-летний период с момента исходной госпитализации общий показатель ГЛ составил 3,3%. Средний возраст умерших пациентов - 33,7± 14,4 года. Самая высокая летальность (30,8%) отмечалась в возрастной группе 18-23 лет. ГЛ у женщин была выше по сравнению с мужчинами (соответственно 88,5 и 11,5%; р=0,0009). В нашей когорте наибольшее количество случаев ГЛ (38,5%) приходилось на 8-23-и сутки госпитализации. В группе умерших пациентов чаще, чем в группе выживших, встречались острое течение СКВ, высокая активность по SLEDAI-2K и НПО.

В китайской когорте средний возраст умерших пациентов с СКВ был практически сопоставим с полученными нами показателями (37,8 \pm 14,7 года) [45]. Медиана продолжительности заболевания составила 2,6 [0,5; 7,0] года, а длительности наблюдения — 3,0 [1,4; 5,1] года. ГЛ была достаточно высокой — 4,9%. У китайских пациентов инфекции являлись основной причиной ГЛ и обусловливали ее в трети случаев (31,1%), второй по частоте оказалась ТПН как исход тяжелого ВН, затем следовали изолированная ЛАГ и ОНМК. Независимыми факторами риска ГЛ у китайских пациентов были старший возраст дебюта болезни, инфекции, Кумбс-ПЗГА, тромбоцитопения и ЛАГ.

В нашей когорте все умершие пациенты на момент госпитализации находились в крайне тяжелом состоянии. ГЛ в большинстве случаев была вызвана тяжелым течением ВН (30,8%). Так, у 62,5% больных с БПГН имелось ОПП с клинической картиной острого уремического отека легких. У 37,5% больных с ВН смерть была обусловлена симптомами декомпенсированной ХСН вследствие ТПН. На втором месте среди непосредственных причин ГЛ было тяжелое сочетанное поражение почек и ЦНС (15,4%). У 75% пациентов с ВН из этой группы наблюдалось развитие мозговой комы в результате ОНМК по ишемическому и геморрагическому типу. Предиктором ГЛ у наших пациентов с СКВ являлось поражение жизненно важных органов (ЦНС, почек, легких и ЖКТ), а независимыми предикторами ГЛ — тяжелая форма ВН с выраженной ХПН, наличие НПО и гипокомплементемия по С3.

Таким образом, результаты настоящего исследования демонстрируют, что азиатские пациенты с СКВ потенциально подвержены повышенному риску неблагоприятного исхода и, следовательно, требуют тщательного наблюдения с при-

менением современных методов терапии как на госпитальном, так и на амбулаторном этапе.

Заключение. ГЛ в кыргызской когорте больных СКВ достигала 3,3%. Основными ее причинами являлись тя-

желая форма ВН (30,8%), сочетанное поражение почек и ЦНС (15,4%). Независимыми предикторами ГЛ были ВН с выраженной ХПН, наличие НПО и гипокоплементемия по С3.

ЛИТЕРАТУРА/REFERENCES

- 1. Насонов ЕЛ, Соловьев СК, Аршинов АВ. Системная красная волчанка: история и современность. Научно-практическая ревматология. 2022;60(4):397-412.

 Nasonov EL, Solov'ev SK, Arshinov AV. Systemic lupus erythematosus: history and modernity. *Nauchno-prakticheskaya revmatologiya*. 2022;60(4):397-412. (In Russ.).

 2. Alarcyn GS, McGwin G Jr, Bastian HM, et al. Systemic lupus erythematosus in three ethnic groups. VIII. Predictors of early mortality in the LUMINA cohort. *Arthritis Rheum*. 2001 Apr;45(2):191-202. doi: 10.1002/1529-0131(200104)45:2<191: AID-ANR173>3.0. CO;2-2.
- 3. Yazdany J, Marafino BJ, Dean ML, et al. Thirty-day Hospital Readmissions in Systemic Lupus Erythematosus: Predictors and Hospital and State-level Variation. *Arthritis Rheumatol.* 2014 Oct;66(10):2828-36. doi: 10.1002/art.38768.
- 4. Tektonidou MG, Lewandowski LB, Hu J, et al. Survival in adults and children with systemic lupus erythematosus: a systematic review and Bayesian meta-analysis of studies from 1950 to 2016. *Ann Rheum Dis.* 2017 Dec; 76(12):2009-2016. doi: 10.1136/annrheumdis-2017-211663.
- 5. Barber M, Drenkard C, Falasinnu T, et al. Global epidemiology of systemic lupus erythematosus. *Nat Rev Rheumatol.* 2021 Sep; 17(9):515-532. doi: 10.1038/s41584-021-00668-1.
- 6. Scherlinger M, Mertz P, Sagez F, et al. Worldwide trends in all-cause mortality of auto-immune systemic diseases between 2001 and 2014. Autoimmun Rev. 2020 Jun; 19(6): 102531. doi: 10.1016/j.autrev.2020.102531. 7. Lee J, Dhillon N, Pope J. All-cause hospitalizations in systemic lupus erythematosus from a large Canadian referral Centre. Rheumatology (Oxford). 2013 May;52(5): 905-9. doi: 10.1093/rheumatology/kes391. 8. Chan K, Dekis A, Clarke AE, et al. Hospitalizations in patients with systemic lupus erythematosus: updated analyses from 2006 to 2011. Arthritis Res Ther. 2012;14 Suppl 3:A59. 9. Pires da Rosa G, Fontecha Ortega M, Teixeira A, et al. Causes and factors related to hospitalizations in patients with systemic lupus erythematosus: analysis of a 20-year period (1995–2015) from a single referral Centre in Catalonia. Lupus. 2019 Aug;28(9):1158-1166. doi: 10.1177/0961203319861685. 10. Gu K, Gladman DD, Su J, Urowitz MB. Hospitalizations in patients with systemic lupus erythematosus in an academic health sci-

- ence center. *J Rheumatol*. 2017 Aug;44(8): 1173-1178. doi: 10.3899/jrheum.170072. 11. Krishnan E. Hospitalization and mortality of patients with systemic lupus erythematosus. *J Rheumatol*. 2006 Sep;33(9):1770-4. 12. Goss LB, Ortiz JR, Okamura DM, et al. Significant Reductions in Mortality in Hospitalized Patients with Systemic Lupus Erythematosus in Washington State from 2003 to 2011. *PLoS One*. 2015 Jun 18;10(6): e0128920. doi: 10.1371/journal.pone.0128920. 13. Yen EY, Shaheen M, Woo JMP, et al. 46-Year Trends in Systemic Lupus Erythe-
- 13. Yen EY, Shaheen M, Woo JMP, et al. 46-Year Trends in Systemic Lupus Erythematosus Mortality in the United States, 1968 to 2013: A Nationwide Population-Based Study. *Ann Intern Med.* 2017 Dec 5;167(11): 777-785. doi: 10.7326/M17-0102.
- 14. Bernatsky S, Boivin JF, Joseph L, et al. Mortality in Systemic Lupus Erythematosus. *Arthritis Rheum* 2006; 54 (8): 2550–2557. PubMed: 16868977.
- 15. Kasitanon N, Magder LS, Petri M. Predictors of survival in systemic lupus erythematosus. *Medicine (Baltimore)*. 2006 May; 85(3):147-156. doi: 10.1097/01.md. 0000224709. 70133.f7.
- 16. Lim SS, Helmick CG, Bao G, et al. Racial Disparities in Mortality Associated with Systemic Lupus Erythematosus Fulton and DeKalb Counties, Georgia, 2002—2016. MMWR Morb Mortal Wkly Rep. 2019 May 10; 68(18):419-422. doi: 10.15585/mmwr. mm6818a4.
- 17. Alarcon GS, Friedman AW, Straaton KV, et al. Systemic lupus erythematosus in three ethnic groups: III. A comparison of characteristics early in the natural history of the LUMINA cohort. Lupus in minority populations: Nature vs. Nurture. *Lupus*. 1999;8(3): 197-209. doi: 10.1191/096120399678847704. 18. Walsh SJ, DeChello LM. Geographical variation in mortality from systemic lupus erythematosus in the United States. *Lupus*. 2001; 10(9):637-46. doi: 10.1191/09612030168 2430230.
- 19. Gomez-Puerta JA, Barbhaiya M, Guan H, et al. Racial Ethnic Variation in All-Cause Mortality Among United States Medicaid Recipients with Systemic Lupus Erythematosus: A Hispanic and Asian Paradox. *Arthritis Rheum.* 2015 Mar;67(3):752-60. doi: 10.1002/art.38981.
- 20. Kaslow RA. High rate of death caused by systemic lupus erythematosus among U.S. residents of Asian descent. *Arthritis Rheum*. 1982 Apr;25(4):414-8. doi: 10.1002/art. 1780250409.

- 21. Serdula MK, Rhoads GG. Frequency of systemic lupus erythematosus in different ethnic groups in Hawaii. *Arthritis Rheum.* 1979 Apr;22(4):328-33. doi: 10.1002/art.1780220403. 22. Ward MM. Hospital Experience and Mortality in Patients with Systemic Lupus Erythematosus. *Arthritis Rheum.* 1999 May;42(5): 891-8. doi: 10.1002/1529-0131(199905)42: 5<891: AID-ANR7>3.0.CO;2-B.
- 23. Petri M, Orbai A, Alarson G, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics Classification Criteria for Systemic lupus erythematosus. *Arthritis Rheum.* 2012 Aug;64(8):2677-86. doi: 10.1002/art.34473.
- 24. Драпкина ОМ, Самородская ИВ, Какорина ЕП, Чернявская ТК. Причины госпитальной смертности взрослых по данным медицинских свидетельств о смерти. Профилактическая медицина 2024;27(3):7-13.
- Drapkina OM, Samorodskaya IV, Kakorina EP, Chernyavskaya TK. Causes of adult hospital mortality according to medical death certificates. *Profilakticheskaya meditsina* 2024;27(3): 7-13. (In Russ.).
- 25. Насонова ВА. Системная красная волчанка. Москва: Медицина; 1972. Nasonova VA. Systemic lupus erythematosus.

Moscow: Meditsina; 1972.

- 26. Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. *J Rheumatol*. 2002 Feb;29(2):288-91.
- 27. Gladman DD, Ginzler E, Goldsmith C, et al. The Development and initial validation of the Systemic lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for Systemic lupus erythematosus. *Arthritis Rheum*. 1996 Mar;39(3):363-9. doi: 10.1002/art. 1780390303
- 28. Oglesby A, Korves C, Laliberte F, et al. Impact of Early Versus Late Systemic Lupus Erythematosus Diagnosis on Clinical and Economic Outcomes. *Appl Health Econ Health Policy*. 2014 Apr;12(2):179-90. doi: 10.1007/s40258-014-0085-x.
 29. Faurschou M, Starklint H, Halberg P, Jacobsen S. Prognostic factors in lupus nephritis: diagnostic and therapeutic delay increases the risk of terminal renal failure. *J Rheumatol*. 2006 Aug;33(8):1563-9. 30. Ainiala H, Hietaharju A, Loukkola J, et al. Validity of the new American College of Rheumatology criteria for neuropsychiatric

lupus syndromes: a population-based evalua-

tion. Arthritis Rheum. 2001 Oct;45(5):419-23. doi:10.1002/1529-0131(200110)45:5<419. 31. Dooley M, Aranow C, Ginzler E. Review of ACR renal criteria in systemic lupus erythematosus. Lupus. 2004:13(11):857-60. doi: 10.1191/0961203304lu2023oa. 32. Тареева ИЕ. Волчаночный нефрит. Москва: Медицина; 1976. Tareeva IE. Lupus nephritis. Moscow: Meditsina; 1976. 33. Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney International Supplements. 2012;2, 1. doi:10.1038/kisup. 2012.1 34. Inker LA, Astor BC, Fox CH, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014 May;63(5):713-35. doi: 10.1053/j.ajkd.2014.01.416. 35. Dorgham DA, Anwar S, Khaled A. Infection in systemic lupus erythematosus patients. Egypt Rheumatol. 2021;43(2):115-118.

36. Momtaz OM, Senara SH, Zaky SH, Mo-

hammed ES. Critically ill systemic lupus ery-

thematosus patients referred to the intensive

care unit of Fayoum University Hospital: frequency, complications, and outcome. Egypt Rheumatol. 2019;41(2):129-133. 37. Lee JW, Park DJ, Kang JH, et al. The rate of and risk factors for frequent hospitalization in systemic lupus erythematosus: results from the Korean lupus network registry. Lupus. 2016 Nov;25(13):1412-1419. doi: 10.1177/ 0961203316640916. Epub 2016 Jul 11. 38. Jiang J, May P. Proportion of deaths in hospital in European countries: trends and associations from panel data (2005-2017). Eur J Public Health. 2021 Dec 1;31(6):1176-1183. doi: 10.1093/eurpub/ckab169. 39. Broad JB, Gott M, Kim H, et al. Where do people die? An international comparison of the percentage of deaths occurring in hospital and residential aged care settings in 45 populations, using published and available statistics. Int J Public Health. 2013 Apr;58(2): 257-67. doi: 10.1007/s00038-012-0394-5. 40. Clarke AE, Esdaile JM, Bloch DA, et al. A Canadian study of the total medical costs

for patients with systemic lupus erythematosus

and the predictors of costs. Arthritis Rheum.

1993 Nov;36(11):1548-59. doi: 10.1002/

art.1780361109.

41. Edwards CJ, Lian TY, Badsha H, et al. Hospitalization of individuals with systemic lupus erythematosus: characteristics and predictors of outcome. Lupus. 2003;12(9):672-6. doi: 10.1191/0961203303lu452oa. 42. Petri M, Genovese M. Incidence of and risk factors for hospitalizations in systemic lupus erythematosus: a prospective study of the Hopkins Lupus Cohort. J Rheumatol. 1992 Oct;19(10):1559-65. 43. Teh CL, Ling GR. Causes and predictors of mortality in hospitalized lupus patient in Sarawak General Hospital, Malaysia. Lupus. 2013 Jan:22(1):106-11. doi: 10.1177/ 0961203312465780. Epub 2012 Oct 30. 44. Adwan MH, Qasem U, Mustafa KN. In-hospital mortality in patients with systemic lupus erythematosus: a study from Jordan 2002-2017. Rheumatol Int. 2020 May;40(5): 711-717. doi: 10.1007/s00296-020-04538-z. Epub 2020 Mar 7. 45. Mu L, Hao Y., Fan Y, et al. Mortality and prognostic factors in Chinese patients with systemic lupus erythematosus. Lupus. 2018 Sep;27(10):1742-1752. doi: 10.1177/

0961203318789788.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 10.07.2025/11.09.2025/13.09.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Койлубаева Г.М. https://orcid.org/0000-0001-5433-3300 Асеева Е.А. https://orcid.org/0000-0002-1663-7810 Соловьев С.К. https://orcid.org/0000-0002-5206-1732 Лила А.М. https://orcid.org/0000-0002-6068-3080 Глухова С.И. https://orcid.org/0000-0002-4285-0869

Возможности селективной плазмосорбции внеклеточной ДНК и NETs у пациентов с трудно поддающимся лечению ревматоидным артритом (первый опыт применения)

Асеева Е.А.¹, Плетнёв Е.А.¹, Покровский Н.С.², Соловьев С.К.¹, Николаева Е.В.¹, Никишина Н.Ю.¹, Абдуллин Е.Т.^{2,3}, Бланк Л.М.¹, Зоткин Е.Г.¹, Лила А.М.^{1,4}

¹ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²ФГБУ «Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова» Минздрава России, Москва; ³ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», Москва; ⁴ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва

¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Россия, 121552, Москва, ул. Академика Чазова, 15A; ³Россия, 119991, Москва, Ленинские горы, 1; ⁴Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1

Ревматоидный артрит, ассоциированный с интерстициальным заболеванием легких (РА-ИЗЛ), представляет собой особый клини-ко-патогенетический фенотип заболевания, сопровождающийся высокой воспалительной активностью, серопозитивностью и системными проявлениями. В последнее время все большее внимание уделяется роли внеклеточной ДНК и нейтрофильных внеклеточных ловушек (NETs) в патогенезе РА. Представлен первый случай применения селективной плазмосорбции внеклеточной ДНК и NETs у пациента с РА-ИЗЛ. На фоне терапии отмечались уменьшение боли и скованности в суставах, улучшение общего состояния пациента. Прослежена динамика лабораторных показателей. Данный клинический случай демонстрирует потенциал применения плазмосорбции ДНК-содержащих структур в лечении рефрактерных форм РА как метода, дополняющего эффект генно-инженерной биологической терапии.

Ключевые слова: ревматоидный артрит; экстракорпоральная терапия; нейтрофильные внеклеточные ловушки; внеклеточная ДНК; терапевтический аферез.

Контакты: Елена Александровна Асеева; eaasseeva@mail.ru

Для цитирования: Асеева ЕА, Плетнёв ЕА, Покровский НС, Соловьев СК, Николаева ЕВ, Никишина НЮ, Абдуллин ЕТ, Бланк ЛМ, Зоткин ЕГ, Лила АМ. Возможности селективной плазмосорбции внеклеточной ДНК и NETs у пациентов с трудно поддающимся лечению ревматоидным артритом (первый опыт применения). Современная ревматология. 2025;19(5):98—105. https://doi.org/10.14412/1996-7012-2025-5-98-105

Selective plasmosorption of extracellular DNA and NETs in patients with difficult-to-treat rheumatoid arthritis (first clinical experience)

Aseeva E.A.¹, Pletnev E.A.¹, Pokrovsky N.S.², Soloviev S.K.¹, Nikolaeva E.V.¹, Nikishina N.Yu.¹, Abdullin E.T.^{2,3}, Blank L.M.¹, Zotkin E.G.¹, Lila A.M.^{1,4}

¹V.A, Nasonova Research Institute of Rheumatology, Moscow; ²National Medical Research Centre of Cardiology named after Academician E.I. Chazov, Ministry of Health of Russia, Moscow; ³Lomonosov Moscow State University, Moscow; ⁴Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russia

¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²15A, Akademika Chazova Street, Moscow 121552, Russia; ³1, Leninskie Gory, Moscow 119991, Russia; ⁴2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia

Rheumatoid arthritis (RA) associated with interstitial lung disease (RA-ILD) represents a distinct clinical and pathogenetic phenotype characterized by high inflammatory activity, seropositivity, and systemic manifestations. In recent years, increasing attention has been directed to the role of extracellular DNA and neutrophil extracellular traps (NETs) in RA pathogenesis. This report presents the first case of selective plasmosorption of extracellular DNA and NETs in a patient with RA-ILD. The therapy was associated with a decrease in joint pain and stiffness and improvement of general condition. Laboratory parameters were also monitored dynamically. This clinical case demonstrates the potential of DNA-containing structure plasmosorption as an adjunctive method to enhance the effect of therapy with biological disease modifying antirheumatic drugs in refractory RA.

Keywords: rheumatoid arthritis; extracorporeal therapy; neutrophil extracellular traps; extracellular DNA; therapeutic apheresis.

Contact: Elena Alexandrovna Aseeva; eaasseeva@mail.ru

For citation: Aseeva EA, Pletnev EA, Pokrovsky NS, Soloviev SK, Nikolaeva EV, Nikishina NYu, Abdullin ET, Blank LM, Zotkin EG, Lila AM. Selective plasmosorption of extracellular DNA and NETs in patients with difficult-to-treat rheumatoid arthritis (first clinical experience). Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):98–105 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-98-105

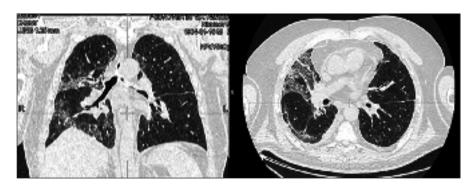
Ревматоидный артрит (РА) – иммуновоспалительное (аутоиммунное) ревматическое заболевание неизвестной этиологии, характеризующееся хроническим эрозивным артритом и системным поражением внутренних органов, приводящее к инвалидности, развитию тяжелой коморбидной патологии и, как следствие, к сокращению продолжительности жизни пациентов [1]. Среди широкого спектра системных проявлений РА особое внимание привлекает интерстициальное заболевание легких (ИЗЛ) — наиболее тяжелая форма легочной патологии при РА (РА-ИЗЛ), которая патогенетически связана с аутоиммунными механизмами, лежащими в основе РА. Важное значение в развитии РА-ИЗЛ имеет серопозитивность по ревматоидным факторам (РФ), антителам к циклическому цитруллинированному пептиду (АЦЦП) и другим цитруллинированным белкам. В целом РА-ИЗЛ фенотип РА, отличающийся тяжелым течением, высокой воспалительной активностью и неблагоприятным прогнозом. Этот фенотип относят к категории «трудно поддающегося лечению PA» (Difficult-to-Treat, D2T), подходы к его фармакотерапии до конца не разработаны [2].

О роли аутоиммунных механизмов в развитии РА свидетельствует гиперпродукция аутоантител, в частности РФ, представляющего собой антитела к Fc-фрагменту IgG, и антител, реагирующих с белками с измененной конформационной структурой, индуцированной цитруллинированием или другими формами посттрансляционной модификации белков (ПТМБ) [3]. Предполагается, что антитела к ПТМБ участвуют в развитии боли, воспаления, деструкции суставов и системных проявлений (генерализованная потеря костной ткани, атеросклеротическое поражение сосудов и ИЗЛ) [4].

Одним из механизмов образования ПМБТ является процесс нетоза (NETosis), форма запрограммированной клеточной гибели нейтрофилов, который сопровождается формированием «сетевых» структур, состоящих из нитей ДНК с включениями внутриклеточных белков нейтрофилов и выбросом большого количества ферментов. Эти структуры получили название нейтрофильных внеклеточных ловушек (neutrophil extracellular traps, NETs) [5]. В составе NETs, присутствующих в синовиальной ткани пациентов с РА, обнаруживается фермент пептидил-аргининдезаминаза (ПАД), под влиянием которого происходит конверсия пептидил-аргинина (с положительным зарядом) в пептидил-цитруллин (с нейтральным зарядом). Данный процесс приводит к приобретению белками аутоантигенных свойств и образованию антител к цитруллинированным белкам (АЦБ) [6, 7]. Таким образом, нетоз рассматривается как один из ключевых источников цитруллинированных аутоантигенов. Цитруллинированные белки в тканях сустава стимулируют высвобождение перфорина и образование мембраноатакующего комплекса (биомаркер активации комплемента) с повреждением ткани [8]. Высвобождающаяся из NETs нейтрофильная эластаза вызывает повреждение хряща [9]. Также NETs провоцируют экспрессию лиганда рецептора-активатора NF-кВ (receptor activator of nuclear factor kappa-B ligand, RANKL), стимулируя остеокласты, что ведет к разрушению костной ткани [10].

Нетоз способствует поддержанию местного воспаления, а также вызывает стимуляцию Т-лимфоцитов и фибробластоподобных синовиальных клеток [11, 12]. По данным N. Jarzebska и соавт. [13], теоретически потенциальными терапевтическими средствами, способными подавлять процесс нетоза, могут быть ингибиторы ПАД4, ингибиторы интерлейкинов 4 и 13, N-ацетилцистеин и гидроксихлорохин (ГКХ). Однако эффект данных средств пока не доказан. Авторы подчеркивают возможную значимую роль элиминации ДНК-содержащих структур и NETs из кровотока при использовании сорбционной колонки [13]. Ее активным ингредиентом является инертная матрица, на которую иммобилизован рекомбинантный белок гистон Н1.3, специфически связывающий внеклеточную ДНК и NETs. Что касается нетоза и PA, то в клинических исследованиях выявлена позитивная корреляция между выраженностью нетоза и воспалительной активностью, динамикой прогрессирования деструктивных изменений в суставах, развитием внесуставных проявлений. У больных РА по сравнению со здоровыми донорами нейтрофилы характеризуются повышенной склонностью к нетозу, причем этот процесс усиливается под влиянием аутоантител – РФ и АЦБ [14].

Широкое внедрение в клиническую практику традиционных и таргетных противоревматических препаратов позволяет эффективно подавлять воспалительную активность и сдерживать прогрессирование РА, улучшать качество жизни больных. Однако в ряде случаев даже смена таргетных препаратов не позволяет добиться целевого уровня активности. Серьезные трудности, возникающие при ведении таких пациентов, позволили выделить особый вариант болезни — D2T PA [15]. Для обозначения этой формы РА нередко используется термин «рефрактерный». Безусловно, до настоящего времени нет однозначного подхода к терапии РА-ИЗЛ. Поскольку данный фенотип заболевания часто ассоциирован с серопозитивностью по РФ, АЦЦП и другим АЦБ [16], а также с воспалительной активностью [17], удаление из кровотока ДНК-содержащих структур и NETs может снизить активность заболевания и усилить действие последующей терапии генно-инженерными биологическими препаратами (ГИБП).


Представляем первый в мире клинический случай успешного применения селективной плазмосорбции внеклеточной ДНК и NETs у пациента с трудно поддающимся лечению ИЗЛ-РА.

Клиническое наблюдение

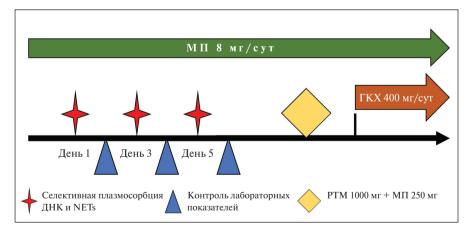

Пациент, Н., 60 лет, не работает. Диагноз: РА серопозитивный, АЦЦП+, антитела к модифицированному цитруллинированному виментину (АМЦВ)+, стадия поздняя, активность высокая (Disease Activity Score 28, DAS28 — 7,55), эрозивный, рентгенологическая стадия ІІ, с внесуставными проявлениями (ревматоидные узелки; ИЗЛ, дыхательная недостаточность 2-й степени). Функциональный класс 3.

Рис. 1. Рентгенография кистей и стоп пациента H. **Fig. 1.** X-ray of the hands and feet of patient N.

Рис. 2. KT OГK пациента H. **Fig. 2.** Chest CT of patient N.

Puc. 3. Схема проведения процедур селективной плазмосорбции ДНК и NETs **Fig. 3.** Scheme of selective plasmosorption procedures for DNA and NETs

Болен с июня 2021 г., дебют с боли и скованности в суставах кистей и коленных суставах. При обследовании выявлены положительный РФ (1102 МЕ/мл), повышение уровня СРБ до 31 мг/л. Установлен диагноз РА, инициирована терапия метотрексатом (МТ), доза которого в октябре 2021 г. составляла 10—15 мг/нед, а также метилпреднизолоном (МП) 4 мг/сут; с декабря 2022 г. доза МТ была повышена до 25 мг/нед из-за

высокой воспалительной активности и неэффективности более низких доз. (При обследовании 18.11.2022: тр. - $392 \cdot 10^9/\Lambda$, Λ . - 9,8 · $10^9/\Lambda$; CO \Im -15 мм/ч, СРБ - 46 мг/л, Р Φ - 1247,8 МЕ/мл.) Пациент отмечал недостаточную эффективность терапии, сохранялись жалобы на боль в шее по утрам, утреннюю скованность около 2ч, ограничение сжатия кисти в кулак и боль в стопах и коленных суставах. В связи с этим в декабре 2021 г. доза МП увеличена до 6 мг/сут. Воспалительная активность сохранялась. При обследовании 17.01.2023: тр. – $397 \cdot 10^9 / \Lambda$, Λ . -15, $9 \cdot 10^9 / \Lambda$; $CO\Theta - 5 MM/4$, $CPE - 56,7 \text{ мг/л}, P\Phi - 1519 \text{ ME/мл}.$ В общем анализе мочи: эритроциты — 100 в поле зрения, в остальном без отклонений от нормы. Ввиду эритроцитурии МТ был отменен, увеличена доза МП до 8 мг/сут. Пациент регулярно принимал нестероидные противовоспалительные препараты.

В марте-апреле 2023 г. проходил стационарное лечение в ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой» (НИИР им. В.А. Насоновой). При обследовании 24.03.2023: π . — 12,4 · 10 9 / π ; СОЭ — 86 мм/ч, РФ — 2870,0 МЕ/мл, АЦЦП — 28,8 Ед/мл, антинуклеарный фактор (АНФ) Нер2 — 1/2560 h+sp, cytopl.

Рентгенография кистей и стоп (27.03.2023): рентгенологическая картина может соответствовать диагнозу РА III стадии по Штейнброкеру (рис. 1).

Учитывая позитивность по АНФ, для исключения ИЗЛ 27.03.2023 пациенту проведена компьютерная томография (КТ) органов грудной клетки (ОГК; рис. 2). Определялись интерстициальные изменения в паренхиме обоих легких с формированием тракционных цилиндрических бронхоэктазов. Множественные солидные очаги в обоих легких (ревматоидные узелки).

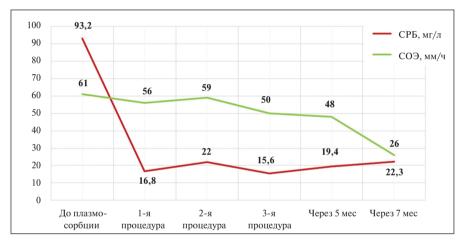
УЗИ коленных суставов (29.03.2023): в обоих суставах — признаки синовита с пролиферативным компонентом, дегенеративных и периартикулярных изменений, кисты Бейкера.

Назначена терапия ритуксимабом (РТМ) 1000 мг, проведено две инфузии (31.03 и 16.04.2023), переносимость терапии была удовлетворительной. Эффект

сохранялся в течение 7—8 мес. Возобновлена терапия MT 20 мг/нед, доза МП снижена до 4 мг/сут.

Обострение зимой 2024 г. в виде выраженного полиартрита. Отмечалось увеличение длительности утренней скованности до 5 ч. Лабораторные исследования: тр. $-608 \cdot 10^9/\Lambda$, л. $-11,4 \cdot 10^9/\Lambda$; СОЭ -140 мм/ч, СРБ -98,9 мг/л, РФ >3000 МЕ/мл, АЦЦП -15,9 Ед/мл, АНФ -1/2560.

Повторно находился на стационарном лечении в НИИР им. В.А. Насоновой с 25.03 по 04.04.2024. По данным КТ ОГК изменения в легких сохранялись. Выявлен положительный результат с использованием Диаскинтеста. Пациент был консультирован фтизиатрами, установлен диагноз «латентная туберкулезная инфекция», в течение месяца получал противотуберкулезную терапию. МТ отменен, введение РТМ отложено.


Следующая госпитализация в НИИР им. В.А. Насоновой — c 07.05 no 24.05.2024. При обследовании: выраженный полиартрит мелких суставов кистей, лучезапястных, локтевых, плечевых суставов, скованность в течение всего дня; ограничение движений в плечевых, лучезапястных суставах; сгибательные контрактуры локтевых суставов; ревматоидные узелки в области локтевых суставов. Число болезненных суставов (ЧБС) -20, число припухших суставов (ЧПС) – 16. Боль по визуальной аналоговой шкале (BAIII) — 79 мм. Индекс DAS28 — 7,55. Лабораторные исследования: тр. - $386 \cdot 10^{9}/\Lambda$, Λ . $-10.5 \cdot 10^{9}/\Lambda$; CO9 -61 мм/ч, CPB - 93,2 мг/л, $P\Phi > 300$ МЕ/мл, $AUU\Pi - 59,5 E\partial/мл, AMUB - 715 E\partial/мл,$ $AH\Phi - 1/1\ 280$, Д-димер — 1516 мкг/л.

С целью быстрого купирования воспалительной активности и с учетом выраженные иммунологических нарушений принято решение о проведении курса из трех процедур селективной плазмосорбции ДНК и NETs с использованием сорбционной колонки на фоне терапии МП 8 мг/сут с интервалом в 24 ч между процедурами (рис. 3). Селективная плазмосорбция выполнялась на аппарате «Гемма ПФ» с использованием плазмосепаратора Plasmaflo OP-5W-05W/08254 и сорбционной колонки (рис. 4).

Длительность процедур составила 5 ч 30 мин, 5 ч 15 мин и 5 ч 15 мин соответственно. За время процедур обработано 15 160, 36 120 и 26 400 мл крови и 4120, 7620 и 6150 мл плазмы соответственно. Во время первой процедуры отмечалось тромбирование контура тока крови, в связи с чем она была остановлена. Учитывая выраженную гипервязкость крови, пациенту дополнительно назначен фраксипарин подкожно 0,3 мл 2 раза в сутки. В динамике оценивались клинические параметры, лабораторные показатели иммунологической и воспалительной активности. Уже после первой процедуры уровень СРБ снизился до 16,8 мг/л (-82%), а после третьей — до 15,6 (-83,5%). К моменту завершения курса плазмосорбции были зарегистрированы следующие результаты: тр. $-347 \cdot 10^9 / \Lambda$, л. $-10 \cdot 10^9 / \Lambda$; $P\Phi$ -280 МЕ/мл (-7%), АЦЦП — 78 Ед/мл (+31%), АМЦВ — 111 Ед/мл (-84,4%), АН Φ — 1/1280, Д-димер — 703 мкг/л (-53,6%). Исчезли утренняя скованность, сгибательные контрактуры. Уменьшилось ЧБС и ЧПС соответственно до 12 и 10, интенсивность боли по BAIII – до 40 мм, индекс DAS28 –

Puc. 4. Процедура селективной плазмосорбции **Fig. 4.** Selective plasmosorption procedure

Рис. 5. Динамика показателей воспалительной активности на фоне селективной плазмосорбции ДНК и NETs и последующей терапии PTM **Fig. 5.** Dynamics of inflammatory activity indicators during selective plasmosorption of DNA and NETs and subsequent rituximab (RTX) therapy

до 6,26 (-17%). Динамика лабораторных показателей воспалительной и иммунологической активности, а также индекса активности DAS28 представлены на рис. 5—7. Через 3 дня после окончания курса плазмосорбции и оценки лабораторных и клинических параметров внутривенно капельно введено 250 мг МП и 1000 мг РТМ. Перед выпиской к терапии был добавлен ГКХ 400 мг/сут, рекомендовано продолжить прием МП в дозе 8 мг/сут.

В июне 2024 г. пациент был повторно госпитализирован в НИИР им. В.А. Насоновой для введения насыщающей дозы РТМ 1000 мг. Клинический эффект плазмосорбции сохранялся: утренней скованности и сгибательных контрактур не наблюдалось, ЧБС — 12, ЧПС — 10, ВАШ — 45 мм. Выявлено повышение уровня воспалительных маркеров: СОЭ — 90 мм/ч, СРБ — 71 мг/л. Индекс DAS28 — 6,61. Сохранялась тенденция к снижению РФ (261 МЕ/мл), АМЦВ (62 ЕД/мл), отмечено повышение АЦЦП до 119 ЕД/мл.

В ноябре 2024 г. — ухудшение самочувствия в виде возобновления боли в суставах, утренней скованности (около 1,5 ч), ограничения движений в локтевых и плечевых суставах. По

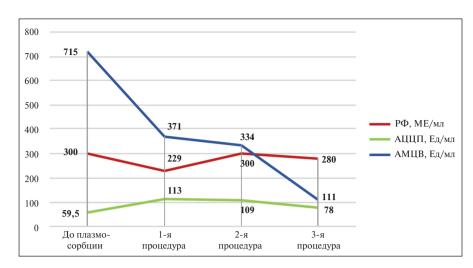


Рис. 6. Динамика уровней РФ, АЦЦП, АМЦВ на фоне селективной плазмосорбции ДНК и NETs и последующей терапии PTM

Fig. 6. Dynamics of RF, ACPA, and AMCV levels during selective plasmosorption of DNA and NETs and subsequent RTX therapy

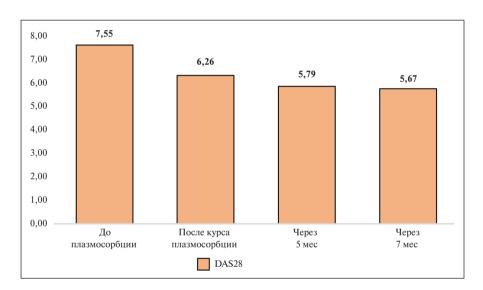


Рис. 7. Динамика DAS28 на фоне селективной плазмосорбции ДНК и NETs и последующей терапии PTM

Fig. 7. Dynamics of DAS28 during selective plasmosorption of DNA and subsequent RTX therapy

данным исследований: CO9-48 мм/ч, CPE-19,4 мг/л. ЧБС-6, ЧПС-13. DAS28-5,79.

Однако по данным КТ отмечалась положительная динамика в виде регресса зон консолидации, преимущественно в правом легком, с замещением их участками уплотнения по типу «матового стекла» (рис. 8, а, б), регресса утолщения плевры междолевых отделов правого легкого (рис. 8, в), уменьшения размеров внутригрудных лимфатических узлов (рис. 8, г).

Пациент консультирован амбулаторно. В связи с персистирующим поражением легких к терапии добавлен мофетила микофеналат 1000 мг/сут. Планировалось очередное введение РТМ, однако по техническим причинам оно было перенесено на январь 2025 г.

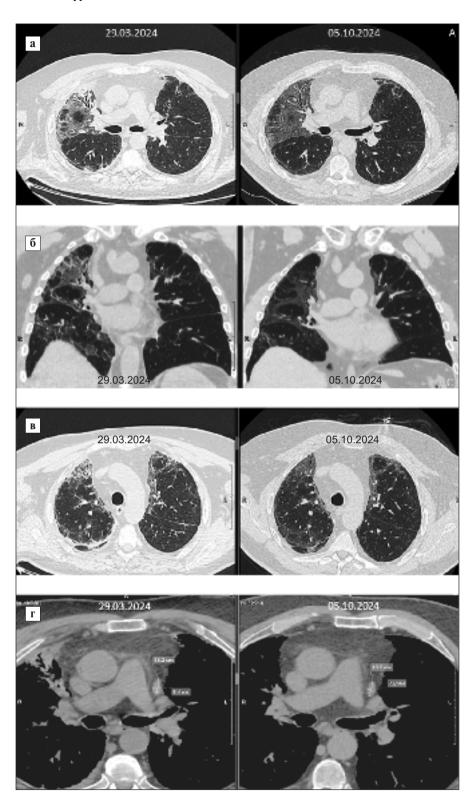
В январе 2025 г. — госпитализация в НИИР им. В.А. Насоновой для планового введения РТМ в поддерживающем режиме. При обследовании: ЧБС — 10, ЧПС — 6, ВАШ — 50 мм. СОЭ —

26 мм/ч, CPБ — 22 мг/л. DAS28 — 5,67. Введение PTM перенес удовлетворительно. Следующее введение — в июле 2025 г.

Обсуждение. Представлен яркий пример особого фенотипа РА -РА-ИЗЛ: мужчина с дебютом РА после 50 лет, высокими показателями воспалительной активности, серопозитивностью по РФ, АЦЦП, АМЦВ и АНФ. В настоящее время тактика лечения РА-ИЗЛ разработана недостаточно [18, 19], а научно обоснованные рекомендации отсутствуют [20, 21]. Реализация стратегии Treat-to-Target (T2T) при РА-ИЗЛ затруднена, поскольку данный фенотип развивается у лиц пожилого возраста, имеющих различные коморбидные и мультиморбидные состояния, препятствующие проведению активной противовоспалительной терапии. Противоревматические препараты могут вызывать лекарственно-индуцированную патологию легких и увеличивать риск развития инфекционной пневмонии. Таким образом, пациенты с РА-ИЗЛ автоматически относятся к категории D2T [22-24].

Ряд авторов считает, что понятие «рефрактерность» подразумевает также сохранение активного воспаления на фоне применения синтетических базисных противовоспалительных препаратов (сБПВП) и ГИБП. При этом необходимость постоянного приема умеренных или высоких доз глюкокортикоидов (ГК) тоже следует расценивать как признак рефрактерности к лечению [15]. Фенотип РА-ИЗЛ уже сам по себе является D2Т, но, помимо этого, у нашего пациента наблюдалась неэффективность различных доз МТ в сочетании с МП, что считается признаком рефрактерности.

До недавнего времени в лечении рефрактерных форм РА использова-


лись различные экстракорпоральные методы. Так, в 2000 г. С.К. Соловьев и соавт. [25] у 10 пациентов с рефрактерным РА и системными проявлениями применяли синхронную программную интенсивную терапию. На первом этапе пациенты получили три сеанса плазмафереза с эксфузией 1200-1500 мл плазмы с интервалом между процедурами в 2-3 дня и синхронным введением 40 мг МТ и 250 мг МП. На втором этапе аналогичная процедура плазмафереза проводилась 1 раз в неделю на протяжении 3 нед. После этого всем больным назначался МТ в дозе 20 мг/нед внутримышечно в течение 5 мес. Авторы отметили быстрое развитие терапевтического эффекта у больных рефрактерным РА: уменьшение системных проявлений, которые обычно обусловлены иммунокомплексным васкулитом, путем удаления из кровотока циркулирующих иммунных комплексов, в то время как пульс-терапия МТ и введение

6-МП подавляли выработку антител, снижали активность лимфоидных клеток

С развитием медицины совершенствуются и методы экстракорпоральной терапии. И сегодня применяются сорбционные технологии в сочетании уже не с ГК или цитостатиками, а с ГИБП. В 2020 г. Y. Xing и соавт. [26] провели ретроспективное когортное исследование, в котором участвовали 153 пациента 18 лет и старше с активным рефрактерным РА, 53 из которых получили две процедуры каскадной плазмофильтрации (КПФ) с введением инфликсимаба и МТ через сутки после второй процедуры. Две другие группы составили пациенты, получавшие только инфликсимаб + MT либо Γ K + MT. Частота ремиссии в группе КПФ была >50%, тогда как в группах инфликсимаба и ГК после 3 мес лечения частота достижения ремиссии по клиническому индексу активности болезни (Clinical Disease Activity Index, CDAI) составила 41,2 и 22,4%, а по упрощенному индексу активности болезни (Simplified Disease Activity Index, SDAI) - 37,3 и 14,2%. Авторы полагают, что при активном рефрактерном РА сочетание КПФ с ГИБП быстро приводит к ремиссии или низкой активности заболевания. Эффективность КПФ у пациентов с активным РА отмечена и в других работах [27, 28].

Появление методики селективной плазмосорбции внеклеточной ДНК и NETs расширило возможности лечения РА, позволяя воздействовать на ранее недоступное звено патогенеза. Доклинические исследования сорбционных колонок подтвердили, что с их помощью из кровотока удаляются не только NETs, но и циркулирующие геномная ДНК и митохондриальная ДНК, которые относятся к аутоантигенам, участвующим в развитии аутоиммунных реакций. Первое успешное использование колонки у пациентки с системной красной волчанкой дало надежду на успех этого метода и у больных РА [29]. У пациента с РА быстрый эффект был отмечен уже после первой процедуры плазмосорбции, а после трех процедур наблюдалось не только улучшение общего самочувствия, полное купирование утренней скованности и сгибательных контрактур, уменьшение

ЧБС и ЧПС, но и значительное снижение показателей воспалительной активности (уровня СРБ на 83%, СОЭ на 20%). Важно подчеркнуть, что в данном случае не исполь-

Рис. 8. KT OГK пациента H. в динамике (a—г) после селективной плазмосорбции ДНК и NETs с последующим введением PTM **Fig. 8.** Chest CT of patient N. over time (a—d) after selective plasmosorption of DNA and NETs followed by RTX administration

зовались ни ГК, ни цитостатики, как в работе С.К. Соловьева и соавт. [25], а противовоспалительный эффект оказался сопоставимым.

Безусловно, трех процедур селективной плазмосорбции недостаточно для достижения оптимальных результатов. Однако сочетание плазмосорбции с ГИБП позволяет получить более быстрый и длительный эффект: у нашего пациента в течение 12 мес наблюдения отмечалось значительное улучшение самочувствия. В данном случае был использован РТМ, что обусловлено его высокой эффективностью в отношении РА-ИЗЛ [30—32].

Заключение. Таким образом, первое применение селективной плазмосорбции внеклеточной ДНК и NETs в терапии резистентного к терапии РА с системными проявлениями продемонстрировало положительные результаты. Она может быть показана таким пациентам в качестве дополнительного метода для быстрого купирования воспалительной активности и обеспечения лучшего ответа на последующую терапию ГИБП.

ЛИТЕРАТУРА/REFERENCES

- 1. Насонов ЕЛ, Лила АМ. Ревматоидный артрит: достижения и нерешенные проблемы. Терапевтический архив. 2019; 91(5):4-7.
- Nasonov EL, Lila AM. Rheumatoid arthritis: achievements and unresolved issues. *Terapevticheskii arkhiv*. 2019;91(5): 4-7. (In Russ.).
- 2. Насонов ЕЛ, Ананьева ЛП, Авдеев СН. Интерстициальные заболевания легких при ревматоидном артрите: мультидисциплинарная проблема ревматологии и пульмонологии. Научно-практическая ревматология. 2022;60(6):517-534. Nasonov EL, Ananyeva LP, Avdeev SN. Interstitial lung disease in rheumatoid arthritis: A multidisciplinary problem in rheumatology and pulmonology. Nauchno-Prakticheskaya Revmatologia. 2022;60(6):517-534. (In Russ.). 3. Насонов ЕЛ. Проблемы иммунопатологии ревматоидного артрита: эволюция болезни. Научно-практическая ревматология. 2017;55(3):277-294.
- Nasonov EL. Problems of rheumatoid arthritis immunopathology: evolution of the disease. *Rheumatology Science and Practice*. 2017;55(3):277-294. (In Russ.).
- 4. Catrina A, Krishnamurthy A, Rethi B. Current view on the pathogenic role of anticitrullinated protein antibodies in rheumatoid arthritis. *RMD Open.* 2021 Mar;7(1):e001228. doi: 10.1136/rmdopen-2020-001228.
- 5. Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. *Clin Rev Allergy Immunol.* 2021 Oct;61(2):194-211. doi: 10.1007/s12016-020-08804-7.
- 6. Авдеева АС, Алексанкин АП. Нетоз нейтрофилов: методы лабораторной оценки и роль в патогенезе иммуновоспалительных ревматических заболеваний (обзор литературы). Клиническая лабораторная диагностика. 2024;69(5):206-214. Avdeeva AS, Aleksankin AP. NETosis: assessment methods and role in the pathogenesis of systemic autoimmune rheumatic diseases (review of literature). Klinicheskaya laborator-
- 7. Foulquier C, Sebbag M, Clavel C, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue in-

nava diagnostika. 2024;69(5):206-214.

- flammation. *Arthritis Rheum*. 2007 Nov;56(11): 3541-53. doi: 10.1002/art.22983.
- 8. Насонов ЕЛ, Авдеева АС, Решетняк ТМ и др. Роль нетоза в патогенезе иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2023; 61(5):513-530.
- Nasonov EL, Avdeeva AS, Reshetnyak TM, et al. The role of NETosis in the pathogenesis of immunoinflammatory rheumatic diseases. *Nauchno-Prakticheskaya Revmatologia*. 2023; 61(5):513-530. (In Russ.).
- 9. Carmona-Rivera C, Carlucci PM, Goel RR, et al. Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. *JCI Insight*. 2020 Jul 9;5(13): e139388. doi: 10.1172/jci.insight.139388. 10. Schneider AH, Taira TM, Publio GA, et al. Neutrophil extracellular traps mediate bone erosion in rheumatoid arthritis by enhancing RANKL-induced osteoclastogenesis. *Br J Pharmacol*. 2024 Feb;181(3):429-446. doi: 10.1111/bph.16227.
- 11. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. *Sci Transl Med.* 2013 Mar 27;5(178): 178ra40. doi: 10.1126/scitranslmed.3005580. 12. Carmona-Rivera C, Carlucci PM, Moore E, et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. *Sci Immunol.* 2017 Apr;2(10):eaag3358. doi: 10.1126/sciimmunol.aag3358.
- 13. Jarzebska N, Rodionov RN, Voit-Bak K, et al. Neutrophil Extracellular Traps (NETs) as a Potential Target for Anti-Aging: Role of Therapeutic Apheresis. *Horm Metab Res.* 2025 Jan 9. doi: 10.1055/a-2444-3422. Online ahead of print.
- 14. Sur Chowdhury C, Giaglis S, Walker UA, et al. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: Analysis of underlying signal transduction pathways and potential diagnostic utility. *Arthritis Res Ther.* 2014 Jun 13;16(3):R122. doi: 10.1186/ar4579. 15. Гордеев АВ, Олюнин ЮА, Галушко ЕА и др. Труднолечимый ревматоидный артрит. Какой он? Современная ревматология. 2021;15(5):7-11.
- Gordeev AV, Olyunin YA, Galushko EA, et al. Difficult-to-treat rheumatoid arthritis. What

- is it? Sovremennaya Revmatologiya = Modern Rheumatology Journal, 2021;15(5):7-11. doi: 10.14412/1996-7012-2021-5-7-11 16. Xie S, Li S, Chen B, et al. Serum anti-citrullinated protein antibodies and rheumatoid factor increase the risk of rheumatoid arthritis-related interstitial lung disease: A metaanalysis. Clin Rheumatol. 2021 Nov;40(11): 4533-4543. doi: 10.1007/s10067-021-05808-2. 17. Sparks JA, He X, Huang J, et al. Rheumatoid arthritis disease activity predicting incident clinically apparent rheumatoid arthritisassociated interstitial lung disease: A prospective cohort study. Arthritis Rheumatol. 2019 Sep:71(9):1472-1482. doi: 10.1002/art.40904. 18. Kelly C, Emery P, Dieude P. Current issues in rheumatoid arthritis related interstitial lung disease (RA-ILD). Lancet Rheum. 2021; 3(11):e798-e807. doi: 10.1016/S2665-9913 (21)00250-2
- 19. Akiyama M, Kaneko Y. Pathogenesis, clinical features, and treatment strategy for rheumatoid arthritis-associated interstitial lung disease. *Autoimmun Rev.* 2022 May;21(5): 103056. doi: 10.1016/j.autrev.2022.103056. 20. Yu KH, Chen HH, Cheng TT, Jan YJ, Weng MY, Lin YJ, et al. Consensus recommendations on managing the selected comorbidities including cardiovascular disease, osteoporosis, and interstitial lung disease in rheumatoid arthritis. *Medicine (Baltimore)*. 2022;101(1):e28501. doi: 10.1097/MD. 00000000000028501 92.
- 21. Diesler R, Cottin V. Pulmonary fibrosis associated with rheumatoid arthritis: From pathophysiology to treatment strategies. *Expert Rev Respir Med.* 2022 May;16(5):541-553. doi: 10.1080/17476348.2022.2089116.
- 22. Roodenrijs NMT, Hamar A, Kedves M, et al. Pharmacological and non-pharmacological therapeutic strategies in difficult-to-treat rheumatoid arthritis: A systematic literature review informing the EULAR recommendations for the management of difficult-to-treat rheumatoid arthritis. *RMD Open*. 2021 Jan;7 (1):e001512. doi: 10.1136/rmdopen-2020-001512.
- 23. Buch MH, Eyre S, McGonagle D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. *Nat Rev Rheumatol.* 2021 Jan;17(1):17-33. doi: 10.1038/s41584-020-00541-7.
- 24. Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремис-

(In Russ.).

сии и резистентности к терапии. Научнопрактическая ревматология. 2018;56(3): 263-271.

Nasonov EL, Olyunin YuA, Lila AM. Rheumatoid arthritis: The problems of remission and therapy resistance. *Nauchno-Prakticheskaya Revmatologia*. 2018;56(3): 263-271. (In Russ.).

25. Соловьев СК, Асеева ЕА, Чикликчи АС, Лашина НЮ. Синхронная программная интенсивная терапия больных ревматоидным артритом. Научно-практическая ревматология. 2000;38(1):49-54.

Solov'ev SK, Aseeva EA, Chiklikchi AS, Lashina NYu. Synchronic intensive program therapy of patients with rheumatoid arthritis. *Nauchno-Prakticheskaya Revmatologia*. 2000; 38(1):49-54. (In Russ.).

27. Yu X, Zhang L, Wang L, et al. MRI assessment of erosion repair in patients with long-standing rheumatoid arthritis receiving double-filtration plasmapheresis in addition to leflunomide and methotrexate: a randomized controlled trial. *Clin Rheumatol.* 2018 Apr; 37(4):917-925. doi: 10.1007/s10067-017-3956-3.

28. Yu X, Ma J, Tian J, et al. A controlled study of double filtration plasmapheresis in the treatment of active rheumatoid arthritis. *J Clin Rheumatol*. 2007 Aug;13(4):193-8. doi: 10.1097/RHU.0b013e318124a483. 29. Асеева ЕА, Покровский НС, Соловьев СК и др. Первый клинический опыт применения селективной плазмосорбции ДНК с использованием сорбционной колонки «НуклеоКор®» при лечении системной красной волчанки. Современная ревматология. 2024;18(2):75-80.

Aseeva EA, Pokrovskii NS, Solov'ev SK, et al. The first clinical experience with selective DNA plasmasorption using the NucleoCapture Device in the treatment of systemic lupus erythematosus. *Sovremennaya Revmatologiya*

= *Modern Rheumatology Journal*. 2024;18(2): 75-80. (In Russ.). doi: 10.14412/1996-7012-2024-2-75-80

30. Mena-Vazquez N, Redondo-Rodriguez R, Rojas-Gimenez M, et al. Efficacy and safety of rituximab in autoimmune disease-associated interstitial lung disease: A prospective cohort study. *J Clin Med.* 2022 Feb 10;11(4):927. doi: 10.3390/jcm11040927.

31. Matteson E, Bongartz T, Ryu J, et al. Open-label, pilot study of the safety and clinical effects of rituximab in patients with rheumatoid arthritis-associated interstitial pneumonia. *Open J Rheumatol Autoimmune Dis.* 2012;2(3):53-58. doi: 10.4236/ojra. 2012.23011

32. Vadillo C, Nieto MA, Romero-Bueno F, et al. Efficacy of rituximab in slowing down progression of rheumatoid arthritis-related interstitial lung disease: Data from the NEREA Registry. *Rheumatology (Oxford)*. 2020 Aug 1; 59(8):2099-2108. doi: 10.1093/rheumatology/kez673.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 03.07.2025/10.09.2025/13.09.2025

Заявление о конфликте интересов/Conflict of Interest Statement

Статья подготовлена в рамках государственного задания № РК 125020501434-1 «Изучение иммунопатологии и подходы к терапии при системных ревматических заболеваниях».

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared within the framework of the state assignment № PK 125020501434-1 "Investigation of immunopathology and approaches to therapy in systemic rheumatic diseases."

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Асева Е.А. https://orcid.org/0000-0002-1663-7810 Плетнёв Е.А. https://orcid.org/0009-0005-1269-5799 Покровский Н.С. https://orcid.org/0000-0001-5105-0313 Соловьев С.К. https://orcid.org/0000-0002-5206-1732 Николаева Е.В. https://orcid.org/0000-0002-6906-0621 Никишина Н.Ю. https://orcid.org/0000-0002-4160-7218 Абруалица Е.Т. https://orcid.org/0000-00008-8106-8001

Абдуллин E.T. https://orcid.org/0009-0006-8106-8091 Бланк Л.М. https://orcid.org/0000-0002-4503-7750

Зоткин Е.Г. https://orcid.org/0000-0002-4579-2836

Лила A.M. https://orcid.org/0000-0002-6068-3080

Современная ревматология. 2025;19(5):98-105

ОБЗОРЫ/REVIEWS

Современный взгляд на проблему резистентности к терапии при псориатическом артрите: обзор литературы

Коротаева Т.В.¹, Логинова Е.Ю.¹, Лила А.М.^{1,2}, Круглова Л.С.³

¹ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва; ³ФГБУ ДПО «Центральная государственная медицинская академия» Управления делами Президента Российской Федерации, Москва ¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1; ³Россия, 121359, Москва, ул. Маршала Тимошенко, 19, стр. 1A

При псориатическом артрите (ПсА), несмотря на использование большего числа лекарственных средств, включая генно-инженерные биологические препараты (ГИБП), таргетные синтетические базисные противовоспалительные препараты, ремиссии и/или минимальной активности болезни достигает в среднем треть пациентов. Высокая клиническая гетерогенность ПсА и наличие сопутствующих заболеваний приводят к неоднократным переключениям ГИБП и способствуют формированию фармакорезистентности. В обзоре представлены современные данные о концепции и определении «трудно поддающегося лечению» ПсА (Difficult-to-Treat Psoriatic Arthritits, D2T PsA) и «сложного для ведения» ПсА (Complex-to-Manage Psoriatic Arthritits, C2M PsA), проанализированы факторы, ассоциированные с устойчивостью к лечению, рассмотрены перспективные терапевтические направления для этой категории пациентов.

Ключевые слова: резистентный к лечению псориатический артрит; сложный для ведения и трудно поддающийся лечению псориатический артрит.

Контакты: Татьяна Викторовна Коротаева; tatianakorotaeva@gmail.com

Для цитирования: Коротаева ТВ, Логинова ЕЮ, Лила АМ, Круглова ЛС. Современный взгляд на проблему резистентности к терапии при псориатическом артрите: обзор литературы. Современная ревматология. 2025;19(5):106—112 https://doi.org/10.14412/1996-7012-2025-5-106-112

Current view on therapy resistance in psoriatic arthritis: a literature review Korotaeva T.V.¹, Loginova E.Yu.¹, Lila A.M.^{1,2}, Kruglova L.S.³

¹V.A. Nasonova Research Institute of Rheumatology, Moscow; ²Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow; ³Central State Medical Academy of the Administration of the President of the Russian Federation, Moscow ¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia; ³19, Marshal Timoshenko Street, Build. 1A, Moscow 121359, Russia

Despite using a wide range of treatments, including biologic disease-modifying antirheumatic drugs (bDMARDs) and targeted synthetic DMARDs only about one third of patients with psoriatic arthritis (PsA) achieve remission and/or minimal disease activity. Marked clinical heterogeneity and frequent comorbidities lead to multiple biologics switching and contribute to pharmacoresistance. This review summarizes current concepts and definitions of "difficult-to-treat" PsA (D2T PsA) and "complex-to-manage" PsA (C2M PsA), analyzes factors associated with treatment resistance, and outlines promising therapeutic directions for this patient population.

Keywords: treatment-resistant psoriatic arthritis; complex-to-manage and difficult-to-treat psoriatic arthritis.

Contact: Tatyana Viktorovna Korotaeva; tatianakorotaeva@gmail.com

For citation: Korotaeva TV, Loginova EYu, Lila AM, Kruglova LS. Current view on therapy resistance in psoriatic arthritis: a literature review. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):106–112 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-106-112

В основе развития псориатического артрита (ПсА) лежит иммуновоспалительная реакция, обусловленная генетическими причинами и влиянием факторов окружающей среды, которая характеризуется экспрессией определенного спектра цитокинов, активацией врожденного иммунитета и Т-клеток [1–3]. Заболевание имеет гетерогенную природу, клинически проявляется

поражением костно-суставного аппарата в виде артрита, энтезита, дактилита, спондилита, псориаза (ПсО) кожи и ногтей, нередко в сочетании с внесуставными проявлениями в виде воспалительного заболевания кишечника (ВЗК) и увеита [2].

Типичным для ПсА и ПсО является частое развитие коморбидных состояний, главным образом метаболического

0 Б 3 0 Р Ы / R E V I E W S

синдрома (МС), заболеваний сердечно-сосудистой системы, поражения печени, остеопороза, фибромиалгии (Φ M), депрессии, онкологических заболеваний [4]. Показано, что наличие коморбидности, в том числе и сочетанной патологии, оказывает значимое влияние на активность заболевания, качество жизни и функциональный статус пациентов, а также снижает шанс на достижение минимальной активности болезни (МАБ) [5–7].

На протяжении многих лет методы лечения пациентов с ПсА включали нестероидные противовоспалительные препараты, глюкокортикоиды (ГК) и традиционные синтетические базисные противовоспалительные препараты (БПВП), а с 2000-х годов в клинической практике началось широкое использование генно-инженерных биологических препаратов (ГИБП) и таргетных синтетических БПВП (тсБПВП) [3, 7]. В последние годы значительно расширился спектр ГИБП, представляющих собой антитела, нейтрализующие активность ключевых провоспалительных цитокинов — фактора некроза опухоли α (ФНОα), интерлейкина (ИЛ) 17А, ИЛ23, ИЛ12/23, а также тсБПВП. Однако, по данным регистра IPART (International Psoriasis and Arthritis Research Team), при применении ингибиторов ΦΗΟα (иΦΗΟα), ИЛ17А (иИЛ17А), ИЛ12/23 (иИЛ12/23), фосфодиэстеразы 4, Янус-киназ -ЈАК (иЈАК) или биоаналога блокатора костимуляции абатацепта (анти-СТLА4-Ід-биоаналог) от 60 до 80% пациентов с ПсА при общем сроке наблюдения 9 лет не достигали МАБ в течение 6 мес [8, 9].

Таким образом, несмотря на использование большого числа ГИБП разных классов, цели терапии (ремиссия и/или МАБ) достигают в среднем только около 30% пациентов с ПсА. Эти данные подтверждаются результатами популяционных исследований и метаанализов, которые свидетельствуют о высокой частоте прекращения лечения и относительно низкой его эффективности у больных ПсА [7].

Одной из причин недостижения ремиссии и/или МАБ при ПсА является то, что не все вовлеченные в воспалительный процесс области одновременно и в равной степени реагируют на терапию. У пациентов, получающих лечение, нередко обнаруживаются остаточные проявления заболевания, в частности боль в суставах, энтезит, ПсО гладкой кожи, ногтей и др. По данным метаанализа L.C. Coates и соавт. [10], в среднем у 10% пациентов в стадии ремиссии по индексу активности DAPSA (Disease Activity in Psoriatic Arthritis) или клиническому индексу DAPSA (без учета CPБ) сохранялось >1 болезненного сустава, у 25-39% индекс распространенности и тяжести ПсО PASI (Psoriasis Area and Severity Index) составлял >1 балла и до 10% отмечали боль >15 мм по визуальной аналоговой шкале (ВАШ). Остаточные проявления заболевания со стороны как суставов, так и ПсО встречались реже у пациентов, достигших МАБ, по сравнению с пациентами, достигшими ремиссии по DAPSA. Кроме того, установлен широкий спектр различных симптомов, которые могут сохраняться даже в случае успешного лечения. В частности, боль, усталость, снижение трудоспособности и ряд других параметров, связанных с оценкой пациентом своего состояния, также могут указывать на возможное несоответствие между мнением врача и мнением пациента о статусе ремиссии и уровне контроля над заболеванием [5, 9].

При ПсА рассматривают следующие причины недостижения ремиссии/МАБ/очень низкой активности болезни (ОНАБ): высокая гетерогенность заболевания и, как следствие,

различный ответ на терапию со стороны клинических доменов ПсА (артрит, ПсО, энтезит, дактилит, спондилит), курение, ожирение, образование нейтрализующих антител к ГИБП с формированием вторичной неэффективности; первичная неэффективность терапии.

Таким образом, применение ГИБП и тсБПВП далеко не всегда позволяет достичь целей лечения при ПсА. Согласно многочисленным данным, у значительной части больных может наблюдаться устойчивость к терапии даже после оптимизации ее схемы. В таких случаях коррекция терапии может осуществляться посредством выбора нового лекарственного средства (ЛС) с аналогичным механизмом действия либо путем перехода на препарат с другим механизмом действия.

В настоящее время в литературе представлено ограниченное число рандомизированных плацебо-контролируемых исследований (РКИ), посвященных сравнению эффективности ГИБП при ПсА, не определен порядок назначения ГИБП. В связи с этим выбор терапии осуществляется с учетом активности доминирующего клинического фенотипа, наличия коморбидности и предпочтений пациента. Так, у больных с тяжелым поражением кожи, суставов и позвоночника рекомендуется в первую очередь использовать иИЛ17А, а не иФНОα [11]. Вместе с тем важно учитывать, что клинические фенотипы ПсА часто пересекаются между собой и меняются с течением времени у одного и того же пациента, а признаки активного воспаления могут сохраняться несмотря на достижение целей терапии.

Согласно мнению экспертов EULAR (European Alliance of Associations for Rheumatology), смену ГИБП при его неэффективности следует проводить преимущественно в рамках одного класса. В то же время рекомендации Группы по исследованию и оценке псориаза и псориатического артрита (Group for Research and Assessment of Psoriasis and Psoriatic Arthritis, GRAPPA) не содержат конкретных указаний по этому вопросу. Отмечено, что переход на препарат с иным механизмом действия может быть полезен при неэффективности иФНОа [11]. При отсутствии эффекта от применения по крайней мере двух ГИБП/тсБПВП с разным механизмом действия заболевание следует рассматривать как резистентное к лечению, что подразумевает существенное сужение круга доступных терапевтических опций. Однако данные регистров и результаты проспективных наблюдений, касающиеся долгосрочного использования таргетной терапии при ПсА, показывают, что даже при назначении разных классов ГИБП/тсБПВП в качестве ЛС второй или третьей линии терапии достижение OHAБ по DAPSA28 отмечается у 35-59% больных [12].

Такая ситуация послужила причиной разработки концепции и терминологии «трудно поддающего лечению» ПсА (Difficult-to-Treat Psoriatic Arthritits, D2T PsA) и «сложного для ведения» ПсА (Complex-to-Manage Psoriatic Arthritits, C2M PsA). Данное определение было заимствовано из литературы, посвященной ревматоидному артриту (PA). Однако на сегодняшний день среди исследователей нет единой точки зрения по такому ключевому вопросу, как число препаратов, которые должны оказаться неэффективными, чтобы ПсА был классифицирован как D2T. Число таких ЛС в разных источниках варьируется от минимум одного традиционного синтетического БПВП и одного ГИБП до нескольких ГИБП и тсБПВП с разным механизмом действия. Результаты ис-

0 Б 3 0 Р Ы / R E V I E W S

следований указывают на отсутствие единства и в отношении оценки активности заболевания, а также числа безуспешных попыток лечения, необходимых для отнесения ПсА к D2T.

Таким образом, несмотря на значительные усилия ряда авторов по обобщению имеющихся в литературе данных, текущий объем знаний о D2T ПсА невелик. Малочисленность исследований в этой области является актуальной проблемой, так как ПсА — крайне неоднородное заболевание и у таких пациентов могут наблюдаться различные реакции на существующие методы терапии. Это ведет к снижению качества оказания медицинской помощи, невозможности проведения РКИ по единому протоколу и недостаточному использованию современных методов лечения ПсА.

В настоящем обзоре проанализированы актуальные представления, лежащие в основе концепции D2T и C2M ПсА.

Ключевые факторы резистентности к терапии

Полагают, что резистентность к лечению при ПсА связана с несколькими факторами, которые могут оказывать влияние по отдельности или совместно. Разнообразие механизмов воспалительного процесса при этом заболевании значительно снижает вероятность применения универсального терапевтического подхода.

В основе D2T ПсА может лежать резистентность к лечению, которая характеризуется сохраняющейся активностью воспалительного процесса, несмотря на многократные курсы терапии ГИБП и тсБПВП. Этот сценарий может быть основан на феномене иммунного «ускользания» эффекта, обусловленном изменчивостью клеточного и цитокинового ответа на терапию [2]. Иммунное «ускользание» возникает, когда происходит своего рода адаптация регуляторных систем к продолжающемуся воспалительному процессу.

Показано, что одновременное воздействие на ряд цитокинов с различными эффекторными функциями может дать хороший результат при лечении резистентных случаев ПсА, не поддающихся монотерапии [13].

Наличие внесуставных проявлений, таких как ВЗК, увеит и поражение кожи, способно осложнять лечение ПсА. Терапия, которая обеспечивает значимый результат в одной области поражения, может быть малоэффективной в других зонах. Так, ингибирование ИЛ17 эффективно купирует кожные проявления, но не влияет на увеит и может вызвать обострение ВЗК. При ведении таких пациентов необходим междисциплинарный подход с привлечением разных специалистов — гастроэнтерологов, офтальмологов и дерматологов. В то же время иИЛ23 высокоэффективны в отношении ПсО и ПсА, особенно при их сочетании с ВЗК (иИЛ23 одобрены для лечения ВЗК в США [14]).

Социально-экономические факторы и пол. Возможности лечения ПсА могут ограничиваться высокими затратами на него и недостаточными ресурсами системы здравоохранения [15, 16]. Раннее прекращение терапии нередко связано с субъективными предпочтениями пациента, опасением нежелательных явлений и др., которые всегда следует обсуждать для повышения приверженности лечению. На клинические проявления и прогноз ПсА влияет и пол пациента. В частности, установлено, что у женщин активность заболевания часто выше, а ответ на терапию менее выражен, чем у мужчин [17].

Метаболические факторы. Сопутствующие метаболические нарушения в значительной степени способствуют раз-

витию резистентности к лечению ГИБП при ПсА. Это обусловлено более высокой активностью заболевания у больных ожирением, поскольку жировая ткань секретирует собственные провоспалительные цитокины (ФНОа, ИЛ6, лептин, ИЛ17, ИЛ23). A. Ogdie и соавт. [18] обнаружили, что ожирение у больных ПсА является одним из факторов, препятствующих развитию ремиссии по клиническому индексу активности CDAI (Clinical Disease Activity Index; отношение шансов, ОШ 0,51; 95% доверительный интервал, ДИ 0,33-0,81) на фоне терапии иФНОа. При этом, по данным ряда исследований, эффективность иИЛ23, иИЛ17А, иЈАК сохраняется. В то же время больным с массой тела >100 кг необходимы более высокие дозы некоторых иФНОа, иИЛ12/23, что не всегда выполняется на практике и ухудшает результаты лечения. Следует отметить, что эффективность иИЛ23 гуселькумаба (ГУС) не снижается у пациентов с повышенной массой тела и ожирением, поэтому коррекции дозы не требуется [19]. В ряде исследований было показано, что снижение массы тела и приверженность низкокалорийной диете (632-835 ккал) ассоциировались со значимым регрессом активности ПсА, снижением уровня циркулирующих ИЛ23 и лептина, преимущественно у женщин [20, 21]. Поскольку пациентам сложно длительно придерживаться диеты, изучается возможность коррекции массы тела с помощью препаратов, включение которых в комплексные схемы может снизить риск формирования фармакорезистентности. Курение также негативно влияет на результаты лечения ПсА. Исходя из этих данных, проведение иммуномодулирующей терапии должно сопровождаться снижением массы тела, соблюдением низкокалорийной диеты, отказом от курения и поддержанием адекватной физической активности.

Сопутствующие заболевания. Такие коморбидные состояния, как плохо контролируемый сахарный диабет, хронические инфекции, включая туберкулез, вирусный гепатит, болезни почек, ВЗК, увеит, ограничивают возможности применения некоторых вариантов таргетной терапии ПсА из-за наличия противопоказаний или риска обострения/возникновения таких заболеваний при назначении определенных ЛС [3]

Е.Ю. Логинова и соавт. [6] впервые охарактеризовали российскую когорту больных ПсА с резистентностью к терапии. Было показано, что распространенный тяжелый ПсО гладкой кожи/ПсО ногтей (онихолизис), гиперурикемия наряду с высокой длительностью болезни и некоторыми клиническими характеристиками (полиартрит, дактилит, энтезит и функциональные нарушения к моменту назначения ГИБП) ассоциированы с формированием D2T ПсА. Тревога и депрессия также снижают вероятность достижения МАБ и ремиссии при ПсА [6, 22]. В РКИ, проведенном К.В. Gordon и соавт. [23], было отмечено значимое снижение уровня тревожности и депрессии у пациентов с ПсО на фоне терапии иИЛ23 ГУС, что указывает на возможное участие ИЛ23 в формировании этих состояний.

Сопутствующие заболевания опорно-двигательного аппарата. У больных ПсА тяжесть и прогрессирование структурных повреждений опорно-двигательного аппарата связаны с увеличением риска развития функциональных нарушений. По данным РКИ, раннее снижение активности ПсА на фоне терапии иИЛ23 ГУС сопровождается значимым уменьшением риска рентгенологического прогрессирования изменений в суставах через 2 года [24, 25].

Следует также отметить, что отсутствие ответа на терапию, в том числе таргетными ЛС, не только может свидетельствовать о формировании D2T фенотипа ПсА, но и в некоторых случаях требует пересмотра диагноза ПсА в пользу другого ревматического заболевания в сочетании с ПсО или ассоциации ПсА/ПсО с психоневрологическими нарушениями. В частности, нередко у таких больных диагностируется остеоартрит (ОА), для которого характерны выраженная боль и ухудшение функциональных возможностей [25]. В настоящее время алгоритм терапии ПсА в сочетании с ОА не разработан, между тем при этом варианте течения болезни риск развития фармакорезистентности повышен.

Сочетание ПсО, ПсА и подагры является сложным с точки зрения дифференциальной диагностики и терапии. Считается, что гиперурикемия играет определенную роль в развитии и поддержании воспаления при ПсА. Так, кристаллы моноурата натрия стимулируют синовиоциты, макрофаги и дендритные клетки к высвобождению ИЛ1, ИЛ6, ИЛ12 и ИЛ23, что приводит к активации воспалительного процесса в суставах [26]. В подобных случаях бывает трудно оценить непосредственный вклад ПсА в воспалительный процесс. Эффективным у таких больных может быть применение ЛС других групп, например колхицина или иИЛ1, как по отдельности, так и в комбинации со стандартной терапией ПсА. Однако данные схемы пока не разработаны. Сопутствующая ФМ также является причиной снижения эффективности терапии при ПсА, главным образом из-за выраженной боли.

Перспективы разработки лечебно-профилактических подходов при D2T ПсА

Эксперты EULAR определили критерии D2T PA как сохранение симптомов болезни при неэффективности по крайней мере 2 ГИБП или тсБПВП с разным механизмом действия [27]. В 2022 г. F.M. Perrotta и соавт. [28] модифицировали эти критерии для ПсА и с их помощью оценили клинические характеристики больных и потенциальные факторы риска развития D2T ПсА.

Модифицированные критерии:

- 1. Неэффективность терапии ≥2 ГИБП/тсБПВП с различным механизмом действия, проводившейся в соответствии с международными рекомендациями EULAR/GRAPPA после неэффективности традиционных синтетических БПВП (кроме случаев наличия противопоказаний для такой терапии).
- 2. Наличие ≥1 признака из нижеследующих, указывающего на активное/прогрессирующее заболевание:
 - а) по меньшей мере умеренная активность заболевания, оцененная согласно валидированным композитным индексам (например, DAPSA >14 или недостижение MAБ по критериям);
 - б) признаки (включая данные визуализации и/или белки острой фазы), свидетельствующие об активном воспалении в одной или нескольких областях (связанные с суставами или другие);
 - в) быстрое рентгенологическое прогрессирование (с проявлениями активного заболевания или без них) по модифицированному для ПсА рентгенологическому счету Sharp-van der Hejide;
 - г) хороший контроль заболевания в соответствии с перечисленными выше стандартами, но сохранение симптомов ПсА, ухудшающих качество жизни пациентов.

3. Проблематичное для лечения заболевание, по мнению ревматолога и/или пациента.

Для определения D2T ПсА необходимо соответствие всем 3 из перечисленных выше критериев.

В дальнейшем было уточнено определение «проблематичное для лечения заболевание, по мнению врача или пациента», в него включены: а) наличие коморбидной патологии, которая поддерживает воспаление (ожирение, МС, жировая болезнь печени, сердечно-сосудистые заболевания, курение); б) наличие коморбидной патологии, усиливающей боль и инвалидизацию (ФМ, депрессия, тревожность, ОА); в) наличие перекрестных диагнозов; г) отсутствие значимых коморбидных заболеваний и перекрестных диагнозов, что предполагает наличие истинной резистентности к лечению [29].

Как отмечено выше, на возможность достижения ремиссии при ПсА влияет ряд факторов, которые можно разделить на несколько групп. Одни из них связаны с персистирующим воспалительным процессом, другие — с метаболическими нарушениями, гендерными различиями в ответе на терапию, расхождением в оценке ремиссии пациентом и врачом, наличием хронической боли, вызванной разными причинами, структурных повреждений депрессии и тревожности, третьи — с несоблюдением режима лечения, ограниченным доступом к медицинской помощи, развитием нежелательных явлений и т. д. [30, 31].

Е. Lubrano и соавт. [30] рекомендовали дифференцировать больных ПсА, рефрактерных к лечению из-за наличия неконтролируемой воспалительной реакции, и пациентов с D2T ПсА с невосприимчивостью к терапии, обусловленной сопутствующими заболеваниями, которые, с одной стороны, ассоциируются с более высокой активностью ПсА, а с другой — снижают вероятность достижения ремиссии/МАБ. Подобный подход, учитывающий особенности течения заболевания, согласуется с рекомендациями GRAPPA, хотя и в несколько иной терминологии. Такой взгляд на проблему подчеркивает, что для эффективного лечения ПсА необходим учет как воспалительных, так и невоспалительных факторов, а также всех сопутствующих заболеваний [32].

Предложены и другие определения D2T ПсА, которые включают следующий критерий: лечение в соответствии с международными рекомендациями (American College of Rheumatology, ACR, GRAPPA или EULAR) и неэффективность при применении ≥3 ГИБП/тсБПВП (с разным механизмом действия) после неудачной терапии ПсА с использованием традиционных синтетических БПВП (в отсутствие противопоказаний) [33]. Помимо признаков активного заболевания, указанных F.M. Perrotta и соавт. [28], в критерии были включены: трудные для лечения аксиальные симптомы, которые, по мнению ревматолога, вызваны воспалительным аксиальным ПсА; признаки, указывающие на активный ПсА кожи или ногтей (по мнению дерматолога), и невозможность снизить дозу ГК (<7,5 мг/сут преднизолона или эквивалентного препарата). Недавно проведенное исследование, в котором оценивались два указанных выше набора критериев для определения D2T ПсА, не выявило между ними значимых различий [34]. Учитывая имеющиеся трудности, крайне важно определять факторы, не позволяющие достичь ремиссии, и четко стратифицировать подгруппы резистентных к терапии пациентов с ПсА, что поможет определить пути оптимизации терапии.

Известно, что проблемы лечения ПсА усугубляются наличием иммунологических и метаболических нарушений, а также сопутствующих заболеваний. Разнообразие внешних причин, патогенетических механизмов и других факторов формирования D2T ПсА и C2M ПсА свидетельствует о необходимости персонализированного терапевтического полука

По мнению экспертов, для предупреждения развития фармакорезистентности необходимо соблюдать принцип: «правильное лечение правильному пациенту в правильный момент времени». Однако на практике такой подход не всегда выполним по разным причинами — от индивидуальных (особенности течения заболевания у конкретного больного) до административных (доступ к лекарственному обеспечению в целом). Так называемые административные (немедицинские) причины отмены ГИБП/тсБПВП являются одной из предпосылок для формирования С2М ПсА наряду с наличием стойких воспалительных изменений и коморбидных заболеваний. В настоящее время критерии С2М ПсА активно обсуждаются.

Показано, что частая смена ГИБП в случае недостижения МАБ приводит к увеличению числа применяемых ЛС, а значит, потенциально увеличивает риск развития D2T ПсА. Одним из путей снижения риска формирования D2T и резистентных форм ПсА является ранняя диагностика заболевания и раннее начало адекватной терапии у пациентов как с достоверным ПсА (по критериям ClASification criteria for Psoriatic Arthritis, CASPAR), так и с тяжелым ПсО и риском развития ПсА.

Подходы, основанные на принципах персонализированной медицины, такие как идентификация сывороточных, клеточных и тканевых биомаркеров, могут способствовать выявлению и лечению тяжелого заболевания до того, как оно трансформируется в вариант, трудно поддающийся терапии. Например, стратификация пациентов на основе соотношения активированных Т-хелперов Th1- и Th17-типа оказалась полезной при выборе наиболее эффективных препаратов для лечения — иФНО или иИЛ17 [35]. Аналогичным образом, такие сывороточные биомаркеры, как олигомерный матриксный белок хряща (СОМР), матриксная металлопротеиназа 3, аутоантитела к ADAMTSL5 и LL37, могут применяться для идентификации деструкции хряща, активности заболевания и выраженности ответа на лечение, однако эти подходы нуждаются в валидации перед внедрением в клиническую практику [36-38].

Перспективным для выбора таргетного лечения может быть иммунофенотипирование биоптатов вовлеченных в воспалительный процесс тканей. При ПсА таковыми могут быть кожа, синовия и энтезисы. Использование искусственного интеллекта также может оказаться полезным в диагностике ПсА благодаря возможности интеграции мультимодальных клинических данных, биомаркеров и визуализационных методов [39, 40].

Лечение D2T ПсА и C2M ПсА, основанное на принципах доказательной медицины, в настоящее время не разработано. Имеются сообщения экспертов о применении альтернирующих схем, а также комбинаций ГИБП и тсБПВП. Вместе с тем появляются новые ЛС, например, биспецифические моноклональные антитела к ИЛ17А/ИЛ17F (бимекизумаб) или терапевтические белки малого размера (18,6 кDa) с высокой аффинностью, созданные для ингибирования

ИЛ17А (изокибеп), а также новые регуляторы сигнальных путей иммунного каскада — ТҮК2-ингибиторы (деукравацитиниб) и комбинированные ТҮК2/ЈАК2-ингибиторы (брепотициниб).

Заключение. Проблема терапии трудно поддающихся лечению иммуновоспалительных ревматических заболеваний приобрела актуальность в последние годы, в том числе и из-за недостаточной эффективности применения ≥2 линий ГИБП. Впервые критерии для определения D2T РА были установлены EULAR [27], инициатива по формулированию определения D2T аксиального спондилоартрита принадлежит ASAS (Assessment of SpondyloArthritis International Society) [41]. В свою очередь, GRAPPA сосредоточила усилия ревматологов, дерматовенерологов и пациентов на создании определения, концептуальных подходов к диагностике и лечению больных ПсА, которые не достигают целей терапии по разным причинам. В публикации 2025 г. эксперты GRAPPA, кроме понятий «D2T ПсА» и «С2М ПсА», предложили дополнительный термин — «рефрактерный к лечению ПсА» (Treatment Resistant PsA, TR PsA), по сути, очень близкий к дефиниции D2T ПсА. В настоящее время большинство исследователей сходятся во мнении, что разработка концепции D2T ПсА/TR ПсА и С2М ПсА должна обеспечить персонализированный подход к лечению этого заболевания.

Понимание ревматологами, планирующими лечение для пациентов с ПсА, причин и факторов риска возникновения фармакорезистентности поможет в выборе наиболее эффективных методик и снизит риск недостаточного объема терапии. Согласно определению GRAPPA (2025), D2T ПсА/TR ПсА – это состояние, характеризующееся отсутствием ответа на ≥3 разных метода лечения ПсА с разным механизмом действия (включая ≥2 тсБПВП или ГИБП) и наличием проблематичных, по оценке врача и пациента, симптомов, а также объективных признаков продолжающегося воспаления [42]. Основное различие между D2T ПсА/TR ПсА и C2M ПсА заключается в том, что в первом случае речь идет об истинной (биологической) резистентности к терапии, а во втором – о резистентности, связанной с иными причинами (коморбидность, боль, перекрестные заболевания, немедицинские факторы и др.).

В настоящее время продолжается работа над уточнением дефиниции и критериев D2T ПсА/ТR ПсА и С2М ПсА, что сопряжено с рядом проблем. Во-первых, затруднено выявление пациентов, у которых неэффективны общепринятые стратегии лечения, что еще более осложняет их ведение. Во-вторых, из-за отсутствия РКИ, ориентированных на таких пациентов, не разработаны новые, потенциально более действенные схемы лечения. Так, в случае стойкого остаточного воспаления или обострения заболевания в некоторых доменах для пациентов, достигших МАБ/ОНАБ на фоне терапии иФНОа, экспертами обсуждается комбинированное применение иΦНОα с иЈАК/апремиластом, если иЈАК не подходят (поражение суставов, стойкая боль) последовательное применение иФНОа с иИЛ17А/иИЛ23 (ПсО кожи и ногтей) или иФНОа с иИЛ17А/иЈАК (при поражении позвоночника). Однако для внедрения таких интенсивных терапевтических схем в практику необходимы данные клинических исследований, основанных на принципах доказательной медицины.

Решение проблем, связанных с достижением ремиссии у пациентов с ПсА, требует скоординированных усилий кли-

ницистов и исследователей. Кроме разработки общепризнанного определения D2T ПсА/ТК ПсА и С2М ПсА, еще одной задачей является дифференциация истинно резистентного ПсА или D2T ПсА/ТК ПсА от С2М ПсА — более широкой и разнородной группы, которая не ограничивается только истинной резистентностью, а включает также сопутствующие заболевания, перекрестную патологию и другие проблемы, связанные с лечением. Эти факторы могут значительно ухудшать качество жизни и усложнять ведение больного, по мнению как врача, так и пациента. В последнем случае основное внимание должно быть уделено невоспалительным факторам, которые во многом способствуют неэффективности терапии.

Имеющиеся данные мировой литературы, анализ клинико-фармакологических характеристик различных когорт

пациентов с ПсА, резистентных к терапии, могут быть положены в основу создания международных и национальных критериев D2T/TR/C2M ПсА с использованием дельфийского метода. После внедрения этих критериев в практику необходимо будет проведение крупных многоцентровых исследований, посвященных изучению уникальных фенотипов D2T ПсА/TR ПсА, С2М ПсА, факторов, способствующих развитию устойчивости к терапии, и разработке новых комбинированных и последовательных схем лечения таких пациентов с применением современных фармакологических и немедикаментозных подходов. Решение этой задачи позволит избежать чрезмерного, неправильного или недостаточно эффективного использования существующего арсенала иммуномодулирующих ЛС при ПсА и даст значимый фармакоэкономический эффект.

ЛИТЕРАТУРА/REFERENCES

- 1. Veale DJ, Fearon U. The pathogenesis of psoriatic arthritis. *Lancet*. 2018 Jun 2;391(10136): 2273-2284. doi: 10.1016/S0140-6736(18) 30830-4.
- 2. Schett G, Rahman P, Ritchlin C, et al. Psoriatic arthritis from a mechanistic perspective. *Nat Rev Rheumatol.* 2022 Jun;18(6): 311-325. doi: 10.1038/s41584-022-00776-6.
- 3. Ayan G, Ribeiro A, Macit B, Proft F. Pharmacologic treatment strategies in psoriatic arthritis. *Clin Ther.* 2023 Sep;45(9):826-840. doi: 10.1016/j.clinthera.2023.05.010.
- 4. Корсакова ЮЛ, Коротаева ТВ, Логинова ЕЮ и др. Распространенность коморбидных и сопутствующих заболеваний при псориатическом артрите по данным Общероссийского регистра больных псориатическим артритом. Научно-практическая ревматология. 2021;59(3):275-281.
- Korsakova YuL, Korotaeva TV, Loginova EYu, et al. Prevalence of comorbid and concomitant diseases in psoriatic arthritis according to the All-Russian Registry of patients with psoriatic arthritis. *Nauchno-prakticheskaya revmatologiya*. 2021;59(3):275-281. (In Russ.). 5. Lubrano E, Scriffignano S, Azuaga AB. Impact of comorbidities on disease activity, patient global assessment and function in Psori-
- atic Arthritis: A Cross-Sectional Study. *Rheumatol Ther*. 2020 Dec;7(4):825-836. doi: 10.1007/s40744-020-00229-0. 6. Логинова ЕЮ, Коротаева ТВ, Губарь ЕЕ
- о. логинова Его, коротаева тв, туоарь ЕЕ и др. Трудный для лечения (difficult-to-treat) псориатический артрит. Данные Общероссийского регистра пациентов с псориатическим артритом. Современная ревматология. 2024;18(5):16-21.
- Loginova EYu, Korotaeva TV, Gubar' EE, et al. Difficult-to-treat psoriatic arthritis. Data from the All-Russian registry of patients with psoriatic arthritis. *Sovremennaya revmatologiya = Modern Rheumatology Journal*. 2024;18(5):16-21. (In Russ.). doi: 10.14412/1996-7012-2024-5-16-21
- 7. Sewerin P, Borchert K, Meise D, et al. Real-world treatment persistence with biologic disease-modifying antirheumatic drugs among

- German patients with psoriatic arthritis a retrospective database study. *Rheumatol Ther.* 2021 Mar;8(1):483-497. doi: 10.1007/s40744-021-00286-z.
- 8. Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научнопрактическая ревматология. 2018;56(3): 263-271.
- Nasonov EL, Olyunin YuA, Lila AM. Rheumatoid arthritis: problems of remission and resistance to therapy. *Nauchno-prakticheskaya revmatologiya*. 2018;56(3):263-271. (In Russ.).
- 9. Gladman D, Chandran V, Rosen ChF, et al. Residual Disease Activity in Canadian patients with psoriatic arthritis treated with advanced therapies: results from a multiregistry analysis (UNISON-PsA). *J Rheumatol*. 2024 May 1;51(5):479-487. doi: 10.3899/irheum.2023-0716.
- 10. Coates LC, Gossec L, Theander E, et al. Efficacy and safety of guselkumab in patients with active psoriatic arthritis who are inadequate responders to tumour necrosis factor inhibitors: results through one year of a phase IIIb, randomised, controlled study (COSMOS). *Ann Rheum Dis.* 2022 Mar;81(3): 359-369. doi: 10.1136/annrheumdis-2021-220991.
- 11. Gossec L, Baraliakos X, Kerschbaumer A, et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. *Ann Rheum Dis.* 2020 Jun;79(6):700-712. doi: 10.1136/annrheumdis-2020-217159.
- 12. Glintborg B, Di Giuseppe D, Wallman JK, et al. Uptake and effectiveness of newer biologic and targeted synthetic disease-modifying antirheumatic drugs in psoriatic arthritis: results from five Nordic biologics registries. *Ann Rheum Dis.* 2023 Jun;82(6):820-828. doi: 10.1136/ard-2022-223650.
- 13. Simon D, Fagni F, Schett G. Sequential interleukin-17/interleukin-23 inhibition in treatment-refractory psoriatic arthritis. *Ann Rheum Dis.* 2022 Aug 11;81(9):1334-1336.

- doi: 10.1136/annrheumdis-2022-222415. 14. https://www.ajmc.com/view/fda-approves-guselkumab-for-adult-patients-with-crohn-disease.
- 15. Leung YY, Kavanaugh A, Ritchlin CT. Expert perspective: management of the psoriatic arthritis patient after failure of one tumor necrosis factor inhibitor. *Arthritis Rheumatol*. 2023 Aug;75(8):1312-1324. doi: 10.1002/art. 42498.
- 16. Eder L, Gladman DD, Mease P, et al. Sex differences in the efficacy, safety and persistence of patients with Psoriatic arthritis treated with tofacitinib: a post-hoc analysis of phase 3 trials and long-term extension. *RMD Open*. 2023 Mar;9(1):e002718. doi: 10.1136/rmdopen-2022-002718.
- 17. Tarannum S, Leung YY, Johnson SR, et al. Sex- and gender-related differences in psoriatic arthritis. *Nat Rev Rheumatol*. 2022 Sep; 18(9):513-526. doi: 10.1038/s41584-022-00810-7.
- 18. Ogdie A, Palmer JL, Greenberg J, et al. Predictors of achieving remission among patients with psoriatic arthritis initiating a Tumor Necrosis Factor inhibitor. *J Rheumatol.* 2019 May;46(5):475-482. doi: 10.3899/jrheum.171034.
- 19. https://grls.minzdrav.gov.ru/Grls_View_v2.aspx?routingGuid=a743da4e-2850-4ede-b1b4-4b0ab1071e4b
- 20. Landgren AJ, Jonsson ChA, Bilberg A, et al. Sex differences in cytokines and adipokines in obese patients with PsA and controls undergoing a weight loss intervention. *RMD Open*. 2024 Mar 22;10(1):e003821. doi: 10.1136/rmdopen-2023-003821.
- 21. Klingberg E, Björkman S, Eliasson B, et al. Weight loss is associated with sustained improvement of disease activity and cardiovascular risk factors in patients with psoriatic arthritis and obesity: a prospective intervention study with two years of follow-up. *Arthritis Res Ther.* 2020 Oct 22;22(1):254. doi: 10.1186/s13075-020-02350-5.
- 22. Wong A, Ye JY, Cook RJ, et al. Depression and anxiety reduce the probability of achieving

a state of sustained minimal disease activity in patients with psoriatic arthritis. *Arthritis Care Res (Hoboken)*. 2025 Jul 1. doi: 10.1002/acr.25593. Online ahead of print.

- 23. Gordon KB, Armstrong AW, Han C, et al. Anxiety and depression in patients with moderate-to-severe psoriasis and comparison of change from baseline after treatment with guselkumab vs. adalimumab: results from the Phase 3 VOYAGE 2 study. *J Eur Acad Dermatol Venereol.* 2018 Nov;32(11):1940-1949. doi: 10.1111/jdv.15012.
- 24. Kerschbaumer A, Baker D, Smolen JS, et al. The effects of structural damage on functional disability in psoriatic arthritis. *Ann Rheum Dis.* 2017 Dec;76(12):2038-2045. doi: 10.1136/annrheumdis-2017-211433. 25. Mease PhJ, Gottlieb AB, Ogdie A, et al Earlier clinical response predicts low rates of radiographic progression in biologic nanve patients with active psoriatic arthritis receiving guselkumab treatment. *Clin Rheumatol.* 2024 Jan;43(1):241-249. doi: 10.1007/s10067-023-06745-y.
- 26. Felten R, Duret PM, Gottenberg JE, et al. At the crossroads of gout and psoriatic arthritis: "psout". *Clin Rheumatol.* 2020 May;39(5): 1405-1413. doi: 10.1007/s10067-020-04981-0. 27. Nagy G, Roodenrijs NMT, Welsing PMJ, et al. EULAR definition of difficult-to-treat rheumatoid arthritis. *Ann Rheum Dis.* 2021 Jan;80(1):31-35. doi: 10.1136/annrheumdis-2020-217344.
- 28. Perrotta FM, Scriffignano S, Ciccia F, Lubrano E. Clinical Characteristics of Potential "Difficult-to-treat" Patients with Psoriatic Arthritis: A Retrospective Analysis of a Longitudinal Cohort. *Rheumatol Ther.* 2022 Aug;9(4): 1193–1201. doi: 10.1007/s40744-022-00461-w.

- 29. Fagni F, Motta F, Schett G, Selmi C. Difficult-to-treat psoriatic arthritis: a conceptual approach. *Arthritis Rheumatol.* 2024 May;76(5): 670-674. doi: 10.1002/art.42780.
- 30. Lubrano E, Scriffignano S, Perrotta FM. Difficult to treat and refractory to treatment in psoriatic arthritis. *Rheumatol Ther.* 2023 Oct;10(5):1119-1125. doi: 10.1007/s40744-023-00574-w.
- 31. Ribeiro AL, Dullius L, Sartori NS, et al. Challenges in the management of psoriatic arthritis in Latin America: a systematic review. *Clin Ther.* 2023 Sep;45(9):860-867. doi: 10.1016/j.clinthera.2023.04.005. 32. Campanholo CB, Maharaj AB, Corp N, et al. Management of psoriatic arthritis in patients with comorbidities: an updated literature review informing the 2021 GRAPPA treatment recommendations. *J Rheumatol.* 2023 Mar;50(3):426-432. doi: 10.3899/
- 33. Kumthekar A, Ashrafi M, Deodhar A. Difficult to treat psoriatic arthritis how should we manage? *Clin Rheumatol.* 2023 Sep; 42(9):2251-2265. doi: 10.1007/s10067-023-06605-9

jrheum.220310.

34. Perrotta MF, Gentileschi S, Scriffignano S, et al. Difficult-to-Treat Concept in Psoriatic Arthritis: Analysis of 2 Potential Definitions in a Large Group of Patients: A Cross-Sectional Study. *J Rheumatol*. 2024 Oct 1;51(10): 985-990. doi: 10.3899/jrheum.2024-0101. 35. Miyagawa I, Nakayamada S, Nakano K, et al. Precision medicine using different biological DMARDs based on characteristic phenotypes of peripheral T helper cells in psoriatic arthritis. *Rheumatology (Oxford)*. 2019 Feb 1;58(2):336-344. doi: 10.1093/rheumatology/key069.

- 36. Wirth T, Balandraud N, Boyer L, et al. Biomarkers in psoriatic arthritis: a meta-analysis and systematic review. *Front Immunol.* 2022 Nov 30:13:1054539. doi: 10.3389/fimmu.2022.1054539.
- munol. 2022 Nov 30:13:1054539. doi: 10.3389/ fimmu.2022.1054539. 37. Yuan Y, Qiu J, Lin ZT, et al. Identification of novel autoantibodies associated with psoriatic arthritis. Arthritis Rheumatol. 2019 Jun;71(6):941-951. doi: 10.1002/art.40830. 38. Magee C, Jethwa H, FitzGerald OM, Jadon DR. Biomarkers predictive of treatment response in psoriasis and psoriatic arthritis: a systematic review. Ther Adv Musculoskelet Dis. 2021 May 8:13:1759720X211014010. doi: 10.1177/1759720X211014010. 39. Pournara E, Kormaksson M, Nash P, et al. Clinically relevant patient clusters identified by machine learning from the clinical development programme of secukinumab in psoriatic arthritis. RMD Open. 2021 Nov;7(3): e001845. doi: 10.1136/rmdopen-2021-001845. 40. Folle L, Bayat S, Kleyer A, et al. Advanced neural networks for classification of MRI in psoriatic arthritis, seronegative, and seropositive rheumatoid arthritis. Rheumatology (Oxford). 2022 Nov 28;61(12):4945-4951. doi: 10.1093/rheumatology/keac197. 41. https://www.asas-group.org/asas-definitionofdifficult-to-treat-axial-spondyloarthritis/ 42. Proft F, Ribeiro AL, Singla S, et al. OP0175 Establishing definitions for difficultto-treat psoriatic arthritis (D2T-PsA) and complex-to-manage psoriatic arthritis (C2M-PsA): Insights from the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) initiative. Ann Rheum Dis. 2025;84(Suppl 1):143-145. doi: 10.1136/ annrheumdis-2025-eular. B3083.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 02.08.2025/24.09.2025/27.09.2025

Заявление о конфликте интересов/Conflict of Interest Statement

Статья подготовлена в рамках государственного задания по теме № 125020501435-8 «Эволюция аксиальных спондилоартритов на основе комплексного динамического изучения молекулярно-биологических, молекулярно-генетических, клинико-визуализационных факторов прогрессирования заболевания, качества жизни, коморбидности и таргетной инновационной терапии».

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared within the framework of the state assignment № 125020501435-8 "Evolution of axial spondyloarthritis based on comprehensive dynamic study of molecular-biological, molecular-genetic, clinical-imaging factors of disease progression, quality of life, comorbidities, and targeted innovative therapy."

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Коротаева Т.В. https://orcid.org/0000-0003-0579-1131 Логинова Е.Ю. https://orcid.org/0000-0001-6875-4552 Лила А.М. https://orcid.org/0000-0002-6068-3080 Круглова Л.С. https://orcid.org/0000-0002-5044-5265

Концепция «Treat-to-Target» у пациентов с системной красной волчанкой и индексы активности

Шолкина П.А.¹, Шумилова А.А.¹, Решетняк Т.М.^{1,2}

¹ΦГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²ΦГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва

¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1

В обзоре рассматриваются индексы, применяемые для оценки активности системной красной волчанки (СКВ). Основное внимание уделено понятиям низкой активности и ремиссии СКВ, впервые четко сформулированным в 2016 и 2021 гг. соответственно, и стратегии «Treat-to-Target» — T2T («Лечение до достижения цели»), направленной на снижение активности заболевания, предотвращение органных повреждений и минимизацию использования глюкокортикоидов.

Ключевые слова: системная красная волчанка; низкая активность заболевания; ремиссия; терапия до достижения цели. **Контакты:** Полина Андреевна Шолкина; **drpaulinasholkina@mail.ru**

Для цитирования: Шолкина ПА, Шумилова АА, Решетняк ТМ. Концепция «Treat-to-Target» у пациентов с системной красной волчанкой и индексы активности. Современная ревматология. 2025;19(5):113—118. https://doi.org/10.14412/1996-7012-2025-5-113-118

Treat-to-target concept in patients with systemic lupus erythematosus and activity indices Sholkina P.A.¹, Shumilova A.A.¹, Reshetnyak T.M.^{1,2}

¹V.A. Nasonova Research Institute of Rheumatology, Moscow; ²Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow

¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia

This review discusses indices used to assess systemic lupus erythematosus (SLE) activity. Particular attention is given to the definitions of low disease activity and remission in SLE, first clearly formulated in 2016 and 2021, respectively, and to the treat-to-target (T2T) strategy aimed at reducing disease activity, preventing organ damage, and minimizing glucocorticoid use.

Keywords: systemic lupus erythematosus; low disease activity; remission; treat-to-target therapy.

Contact: Polina Andreevna Sholkina; drpaulinasholkina@mail.ru

For citation: Sholkina PA, Shumilova AA, Reshetnyak TM. Treat-to-target concept in patients with systemic lupus erythematosus and activity indices. Revmatologiya=Modern Rheumatology Journal. 2025;19(5):113–118 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-113-118

Системная красная волчанка (СКВ) — гетерогенное аутоиммунное заболевание, клинически характеризующееся поражением нескольких систем и продукцией множественных положительных органонеспецифических аутоантител к различным компонентам клеточного ядра, а также симптомами, которые варьируются от легкой до тяжелой степени и даже угрожают жизни [1]. Существование и определение трудно поддающейся лечению (Difficult-to-Treat, D2T) СКВ в настоящее время является предметом исследований.

При имеющихся методах лечения частота ответа как при почечных, так и при внепочечных обострениях заболевания остается актуальной, поскольку, по данным клинических испытаний и обсервационных исследований, 20—50% больных рефрактерны к терапии [2, 3]. Обострение СКВ у пациентов, не достипших низкой степени активности, по-прежнему представляет проблему для лечащего врача [2]. Сохранение активности у пациентов с D2T СКВ требует раннего назначения иммунодепрессантов (ИД) и/или комбинированных схем лечения, включающих генно-инженерные биологические препараты (ГИБП).

Характер течения заболевания и модели активности могут играть роль в определении когорты пациентов с D2T CKB.

Концепция «Treat-to-Target» («Лечение до достижения цели») Определение ремиссии и низкой активности заболевания

Международная целевая группа пришла к выводу, что стратегия Т2Т, эффективность которой доказана при ревматоидном артрите, псориатическом артрите и других заболеваниях, применима и при СКВ, хотя подтверждающее это рандомизированное клиническое исследование (РКИ) не проводилось. В 2015 г. были опубликованы комментарии российских экспертов к международным рекомендациям по достижению цели терапии при СКВ [4]. Первым шагом в подходе к Т2Т-стратегии является выбор цели лечения, определяемой как достижение ремиссии заболевания для большинства пациентов с СКВ. Однако общепринятого определения ремиссии для СКВ не существовало и оно носило интуитивный характер [5]. В 2016 г. была начата разработка проекта «Определение ремиссии при СКВ»

Таблица 1. Определение низкой степени активности и ремиссии СКВ [7] Table 1. Definitions of low disease activity and remission in S.L.F. [7]

Table 1. Definitions of low disease activity and remission in SEE [7]								
Понятие	Активность заболевания	PGA	Доза ГК (в пересчете на преднизолон), мг/сут	Прием ИД и/или ГИБП				
Низкая активность заболевания (LLDAS)	SLEDAI-2K ≤4 без признаков поражения систем органов и новых признаков активности по сравнению с предыдущей оценкой	≤1	≤7,5	Допустимо применение поддерживающей терапии ГКХ, ИД и/или ГИБП				
Контроль заболевания (Disease control)	SLEDAI-2K ≤2	-	≤5	Возможно использование ГИБП, но не ИД				
Клиническая ремиссия (Clinical remission)	Клинический домен SLEDAI-2K = 0 (допускается присутствие иммунологической активности: С3- и С4-компоненты комплемента, анти-дсДНК)	_	≤5	Допустимо применение поддерживающей терапии ГКХ, ИД и/или ГИБП				
Полная ремиссия (Complete remission)	SLEDAI- $2K = 0$	_	≤5	Допустимо применение поддерживающей терапии ГКХ, ИД и/или ГИБП				

Примечание. ГКХ – гидроксихлорохин.

(D-definitions, O-of, R-remission, I-in, S-SLE, DORIS). Целевая группа рекомендовала определение ремиссии, основанное на проверенном инструменте для оценки активности СКВ – индексе SLEDAI-2К в модификации 2000 г. (Systemic Lupus Erythematosus Disease Activity Index-2K) — и дополненное глобальной оценкой активности заболевания — PGA (Physician Global Assessment). Вопрос о том, включать ли в определение ремиссии при СКВ отсутствие серологической активности, оставался открытым. Вначале было рекомендовано разделять «ремиссию на фоне лечения» и «ремиссию без лечения» (без приема препаратов). Определение продолжительности ремиссии должно было отвечать необходимому условию - быть клинически значимым и применимым к конкретным исследовательским задачам. На основании наблюдения больших групп пациентов, реестров исследований и результатов РКИ была установлена взаимосвязь ремиссии с качеством жизни пациента, а также с органным повреждением [5]. Среди нескольких определений низкой активности СКВ (Lupus Low Disease Activity State, LLDAS) наиболее широко используется дефиниция, предложенная в 2016 г. Азиатско-Тихоокеанской сотрудничающей группой по борьбе с волчанкой (Asia Pacific Lupus Collaboration group) [6]. Окончательная версия определения ремиссии при СКВ (DORIS) была принята в 2021 г. Дополнительно введено определение «контроль заболевания», а в определении ремиссии выделены категории «полная ремиссия» и «клиническая ремиссия» (табл.1).

Обсуждался также вопрос о роли иммунологических показателей. В 30 исследованиях выявлена значимая ассоциация между этими показателями (СЗ- и С4-компоненты комплемента, антитела к двуспиральной ДНК, анти-дсДНК) и клиническими проявлениями активности СКВ [5]. В некоторых работах было установлено, что повышение серологических показателей предсказывает обострение заболевания, ответ на лечение или риск последующего рецидива [8]. В большинстве исследований серологические изменения не были предиктором органного повреждения или смерти [9].

Согласно полученным результатам, целевая группа DORIS опубликовала следующие рекомендации, касающиеся определения ремиссии СКВ [5]:

1. Не следует включать серологические маркеры (С3- и С4-компоненты комплемента, анти-дсДНК) в определение ремиссии DORIS.

- 2. Целью лечения является устойчивая ремиссия в любой момент времени, поэтому ее продолжительность не отражена в определении DORIS.
- 3. Для определения ремиссии используются шкала активности SLEDAI-2K [10] и PGA [11], в настоящее время ведется работа по дополнению данного определения индексами SLE-DAS (SLE Disease Activity Score индекс активности СКВ) и Easy-BILAG (Easy British Isles Lupus Assessment Group Облегченная группа оценки волчанки на Британских островах) [12].
- 4. «Ремиссия без лечения» (без приема препаратов), хотя и является конечной целью для многих пациентов и врачей, достигается крайне редко, поэтому рекомендуется определение «ремиссия на фоне лечения».
- 5. При проведении клинических испытаний в качестве первичных точек достижения цели лечения следует использовать определение низкой активности заболевания при СКВ (LDDAS) и определение «ремиссия на фоне лечения» по DORIS (см. табл. 1).

Основные принципы Т2Т [13]:

- 1. Целью лечения СКВ должна быть ремиссия или, если ремиссия не может быть достигнута, минимально возможная активность заболевания, оцененная с помощью LLDAS.
- 2. Предотвращение обострений (особенно тяжелых) является реальной задачей и должно быть целью терапии СКВ.
- Не рекомендуется усиливать лечение у клинически бессимптомных пациентов исключительно на основании стабильной или персистирующей иммунологической активности.
- 4. Поскольку установленное повреждение органов предсказывает последующее его нарастание и ухудшает прогноз, предотвращение нарастания повреждения органов также должно быть основной целью терапии СКВ.
- 5. В дополнение к контролю активности заболевания и профилактике повреждения органов следует устранять факторы, негативно влияющие на качество жизни (усталость, боль и депрессия).
- 6. Настоятельно рекомендуется раннее выявление и лечение поражения почек у пациентов с СКВ.
- 7. При волчаночном нефрите после индукционной фазы для достижения ремиссии показана поддерживающая терапия ИД не менее 3 лет для оптимизации результатов.

Современная ревматология. 2025;19(5):113-118

- 8. Поддерживающее лечение СКВ должно быть направлено на достижение минимальной дозы ГК, необходимой для контроля активности заболевания, и по возможности на полную их отмену.
- 9. Целью терапии СКВ является профилактика и лечение состояний, связанных со вторичным антифосфолипидным синдромом.
- 10. Применение ГКХ оправданно во всех случаях как эквивалент стандартной терапии СКВ при отсутствии противопоказаний.
- 11. При наличии коморбидных заболеваний у пациентов с СКВ следует использовать соответствующие методы лечения, дополняющие терапию ИД.

Терапевтические возможности

Минимизация дозы ГК. Основной группой препаратов для лечения СКВ, с помощью которых возможно достижение ремиссии, являются ГК. В когортных исследованиях, в которых сравнивалось лечение высокими и низкими дозами ГК при индукционной терапии волчаночного нефрита, установлены сходные показатели почечного ответа [14, 15]. Нежелательные эффекты ГК обычно зависят от дозы и времени их применения и могут усугубляться при наличии сопутствующих заболеваний, в частности сердечно-сосудистых [16]. Поддержание равновесия между снижением дозы ГК для предотвращения повреждения и риском развития обострений СКВ остается первостепенной и сложной для практикующих врачей задачей. Постепенное снижение дозы и прекращение приема ГК считается безопасным, когда заболевание клинически неактивное и находится в стадии длительной ремиссии или низкой активности (LLDAS) [17, 18]. В 2023 г. были опубликованы новые рекомендации EULAR (European Alliance of Associations for Rheumatology) по терапии СКВ, в которых особое внимание было уделено дозам ГК. При необходимости назначения ГК доза подбирается в зависимости от объема и тяжести вовлечения органов (уровень доказательности – 2b/С) и снижается до поддерживающей ≤5 мг/сут (в эквиваленте преднизолона; 2а/В), а в дальнейшем ГК по возможности отменяют. У пациентов со среднетяжелым и тяжелым течением СКВ может быть проведена пульс-терапия метилпреднизолоном (125–1000 мг/сут, 1–3 дня; 3b/С). Пациентам с СКВ, достигшим устойчивой ремиссии, показана постепенная отмена терапии, начинать которую нужно с прекращения приема ГК (2а/В) [19].

ГКХ. Доказано, что ГКХ значительно снижает риск возникновения обострений и повреждения органов [20]. По данным P.S. Akhavan и соавт. [21], прием ГКХ ассоциировался с меньшим накоплением повреждений органов, в отличие от возраста пациента и терапии ГК, которые способствовали прогрессированию этих повреждений. Аналогичные результаты приводят М. Petri и соавт. [22], подчеркивая стероидсберегающий эффект, связанный с приемом ГКХ, хотя и менее значимый. Было также показано, что терапия ГКХ сопровождается более низкой частотой возникновения обострений, даже после прекращения приема ИД. В 2022 г. в исследовании SLICC (Systemic Lupus International Collaborating Clinics), включавшем 1460 пациентов с СКВ, было установлено, что коэффициент риска обострения повышался при снижении дозы ГКХ или их отмене [23].

ИД и ГИБП. Если активность заболевания не удается контролировать с помощью ГКХ и ГК, EULAR рекомендует альтернативные подходы. Они включают использование ГИБП (белимумаб, анифролумаб) и ИД, в том числе метотрексата, азатиоприна, микофенолата мофетила и ингибиторов кальциневрина (воклоспорин, такролимус, циклоспорин А). Крайне важно назначать эти препараты в минимальной эффективной дозе, тщательно контролируя потенциальный риск возникновения побочных эффектов. Циклофосфамид из-за токсичности обычно используют при поражении жизненно важных органов, особенно у пациентов с волчаночным нефритом и нейропсихическими проявлениями СКВ [19, 24]. Поскольку за 4 последних года не появилось новых высококачественных ИД, изменения этого пункта рекомендаций касались включения в терапию анифролумаба после его одобрения в 2021 г., а также белимумаба – биологических агентов с доказанной эффективностью в отношении контроля активности заболевания, снижения риска обострения, а также уменьшения дозы ГК. В рекомендации отсутствуют предпочтения в отношении выбора между анифролумабом и белимумабом, поскольку не проводилось специальных исследований для их сравнения, а основанием для одобрения этих препаратов послужили результаты РКИ в аналогичных популяциях с внепочечной СКВ [19].

Индексы активности СКВ

Остается актуальным выбор приемлемого индекса активности СКВ. С середины 80-х годов с этой целью были разработаны и валидированы различные инструменты. Наиболее популярными в мировой клинической практике являются SLEDAI (в его различных вариациях — 2000 и SELENA — Safety of Estrogens in Lupus Erythematosus National Assessment — Национальная оценка безопасности эстрогенов при красной волчанке) и BILAG (British Isles Lupus Assessment Group в модификации 2004 г. — Группа оценки волчанки на Британских островах) [25].

С течением времени индексы были обновлены для объективной оценки активности заболевания с увеличением числа оцениваемых показателей. Индекс SLEDAI состоит из 24 клинических и лабораторных показателей с общим значением от 0 (отсутствие активности) до 105 (тяжелая форма СКВ). Выделяют четыре степени активности заболевания по индексу SLEDAI-2K или SELE-NA-SLEDAI: нет активности (0 баллов), низкая (1-5 баллов), средняя (6-10 баллов), высокая (11-19 баллов) и очень высокая (>20 баллов) степень активности. Обострение СКВ при увеличении значения индексов SLEDAI-2К или SELENA-SLEDAI между двумя визитами на 3-12 баллов расценивается как умеренное, на ≥12 баллов как выраженное [26]. Шкала BILAG исследует изменения в различных доменах заболевания, охватывающие изначально восемь систем органов. Индекс SLEDAI был модифицирован в SLEDAI-2K, который включает стойкую протеинурию, сыпь, алопецию и кожно-слизистые поражения. Шкала BILAG была обновлена до BILAG-2004 с учетом офтальмологических и желудочно-кишечных (ЖКТ) проявлений. Одним из недостатков индекса SLEDAI является то, что снижение показателя в результате улучшения состояния одной системы органов может маскировать ухудшение состояния другой системы органов [27].

Таблица 2. Преимущества и недостатки часто используемых индексов активности СКВ [25–30] Table 2. Advantages and disadvantages of commonly used SLE activity indices [25–30]

Индекс	Число оцени- ваемых систем (органов)	Период наблюдения, дни	Год разработки/ группа и размер выборки	Основные преимущества	Основные недостатки
SLEDAI и его модификации	24	10 или 30	1985/Торонто, 574 пациента	Простота и быстрота при исполь- зовании, низкие административ- ные затраты. Позволяет сравнивать пациентов с различ- ными проявлениями заболевания	Некоторые проявления СКВ, такие как поражение ЖКТ и легких, не представлены. Не оценивается тяжесть или улучшение симптомов
BILAG (2004)	97 (9 систем)	28	1988/Велико- британия, Ирландия, 14 пациентов	Включает множество редко встречающихся проявлений СКВ. Оценивает активность поражения каждого органа	Сложный глоссарий, который трудно использовать в клинической практике. Серологические показатели не включены
Easy-BILAG	9 систем	28	2022/Велико- британия	Включает множество редко встречающихся проявлений СКВ. Позволяет быстро оценить активность заболевания в клинической практике	Серологические показатели не включены
PGA	1 глобальная шкала	28	1988 /Бостон	Оценивает глобальную актив- ность заболевания на основе решения врача. Прост в исполь- зовании	Отличается высокой надежностью, но нуждается в дальнейшей стандартизации
SLE-DAS	17	28	2019/Португа- лия, Италия, 520 пациентов	Оценивает значимое клиническое улучшение с течением времени	Сложная формула для расчета

Трудности точной оценки и затраты времени при заполнении BILAG-2004 послужили предпосылкой для создания его новой версии (Easy-BILAG), применение которой в клинической практике стало возможным благодаря быстроте заполнения и повышению точности определений клинических симптомов (внесены изменения в формулировки в конституциональном и почечном доменах, представлен краткий основной глоссарий) [28]. В 2023 г. данный индекс был адаптирован для русскоязычной версии [29]. В 2019 г. D. Jesus и соавт. [30] на основе SLEDAI-2К разработали и валидировали новый инструмент для оценки активности СКВ - SLE-DAS: были изменены некоторые параметры SLEDAI-2K с дихотомических на непрерывные, добавлены новые пункты (например, гемолитическая анемия, желудочно-кишечные и сердечно-легочные проявления), а также уточнен вес конкретных элементов, таких как локализованная/генерализованная кожная сыпь и кожно-слизистый/системный васкулит. Основные различия между используемыми индексами для оценки активности СКВ представлены в табл. 2.

Заключение.

Подход T2T позволяет сфокусироваться на достижении ремиссии или низкой активности заболевания, что спо-

собствует уменьшению риска органных повреждений и улучшению качества жизни пациентов. Необходимы дальнейшие исследования для оптимизации критериев ремиссии и низкой активности заболевания, оценки существующих стандартов терапии в разработки новых терапевтических стратегий, минимизирующих применение ГК, а также выявления биомаркеров, позволяющих прогнозировать обострение и индивидуализировать лечение. На 8-м международном конгрессе CORA (Congress on Controversies in Rheumatology and Autoimmunity), который прошел в марте 2025 г. в Венеции, было почеркнуто, что, несмотря на значительный прогресс в терапии СКВ, достижение ремиссии/низкой активности заболевания остается сложной задачей, требующей персонализированного подхода. Особое внимание было уделено схемам снижения дозы ГК без риска обострения заболевания, что особенно важно для минимизации побочных эффектов длительной терапии. Дебаты вокруг оптимальных стратегий лечения СКВ продолжаются, но очевидно одно: персонализированный подход и четкие терапевтические ориентиры становятся ключевыми элементами современной ревматологии.

ЛИТЕРАТУРА/REFERENCES

1. Решетняк ТМ. Системная красная волчанка. В кн. Бадокин ВВ, редактор. Ревматология. Клинические лекции. Москва: Литтера; 2012. C.245-331.

Reshetnyak TM. Systemic lupus erythematosus. In: Badokin VV, editor. Rheumatology. Clinical lectures. Moscow: Litera;

2012. P. 245-331.

2. Maffi M, Tani C, Cascarano G, Scagnellato L, Elefante E, Stagnaro C et al. Which extra-renal flare is 'difficult to treat' in systemic lupus erythematosus? A one-year longitudinal study comparing traditional and machine learning approaches. *Rheumatology (Ox-*

ford). 2024 Feb 1;63(2):376-384. doi: 10.1093/rheumatology/kead166.
3. Barr SG, Zonana-Nacach A, Magder LS, Petri M. Patterns of disease activity in systemic lupus erythematosus. Arthritis Rheum. 1999 Dec;42(12):2682-8. doi: 10.1002/1529-0131(199912)42:12<2682.

- 4. Соловьев СК, Асеева ЕА, Попкова ТВ и др. Стратегия лечения системнои краснои волчанки «до достижения цели» (Treat-to-Target SLE). Рекомендации международнои рабочеи группы и комментарии россииских экспертов. Научнопрактическая ревматология. 2015;53(1):9-16.
- Soloviev SK, Aseeva EA, Popkova TV, et al Treat-to-target SLE recommendations from the international task force and russian experts' commentaries. *Nauchno-prakticheskaya revmatologiya*. 2015;53(1):9-16. (In Russ.). 5. Van Vollenhoven RF, Bertsias G, Doria A, et al. 2021 DORIS definition of remission in SLE: final recommendations from an international task force. *Lupus Sci Med*. 2021 Nov: 8(1):e000538. doi: 10.1136/lupus-2021-000538.
- 6. Franklyn K, Lau CS, Navarra SV, et al; Asia-Pacific Lupus Collaboration. Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). *Ann Rheum Dis.* 2016 Sep;75(9):1615-21. doi: 10.1136/ annrheumdis-2015-207726.
- 7. Hunnicutt J, Georgiou ME, Richards A, et al. Patients achieving low lupus disease activity state, systemic lupus erythematosus disease control or remission showed lower rates of organ damage during longitudinal follow-up: analysis of the Hopkins Lupus Cohort. *Lupus Sci Med.* 2024 Dec 11;11(2): e001206. doi: 10.1136/lupus-2024-001206. 8. Kandane-Rathnayake R, Golder V, Louthrenoo W, et al. Development of the Asia Pacific Lupus Collaboration cohort. *Int J Rheum Dis.* 2019 Mar;22(3):425-433. doi: 10.1111/1756-185X.13431.
- 9. Tsang-A-Sjoe MWP, Bultink IEM, Heslinga M, et al. The relationship between remission and health-related quality of life in a cohort of SLE patients. *Rheumatology (Oxford)*. 2019 Apr 1;58(4):628-635. doi: 10.1093/rheumatology/key349.
- 10. Jesus D, Rodrigues M, Matos A, et al. Performance of SLEDAI-2K to detect a clinically meaningful change in SLE disease activity: a 36-month prospective cohort study of 334 patients. *Lupus*. 2019 Apr;28(5):607-612. doi: 10.1177/0961203319836717.

 11. Chessa E, Piga M, Floris A, et al.
- Use of Physician Global Assessment in systemic lupus erythematosus: a systematic review of its psychometric properties. *Rheumatology (Oxford)*. 2020; Dec 1;59(12):3622-3632. doi: 10.1093/rheumatology/keaa383. 12. Ines LS, Fredi M, Jesus D, et al. What is the best instrument to measure disease activity in SLE? SLE-DAS vs Easy BILAG. *Autoimmun Rev*. 2024 Jan;23(1):103428. doi: 10.1016/j.autrev.2023.103428.
- 13. Nikolopoulos D, Lourenco MH, Depascale R, et al. Evolving Concepts in Treat-to-

- Target Strategies for Systemic Lupus Erythematosus. *Mediterr J Rheumatol*. 2024 Jun 30; 35(Suppl 2):328-341. doi: 10.31138/mjr. 290424.eci.
- 14. Fischer-Betz R, Chehab G, Sander O, et al. Renal outcome in patients with lupus nephritis using a steroid-free regimen of monthly intravenous cyclophosphamide: a prospective observational study. *J Rheumatol.* 2012 Nov;39(11):2111-7. doi: 10.3899/irheum.120537.
- 15. Ruiz-Irastorza G, Ugarte A, Saint-Pastou TC, et al. Repeated pulses of methylprednisolone with reduced doses of prednisone improve the outcome of class III, IV and V lupus nephritis: An observational comparative study of the Lupus-Cruces and lupus-Bordeaux cohorts. *Autoimmun Rev.* 2017 Aug; 16(8):826-832. doi: 10.1016/j.autrev. 2017.05.017.
- 16. Kostopoulou M, Nikolopoulos D, Parodis I, Bertsias G. Cardiovascular Disease in Systemic Lupus Erythematosus: Recent Data on Epidemiology, Risk Factors and Prevention. *Curr Vasc Pharmacol.* 2020;18(6): 549-565. doi: 10.2174/157016111866619 1227101636.
- 17. Nakai T, Fukui S, Ikeda Y, et al. Gluco-corticoid discontinuation in patients with SLE with prior severe organ involvement: a single-center retrospective analysis. *Lupus Sci Med*. 2022 Jun;9(1):e000682. doi: 10.1136/lupus-2022-000682.
- 18. Асеева ЕА, Соловьев СК, Козловская НЛ и др. Волчаночный нефрит: современные представления о терапии. (Часть II). Научно-практическая ревматология. 2024; 62(4):377-384.
- Aseeva EA, Solovyev SK, Kozlovskaya NL, et al. Lupus nephritis. Part II, modern ideas about therapy. *Nauchno-Prakticheskaya Revmatologia*. 2024;62(4):377–384. (In Russ.).
- 19. Fanouriakis A, Kostopoulou M, Andersen J, et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. *Ann Rheum Dis.* 2024 Jan 2; 83(1):15-29. doi: 10.1136/ard-2023-224762. 20. Dima A, Jurcut C, Chasset F, et al. Hydroxychloroquine in systemic lupus erythematosus: overview of current knowledge. *Ther Adv Musculoskelet Dis.* 2022 Jan 14;14:17597 20X2110730. doi: 10.1177/1759720X2 11073001.
- 21. Akhavan PS, Su J, Lou W, et al. The Early Protective Effect of Hydroxychloroquine on the Risk of Cumulative Damage in Patients with Systemic Lupus Erythematosus. *J Rheumatol.* 2013 Jun;40(6): 831-41. doi: 10.3899/jrheum.120572. 22. Petri M, Purvey S, Fang H, Magder LS. Predictors of organ damage in systemic lupus erythematosus: The Hopkins Lupus Cohort.

- *Arthritis Rheum.* 2012 Dec;64(12):4021-8. doi: 10.1002/art.34672.
- 23. Almeida-Brasil CC, Hanly JG, Urowitz M, et al. Flares after hydroxychloroquine reduction or discontinuation: results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort.

 Ann Rheum Dis. 2022 Mar;81(3):370-8. doi: 10.1136/annrheumdis-2021-221295.

 24. Nikolopoulos D, Fanouriakis A, Bertsias G. Treatment of neuropsychiatric systemic lupus erythematosus: clinical challenges and future perspectives. Expert Rev Clin Immunol. 2021 Apr 3;17(4):317-30. doi: 10.1080/1744666X. 2021.1899810.
- 25. Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. *J Rheumatol.* 2002 Feb; 29(2):288-91.
- 26. Асеева ЕА, Соловьев СК, Насонов ЕЛ. Современные методы оценки активности системной красной волчанки. Научнопрактическая ревматология. 2013;51(2): 186-200.
- Aseeva EA, Solovyev SK, Nasonov EL. Current methods for evaluating the activity of systemic lupus erythematosus. *Nauchno-prakticheskaya revmatologiya*. 2013;51(2):186-200. (In Russ.).
- 27. Isenberg DA, Rahman A, Allen E, et al. BILAG 2004. Development and initial validation of an updated version of the British Isles Lupus Assessment Group's disease activity index for patients with systemic lupus erythematosus. *Rheumatology (Oxford)*. 2005 Jul; 44(7):902-6. doi: 10.1093/rheumatology/keh624.
- 28. Carter LM, Gordon C, Yee CS, et al. Easy-BILAG: a new tool for simplified recording of SLE disease activity using BILAG-2004 index. *Rheumatology (Oxford)*. 2022 Oct 6;61(10):4006-4015. doi: 10.1093/rheumatology/keab883.
- 29. Шумилова АА, Чельдиева ФА, Нурбаева КС и др. Адаптация русскоязычной версии индекса активности системной красной волчанки EASY-BILAG. Современная ревматология. 2023;17(5):107-111. Shumilova AA, Cheldieva FA, Nurbaeva KS, et al. Adaptation of the Russian version of the activity index of systemic lupus erythematosus EASY-BILAG. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2023;17(5): 107-111. (In Russ.). doi: 10.14412/1996-7012-2023-5-107-111
- 30. Jesus D, Matos A, Henriques C, et al. Derivation and validation of the SLE Disease Activity Score (SLE-DAS): a new SLE continuous measure with high sensitivity for changes in disease activity. *Ann Rheum Dis.* 2019 Mar;78(3):365-371. doi: 10.1136/annrheumdis-2018-214502.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 07.06.2025/20.08.2025/23.08.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Статья подготовлена в рамках научной темы (регистрационный номер РК 125020501434-1).

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared within the framework of the research project (registration № PK 125020501434-1).

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Шолкина П.А. https://orcid.org/0009-0002-0634-5627 Шумилова А.А. https://orcid.org/0000-0003-1318-1894 Решетняк Т.М. https://orcid.org/0000-0003-3552-2522

Облитерирующий тромбангиит: взгляд с позиции ревматолога

Середавкина Н.В.1, Решетняк Т.М.1,2, Лила А.М.1,2

¹ΦГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²ΦГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва

¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1

Облитерирующий тромбангиит (OT), или болезнь Бюргера, — сегментарный тромботический острый и хронический воспалительный процесс в мелких и средних артериях и венах, преимущественно верхних и нижних конечностей, в редких случаях могут поражаться церебральные, коронарные, почечные и мезентериальные русла. В статье описаны ревматические проявления ОТ, приведен круг заболеваний, с которыми проводится дифференциальная диагностика, представлены обновленные диагностические критерии ОТ 2023 г.

Ключевые слова: облитерирующий тромбангиит; антифосфолипидные антитела; системные заболевания соединительной ткани. **Контакты:** Наталия Валерьевна Середавкина; **n** seredavkina@mail.ru

Для цитирования: Середавкина НВ, Решетняк ТМ, Лила АМ. Облитерирующий тромбангиит: взгляд с позиции ревматолога. Современная ревматология. 2025;19(5)119—126. https://doi.org/10.14412/1996-7012-2025-5-119-126

Thromboangiitis obliterans: a rheumatologist's perspective Seredavkina N.V.¹, Reshetnyak T.M.^{1,2}, Lila A.M.^{1,2}

¹V.A. Nasonova Research Institute of Rheumatology, Moscow; ²Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow

¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia

Thromboangiitis obliterans (TAO), or Buerger's disease, is a segmental thrombotic acute and chronic inflammatory process in small- and medium-sized arteries and veins, primarily of the upper and lower extremities. In rare cases, cerebral, coronary, renal, and mesenteric vessels may also be affected. This review describes the rheumatologic manifestations of TAO, outlines the spectrum of diseases for differential diagnosis, and presents the updated diagnostic criteria for TAO (2023).

Keywords: thromboangiitis obliterans; antiphospholipid antibodies; systemic connective tissue diseases.

Contact: Nataliya Valeryevna Seredavkina; n_seredavkina@mail.ru

For reference: Seredavkina NV, Reshetnyak TM, Lila AM. Thromboangiitis obliterans: a rheumatologist's perspective. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):119–126 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-119-126

Облитерирующий тромбангиит (ОТ), или болезнь Бюргера, — сегментарный тромботический острый и хронический воспалительный процесс в мелких и средних артериях и венах, преимущественно верхних и нижних конечностей, в редких случаях могут вовлекаться церебральные, коронарные, почечные и мезентериальные сосуды [1-3].

Первое описание ОТ принадлежит Лео Бюргеру (Leo Buerger, 1879—1943), который в 1908 г. представил случай ОТ, а позднее опубликовал монографию на эту тему. В монографии он цитировал Феликса фон Винивартера (Felix von Winiwarter, 1852—1931), еще в 1879 г. описавшего патологические находки у пациента с облитерацией почти всех артерий нижней конечности.

Пациенты с ОТ — чаще всего мужчины моложе 40 лет, у которых отмечаются перемежающаяся хромота, парестезии, затруднения при длительной ходьбе и ишемические нарушения конечностей — от цианоза до язв или сухой гангрены, неизменно приводящие к ампутации конечностей и оказы-

вающие значительное негативное влияние на качество жизни и трудоспособность. В связи с этим постоянно проводится поиск методов ранней диагностики и новых эффективных средств лечения ОТ [2, 4].

По определению ВОЗ, ОТ — редкое заболевание. Большинство пациентов относятся к группе с низким социально-экономическим уровнем. Распространенность ОТ в разных регионах различается: чаще всего заболевание встречается на Ближнем и Дальнем Востоке, в Юго-Восточной Азии, Восточной Европе и Южной Америке. Доказана наследственная предрасположенность к ОТ (HLA-B54-MICA-1.4, HLA-A9, HLA-DRB1, HLA-DPB1), которая может не проявиться без провоцирующих факторов внешней среды (курение, риккетсиоз, заболевания пародонта) [5—7].

Хотя история изучения ОТ насчитывает более 120 лет, до настоящего времени не существует точного маркера его диагностики. Визуализационные методы и лабораторные

Таблица 1. Клинические проявления, некоторые лабораторные показатели и результаты инструментального обследования при заболеваниях сосудов [1–3, 13–15]

Table 1. Clinical manifestations, some laboratory parameters and results of instrumental examination in vascular diseases [1–3, 13–15]

Показатель	OT	АФС	Облитерирующий атеросклероз	Системный васкулит			
Хроническая ишемия нижних конечностей	Да	К линические Да	е проявления Да	Да (при обострении с поражением периферических артерий)			
Хроническая ишемия верхних конечностей	Да	Да	Очень редко	Да/нет (при обострении с поражением периферических артерий)			
Артериальный тромбоз	Да	Да	Атеротромбоз	Да/нет#			
Венозный тромбоз	Нет#	Да	Нет#	Her#			
Мигрирующий поверхностный тромбофлебит нижних конечностей	Да	Да	Нет#	Нет#			
Лихорадка, усталость, миалгии и потеря массы тела	Очень редко	Нет	Нет	Да			
Лабораторные показатели							
СРБ	N*	N*	N, возможно повышение ≤10 мг/л без других причин	Высокопозитивный уровень при обострении			
Д-димер	N^*	N^*	N*	Высокопозитивный уровень при обострении			
Лейкоциты	N^*	N^*	N^*	Лейкоцитоз			
Тромбоциты	N	N, возможна тромбоцитопения	N	Тромбоцитоз			
Фибриноген	N^*	N*	N^*	Уровень повышен при обострении			
АЧТВ	N	N, возможно удлинение АЧТВ вследствие присутствия ВА	N	N			
Протромбиновое время	N**	N**	N**	N^{**}			
Тромбиновое время	N**	N**	N**	N^{**}			
МНО	N**	N**	N**	N**			
аФЛ	Редко низкопозитивный уровень	Высокопозитивный уровень	Нет	Редко низкопозитивный уровень			
РФ	Редко	Нет	Нет	Часто			
С3-, С4- компоненты комплемента	N	N (гипокомплементемия возможна при волчаночноподобном АФС)	N	N			
АНФ	Очень редко	Очень редко	Нет	Очень редко			
H AUTD							

Примечание. АЧТВ — активированное частичное тромбопластиновое время; МНО — международное нормализованное отношение; ВА — волчаночный антикоагулянт; АН Φ — антинуклеарный фактор; N — норма; * — в качестве сопутствующего заболевания при дополнительных факторах риска; * — при повышении поиск инфекции, ревматического заболевания, неоплазий; * — может многократно повышаться при терапии антикоагулянтами.

тесты использовались преимущественно для исключения других сосудистых заболеваний, а не для диагностики собственно ОТ. Было предложено несколько вариантов классификационных критериев ОТ.

Критерии S. Shionoya (1996) [8] обладают низкой специфичностью и включают: 1) активное курение в анамнезе или в настоящее время; 2) дебют заболевания в возрасте моложе 50 лет; 3) наличие окклюзий подколенных артерий или их дистальных ветвей; 4) или вовлечение в процесс верхних конечностей, или наличие мигрирующего флебита; 5) отсутствие других факторов риска атеросклероза, кроме курения (наличие всех 5 факторов является обязательным). Критерии S. Shionoya наиболее часто использовались в странах со средним и низким уровнем дохода на Ближнем Востоке и в Южной Азии, преимущественно из-за ограничений страхового покрытия или доступа к более современным методам обследования [1].

Критерии J. Mills (1994), М. Рара (1996), J. Olin (2000) содержат результаты инструментального обследования (ангиография, гистологическое исследование) и имеют ряд ограничений и состояний исключения, в том числе сахарный диабет, облитерирующий атеросклероз, системные заболевания крови, ассоциированные с гиперкоагуляцией, системные заболевания соединительной ткани [4, 9].

Возможность взаимосвязи ОТ и аутоиммунного воспаления начала обсуждаться в 90-е годы прошлого столетия, когда было показано, что иммунологический механизм играет определенную роль в изменениях стенки сосуда [10]. В отличие от других заболеваний артерий, ОТ характеризуется наличием клеточного тромба с низкоинтенсивным воспалением в стенке сосуда, связанным с активацией макрофагов и дендритных клеток в интиме [11] и в активную фазу сопровождающимся продукцией антиэндотелиальных антител [12]. Тем не менее показатели острой фазы воспаления, локальные тесты системы гемостаза и традиционные «скрининговые» аутоантитела (антинуклеарные антитела, ревматоидный фактор, РФ) и другие иммунологические маркеры (комплемент, циркулирующие иммунные комплексы и криоглобулины) при ОТ остаются в пределах нормы или отсутствуют (табл. 1). Подобная картина наблюдается при антифосфолипидном синдроме (АФС).

АФС является приобретенным тромбофилическим заболеванием, при котором продуцируются аутоантитела к фосфолипидным детерминантам мембран клеток или фосфолипидсвязывающим белкам крови. Клинические проявления, вызванные антифосфолипидными антителами (аФЛ) в крови, варьируются от бессимптомного носительства аФЛ до угрожающих жизни проявлений, обусловленных размером, числом и видом окклюзированных сосудов [15]. К лабораторным маркерам АФС относятся среднепозитивный и выше уровень антител к кардиолипину (аКЛ) класса IgG и IgM, антител к β_2 -гликопротеину 1 (а $\beta_2\Gamma\Pi_1$) и/или позитивный результат теста на волчаночный антикоагулянт (ВА), зарегистрированные дважды с промежутком в 12 нед [16]; в 1997 г. эти маркеры внесены в международные классификационные критерии системной красной волчанки (CKB) [17].

Схожие клинические проявления (артериальные тромбозы и поверхностные тромбофлебиты) двух разных заболеваний — ОТ и $A\Phi C$ — послужили поводом для исследований в этом направлении.

В 1993 г. С. Fernandez-Miranda и соавт. [18] представили клинико-иммунологическую характеристику 41 больного ОТ. У 30 симптоматических больных были выявлены аКЛ и у 1 из них — высокопозитивный уровень IgG-аКЛ.

В 2000 г. R. Adar и соавт. [19] ретроспективно проанализировали медицинские документы 188 пациентов, высокопозитивных по аФЛ. У 3 мужчин с диагнозом болезни Бюргера в дальнейшем развился классический АФС, 1 из них, у которого ранее был диагностирован ОТ, умер в возрасте 45 лет от катастрофического АФС. У 4 мужчин с СКВ отмечались клинические признаки хронической артериальной недостаточности, но ОТ по каким-то причинам не был выявлен. У женщины с повторными спонтанными абортами до верификации СКВ с АФС был обнаружен ОТ. Эти данные указывают на начало дебюта СКВ или АФС с признаков ОТ.

R. Сегverа и соавт. [20] изучили данные 1000 (820 женщин и 180 мужчин) больных из 13 европейских стран, возраст которых на момент включения в исследование составлял 42±14 лет. Все пациенты соответствовали критериям АФС: у 53% был изолированный первичный АФС, у 36% — СКВ с АФС, у 5% — волчаночно-подобный синдром и у остальных 6% — АФС на фоне других ревматических заболеваний. Результаты исследования показали, что язвы голеней наблюдались у 6%, дигитальная гангрена — у 3% и некрозы кожи стоп — у 2% пациентов, однако нет информации, проводилось ли этим больным исследование периферических артерий, не исключено, что имевшаяся симптоматика была связана с ОТ.

L. Maslowski и соавт. [21] сообщили о выявлении у больных ОТ повышенного уровня аКЛ. В исследование было включено 47 пациентов с ОТ, 48-c периферическим атеросклерозом и 48-в качестве контроля. Во всех случаях были исследованы IgG-, IgM- и IgA-аКЛ с помощью твердофазного иммуноферментного анализа. Авторы показали, что частота выявления аКЛ у больных ОТ была статистически значимо выше, чем у пациентов с атеросклерозом и в группе контроля: 36% против 8 и 2% соответственно (p<0,01 во всех случаях). Позитивные по аКЛ пациенты с ОТ заболели в более молодом возрасте, они также чаще подвергались ампутации.

ОТ может сопровождаться клиническими проявлениями, характерными для АФС. Сегодня тесты на аФЛ проводятся в более широком спектре клинических дисциплин, поэтому в реальной практике отмечается снижение частоты позитивности по аФЛ и, как следствие, вероятности подтверждения диагноза после исследования этих антител. Этот аспект рассмотрен в недавно опубликованных классификационных критериях АФС, разработанных совместно ACR (American College of Rheumatology) и EULAR (European Alliance of Associations for Rheumatology) [16]. Рутинный скрининг аФЛ без клинических признаков заболевания не рекомендуется во избежание их случайного обнаружения. Клинические сценарии, которые дают основание с высокой степенью вероятности подозревать АФС, включают, в частности, более молодых пациентов (до 50 лет) с неспровоцированными тромботическими явлениями, тромбозом в атипичных местах, или тромботическими осложнениями, или осложнениями беременности, связанными с сопутствующим аутоиммунным заболеванием [16, 22]. Главной в руководстве является рекомендация о необходимости исследования всех аФЛ одновременно и интерпретации результатов с учетом клинической

картины и всех лабораторных маркеров. Это обусловлено тем, что аФЛ представляют собой набор разнообразных ауто-антител с перекрывающимися, но различными характеристиками в отношении как их определения, так и связи с клиническими проявлениями.

Наличие аФЛ было зафиксировано у больных с периферической артериальной болезнью (ПАБ), в том числе при ОТ [23]. В метаанализе 21 клинического исследования, включавшего 6057 пациентов с ПАБ, ВА чаще встречался при критической ишемии нижних конечностей (КИНК) и ассоциировался с неэффективностью хирургической реваскуляризации. В целом аФЛ статистически значимо чаще обнаруживались при ПАБ, чем в контроле: 13% против 4% (p<0,05). Однако данный анализ имеет ряд существенных недостатков и ограничений, касающихся интерпретации полученных результатов: неоднородность диагностики (ОТ? Атеросклероз?) и оценки тяжести ПАБ, которые исключали сравнительный анализ подгрупп; в большинстве случаев однократное неполное исследование антител (только аКЛ и ВА); выражение позитивности в виде процента больных, у которых выявлены аФЛ, без указания их уровней и класса иммуноглобулинов, кроме того, непонятно, не исследовалась ли позитивность по ВА на фоне применения антикоагулянтов [23].

Частота выявления аФЛ при СКВ составляет около 30-40% [24, 25]. Существует несколько описаний клинических случаев, в которых ОТ был диагностирован за несколько лет до верификации достоверной СКВ [19, 26], и единичные описания дебюта СКВ с КИНК и многоуровневой артериальной обструктивной болезни [27]. Исследований, включающих больных СКВ с достоверным ОТ, не проводилось по ряду причин. При СКВ доказаны бимодальный характер смертности и раннее и ускоренное развитие атеросклероза [28-30]. Результаты метаанализа данных 8 клинических исследований с участием 263 258 больных СКВ и 768 487 лиц группы контроля без ревматических заболеваний показали, что частота ПАБ при СКВ была значимо выше, чем в контроле: 15,8% (95% доверительный интервал, ДИ 10,5-23,2%) против 3,9% (95% ДИ 1,8-7,9%), отношение шансов - 4,1 (95% ДИ 1,5-11,6; р<0,001). Независимо от СКВ с ПАБ ассоциировались такие факторы, как старший возраст, артериальная гипертензия, сахарный диабет 2-го типа, а также другие клинические проявления атеросклероза. Все эти факторы в соответствии с большинством диагностических критериев позволяют исключить ОТ. Биопсия стенок сосудов в данных исследованиях не проводилась, ПАБ расценивалась как проявление генерализованного атеросклероза [30].

Следующим по частоте выявления аФЛ ревматическим заболеванием после СКВ и АФС является болезнь Бехчета (ББ), которая, согласно классификации 2012 г., относится к вариабельным васкулитам [31] и при которой также дискутируется связь тромбозов с аФЛ. Частота выявления аФЛ (в основном аКЛ и а β_2 ГП₁) при ББ, по данным разных авторов, колеблется от 2 до 39% [32]. Тромботические нарушения с вовлечением как артериальных, так и венозных сосудов регистрируются у 45% пациентов с ББ [33]. И при АФС, и при ББ может развиваться критическая ишемия пальцев верхних и нижних конечностей с исходом в изъязвление и периферические некрозы [2]. G. Hari и N. Skeik [34] описали пациента с ББ и КИНК и проанализировали еще 7 подобных случаев, в 5 из которых были выявлены ок-

клюзия бедренной и/или подколенной артерий и аневризмы. Авторы полагают, что критическая ишемия развилась вследствие комбинации вазоспазма и вазоокклюзионной болезни на фоне васкулита мелких сосудов.

В ряде работ отмечена схожесть клинических симптомов ОТ с проявлениями других ревматических заболеваний [35, 36]. Было показано, что некоторые симптомы ревматических заболеваний предшествовали диагностике ОТ и исчезали по мере развития более явных сосудистых проявлений [37–38], что требует наблюдения. X. Puechal и соавт. [37] ретроспективно оценили поражение суставов у 83 пациентов с ОТ, которые находились в отделениях ревматологии и сосудистой хирургии и прошли полное клинико-инструментальное обследование. Клинические признаки ревматических заболеваний выявлены у 11 (12,5%) из 83 больных ОТ. У 8 пациентов наблюдались рецидивирующие артралгии, которые возникли за 2 года – 13 лет (в среднем — за 10 лет) до ОТ, а также острый мигрирующий краткосрочный преходящий неэрозивный моноартрит с поражением крупных суставов. Предварительный диагноз у таких пациентов часто указывал на поражение периартикулярных тканей с тенденцией к рецидиву. Продромальные ревматические симптомы исчезали с появлением ишемических признаков.

Актуальными остаются вопросы не только диагностики, но и терапии ОТ. Так, О. Lambotte и соавт. [39] сообщили о 3 больных ОТ, у 2 из которых болезнь дебютировала с полиартрита и у 1-с синдрома карпального канала. Т. Takanashi и соавт. [40] описали начало ОТ с ливедо и болезненной узловатой эритемы, которые были успешно купированы преднизолоном, однако на фоне терапии преднизолоном отмечено развитие гангрены обеих стоп с последующей ампутацией. Ишемические проявления были резистентны к высоким дозам глюкокортикоидов и мофетила микофенолату.

Ј.А. Johnson и R.J. Епzепаuer [38] продемонстрировали сочетание ОТ с артритом, который сопровождался повышением острофазовых показателей (СОЭ, СРБ), позитивностью по РФ и АНФ, но негативностью по антителам к цитоплазме нейтрофилов. После получения данных ангиографии диагноз первичного васкулита был пересмотрен в пользу ОТ. Короткий курс лечения преднизолоном позволил полностью купировать артрит. Ишемические нарушения были компенсированы после 90 сеансов гипербарической оксигенации. Артрит в последующем не рецидивировал.

Заслуживает внимание связь между анкилозирующим спондилитом (АС) и ОТ. Н.Н. Сhen и соавт. [41] ретроспективно проанализировали данные 30 911 больных с впервые выявленным АС и 309 110 здоровых лиц группы контроля и показали, что у пациентов с вновь диагностированным АС повышен риск развития иммуноопосредованных воспалительных заболеваний, в том числе ОТ: уровень заболеваемости ОТ в группе АС был выше, чем в контроле — 2,6 против 0,2 на 100 тыс. пациенто-лет. Коэффициент заболеваемости для ОТ составил 16,26, (95% ДИ 2,72—97,31; p<0,01).

В упомянутом выше исследовании X. Puechal и соавт. [37] у 2 пациентов с ОТ регистрировался HLA-B27-позитивный недифференцированный спондилоартрит. G. Lpoalco и соавт. [42] наблюдали сочетание АС и ОТ у молодой женщины, причем диагноз АС был установлен за 6 лет до появления клинической картины ОТ. Возможные объяснения связи АС с ОТ включают общие генетические факторы риска, например HLA-B*40 [18, 43], и курение [3].

Ревматические проявления — не единственные «атипичные» симптомы ОТ. F. Fakour и В. Fazeli [36] проанализировали 83 статьи, 80 из которых представляли собой описания более 1 клинического случая ОТ и 3 — оригинальные исследования, включавшие больных ОТ. Наиболее часто в патологический процесс вовлекались желудочно-кишечный тракт (ЖКТ), сердце, центральная нервная система, глаза, почки, мочеполовая система, слизистые оболочки, суставы, лимфогематопоэтическая система и органы слуха.

С момента описания ОТ и до настоящего времени известно о 46 случаях поражения ЖКТ при ОТ [36, 44]. У большинства пациентов наблюдалась окклюзия верхней брыжеечной артерии (53%), нижней брыжеечной артерии (12,5%), верхней и нижней брыжеечных артерий (22%) и артерий кишечника (12,5%) [36]. Поражение ЖКТ может стать причиной летального исхода [44].

В настоящее время нет единого мнения о том, является ли висцеральная патология признаком системного ОТ или результатом тромбоэмболии, вызванной атеросклеротическим поражением аорты или основных висцеральных стволов. При дифференциальной диагностике висцерального ОТ необходимо рассматривать другие формы васкулита. В круг дифференциальной диагностики должны быть включены узелковый полиартериит, ревматоидный артрит, спондилоартриты, IgA-ассоциированный васкулит, болезнь Кавасаки, гигантоклеточный артериит, СКВ, АФС, эозинофильный гранулематоз с полиангиитом, васкулит мелких сосудов с поражением кишечника (васкулит изолированного органа),

васкулиты, связанные с воспалительными заболеваниями кишечника, а также тромбоз [35, 45].

Однако, согласно классификации заболеваний периферических артерий, ОТ не рассматривается как разновидность васкулита. Пациентов с ОТ обычно направляют к ангиологам или сосудистым хирургам, а не к ревматологам. Это может быть связано с благоприятной реакцией на отказ от курения и отсутствием ответа на иммуносупрессивную терапию. Цитостатики и глюкокортикоиды уменьшали суставные проявления ОТ, но усугубляли ишемию конечностей, а в случае брыжеечной ишемии приводили к перфорации кишечника с последующим летальным исходом [38, 40, 44, 46].

ОТ не относят к системным заболеваниям, и в его диагностических критериях учитывается только поражение мелких и средних артерий конечностей, но отмечено и вовлечение висцеральных артерий, клинические проявления ОТ в других органах расцениваются как атипичная или прогрессирующая форма ОТ [36]. Одной из причин редкого выявления таких нарушений может стать отсутствие врачебного контроля за пациентами. Основным препятствием для последующего наблюдения является обязательный отказ от курения. Нежелание пациентов отказаться от курения приводит к игнорированию рекомендаций врача, пока симптомы терпимы (например, постпрандиальная боль), или обращению к врачу другой специальности [36].

В связи с вариабельностью клинической картины ОТ в 2022 г. было проведено исследование, посвященное выработке консенсуса относительно диагностики ОТ с ис-

Таблица 2. Диагностические критерии ОТ [1] Table 2. Diagnostic criteria of thrombangiitis obliterans [1]

Достоверный диагноз ОТ может быть **установлен**, независимо от пола, возраста, клинической картины и симптомов, результатов лабораторных и визуализационных методов исследования, **при обязательном наличии всех 3 критериев:**

- 1) анамнез табакокурения: активное (но не пассивное!) курение в прошлом или настоящем;
- 2) типичные ангиографические признаки (нормальная структура проксимальных артерий, наличие окклюзий подколенных артерий, што-порообразных коллатералей и сегментарного поражения, отсутствие атеросклеротических бляшек, отсутствие микроаневризм)
- 3) типичные гистологические признаки (в частности, интактная внутренняя эластичная пластинка, инфильтрация полиморфноядерными воспалительными клетками всех слоев стенок артерий мелкого и среднего калибра)

Вероятный диагноз ОТ может быть установлен при наличии 1 большого и 4 и малых критериев: Большой критерий

Анамнез табакокурения: активное (но не пассивное!) курение в прошлом или настоящем)

Малые критерии

- 1. Дебют заболевания в возрасте до 45 лет
- 2. Признаки ишемии обеих нижних конечностей, включая:

отсутствие пульса на периферических артериях (aa. dorsalis pedis и tibialis posterior) обеих нижних конечностей,

или

лодыжечно-плечевой индекс <0,9 на обеих нижних конечностях,

или

пальце-плечевой индекс <0,75 на обеих нижних конечностях,

или

признаки хронической ишемии голеней либо стоп (включая выпадение волос, истончение ногтей и атрофию кожи) в дополнение к отсутствию периферического пульса хотя бы на одной конечности

3. Признаки ишемии одной или обеих верхних конечностей, включая: положительный тест Аллена¹,

или

отсутствие пульса на лучевой артерии,

или

феномен Рейно

- 4. Мигрирующий тромбофлебит (в анамнезе или при физикальном обследовании)
- 5. Изменение цвета пальцев рук и ног у пациентов со светлой кожей в виде гиперемии от красного до синюшного цвета на отечных пальцах ног, при этом пальцы могут быть поражены не в одинаковой степени. В зависимости от положения конечности синюшность может распространяться до лодыжки

¹Тест Аллена: пациента просят крепко сжать оба кулака на 1 мин и при этом сдавливают лучевую и локтевую артерии, чтобы перекрыть их. Затем пациент быстро разгибает пальцы обеих рук, и врач сравнивает цвет кистей. Положительный результат регистрируется, если первоначальная бледность кистей быстро сменяется гиперемией. Тест можно повторить со сдавлением локтевых артерий.

пользованием двухэтапной модифицированной Delphi-методологии [47]. Результаты показали, что, помимо курения, эксперты не пришли к единому мнению по критериям ОТ, включая возраст начала заболевания; вовлечение верхних конечностей или мигрирующий тромбофлебит; ограничение сосудистого поражения нижних конечностей инфрапоплитеальными артериями; исключение факторов риска атеросклероза и других типов васкулита; лабораторные маркеры и/или результаты исследования сосудов. Авторы предложили провести переоценку всех опубликованных диагностических критериев ОТ для их гармонизации и повсеместного использования [47].

В 2023 г. была создана международная рабочая группа, в которую вошли 56 экспертов в области ангиологии, сосудистой медицины и сосудистой хирургии из 29 стран, разработавших обновленные диагностические критерии ОТ (табл. 2) [1].

При отсутствии большого критерия или при наличии <4 малых критериев рабочая группа рекомендует использовать только два метода: селективную катетерную ангиографию или цифровую субтракционную ангиографию. Неатеросклеротическая окклюзия поверхностной бедренной артерии, как и подколенной артерии, не является специфичным условием для диагностики ОТ. Не существует типичных для ОТ признаков, которые могут быть обнаружены при проведении компьютерной томографии с ангиографией, в связи с чем ее нельзя использовать для диагностики ОТ, но можно применять для оценки любой окклюзии или атеросклеротических изменений в проксимальных артериях. Рабочая группа не пришла к единому мнению о необходимости лабораторных данных для диагностики ОТ. Однако лабораторные исследования, включая определение уровня глюкозы, липидного профиля, СРБ, аФЛ, АНФ, РФ, коагуляционного профиля, могут быть полезными, если визуализационные методы не подтверждают диагноз ОТ или другие сосудистые заболевания [1].

Таким образом, достоверный диагноз ОТ может быть установлен у пациента при обязательном наличии всех 3 критериев: активное табакокурение в анамнезе, типичные ангиографические признаки (нормальная структура проксимальных артерий, отсутствие атеросклеротических бляшек, отсутствие микроаневризм, окклюзии подколенных артерий, штопорообразные коллатерали и сегментарное поражение) в сочетании с типичными гистологическими признаками (интактная внутренняя эластичная пластинка, инфильтрация полиморфноядерными воспалительными клетками всех слоев стенок артерий мелкого и среднего калибра). При ОТ могут наблюдаться следующие ревматические проявления: артралгии, ливедо, узловатая эритема, острый мигрирующий краткосрочный, преходящий неэрозивный моноартрит с поражением крупных суставов, наличие аутоантител. В круг дифференциальной диагностики ОТ должны быть включены узелковый полиартериит, ревматоидный артрит, спондилоартриты, IgA-ассоциированный васкулит, болезнь Кавасаки, гигантоклеточный артериит, СКВ, АФС, эозинофильный гранулематоз с полиангиитом, васкулит мелких сосудов с поражением кишечника (васкулит изолированного органа), а также васкулиты, связанные с воспалительными заболеваниями кишечника.

Ведение пациентов с ОТ — мультидисциплинарная проблема. Согласно международной классификации болезней, ОТ кодируется как I73.1 (облитерирующий тромбангиит), и такие пациенты подлежат наблюдению сосудистого хирурга. Однако при выявлении антител ОТ может быть закодирован как M31.9 (некротизирующая васкулопатия неуточненная) и курироваться ревматологом.

ЛИТЕРАТУРА/REFERENCES

- 1. Fazeli B, Poredos P, Kozak M, et al. Diagnostic criteria for Buerger's disease: International Consensus of VAS European Independent Foundation in Angiology/Vascular Medicine. *Int Angiol.* 2023 Oct;42(5):396-401. doi: 10.23736/S0392-9590.23.05098-8.
- 2. Espinoza LR. Buerger's disease: thromboangiitis obliterans 100 years after the initial description. *Am J Med Sci.* 2009 Apr;337(4): 285-6. doi: 10.1097/MAJ.0b013e318198d011.
- 3. Fazeli B, Poredos P, Patel M, et al. Milestones in thromboangiitis obliterans: a position paper of the VAS-European independent foundation in angiology/vascular medicine. *Int Angiol.* 2021 Oct;40(5):395-408. doi: 10.23736/S0392-9590.21.04712-X.
- 4. Покровский АВ, Дан ВН, Чупин АВ. Новые аспекты в диагностике и лечении облитерирующего тромбангиита (болезни Бюргера). Ангиология и сосудистая хирургия. 2010;16(4):175-183.
- Pokrovski AV, Dan VN, Chupin AV. New aspects in the diagnosis and treatment of thromboangiitis obliterans (Buerger's disease). *Angiologiya i sosudistaya khirurgiya*. 2010;16(4): 175-183. (In Russ.).

- 5. Fazeli B, Ligi D, Keramat S, et al. Recent Updates and Advances in Winiwarter-Buerger Disease (Thromboangiitis Obliterans): Biomolecular Mechanisms, Diagnostics and Clinical Consequences. *Diagnostics (Basel)*. 2021 Sep 22;11(10):1736. doi: 10.3390/diagnostics11101736.
- 6. Сапелкин СВ, Дружинина НА. Облитерирующий тромбангиит (болезнь Бюргера). Consilium Medicum. 2018;20(8):91-95. Sapelkin SV, Druginina NA. Thromboangiitis obliterans (Buerger's disease). *Consilium Medicum*. 2018;20(8):91-95. (In Russ.). 7. Komai H. Thromboangiitis obliterans —
- A Disappearing Disease? *Circ J.* 2024 Feb 22;88(3):329-330. doi: 10.1253/circj.CJ-23-0524.
- 8. Shionoya S. Diagnostic criteria of Buerger's disease. *Int J Cardiol* 1998 Oct 1:66 (Suppl 1): S243–5. doi: 10.1016/s0167-5273(98) 00175-2.
- 9. Papa MZ, Rabi I, Adar R. A point scoring system for the clinical diagnosis of Buerger's disease. *Eur J Vasc Endovasc Surg.* 1996 Apr; 11(3):335-9. doi: 10.1016/s1078-5884 (96)80081-5.

- 10. Adar R, Papa MC, Halperin Z, et al. Cellular sensitivity to collagen and thromboangiitis obliterans. *N Engl J Med.* 1983 May 12;308(19):1113–16. doi: 10.1056/NEJM198305123081901.
- 11. Kobayashi M, Ito M, Nakagawa A et al. Immunohistochemical analysis of arterial wall cellular infiltration in Buerger's disease (endarteritis obliterans). *J Vasc Surg.* 1999 Mar;29:451–58. doi: 10.1016/s0741-5214 (99)70273-9.
- 12. Eichhorn J, Sima D, Lindschau C et al. Antiendothelial cell antibodies in thromboangiitis obliterans. *Am J Med Sci* 1998 Jan; 315(1):17–23. doi: 10.1097/00000441-199801000-00004.
- 13. Bilora F, Sartori MT, Zanon E, et al. Flow-mediated arterial dilation in primary antiphospholipid syndrome. *Angiology*. 2009 Feb-Mar;60(1):104-7. doi: 10.1177/0003319708315304.
- 14. Iwamoto A, Kajikawa M, Maruhashi T, et al. Vascular Function and Intima-media Thickness of a Leg Artery in Peripheral Artery Disease: A Comparison of Buerger Disease and Atherosclerotic Peripheral Artery Disease.

- *J Atheroscler Thromb.* 2016 Nov 1;23(11): 1261-1269. doi: 10.5551/jat.35436.
- 15. Решетняк ТМ. Антифосфолипидный синдром: диагностика и клинические проявления (лекция). Научно-практическая ревматология. 2014;52(1):56-71.
- Reshetnyak TM. Antiphospholipid syndrome: diagnosis and clinical manifestations (a lecture). *Nauchno-prakticheskaya revmatologiya*. 2014;52(1):56-71. (In Russ.).
- 16. Barbhaiya M, Zuily S, Naden R, et al. 2023 ACR/EULAR antiphospholipid syndrome classification criteria. *Ann Rheum Dis.* 2023 Oct;82(10):1258-1270. doi: 10.1136/ard-2023-224609.
- 17. Petri M, Orbai AM, Alarcon GS, et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. *Arthritis Rheum*. 2012 Aug;64(8):2677-86. doi: 10.1002/art.34473.
- 18. Fernandez-Miranda C, Rubio R, Vicario JL, et al. Thromboangiitis obliterans (Buerger's disease). Study of 41 cases. *Med Clin (Barc)*. 1993 Sep 25;101(9):321–6.
 19. Adar R, Papa MZ, Schneiderman J. Thromboangiitis obliterans: an old disease in need of a new look. *Int J Cardiol*. 2000 Aug 31:75 (Suppl 1):S167-70; discussion S171-3. doi: 10.1016/s0167-5273(00)00185-6.
 20. Cervera R, Piette JC, Font J, et al. Antiphospholipid syndrome: clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. *Arthritis Rheum*. 2002 Apr;46(4):1019-27.
- 21. Maslowski L, McBane R, Alexewicz P, Wysokinski WE. Antiphospholipid antibodies in thromboangiitis obliterans. *Vasc Med.* 2002; 7(4):259-64. doi: 10.1191/1358863x02 vm452oa.

doi: 10.1002/art.10187.

- 22. Atsumi T, Chighizola CB, Fujieda Y, et al. 16th International congress on antiphospholipid antibodies task force report on antiphospholipid syndrome laboratory diagnostics and trends. *Lupus*. 2023 Dec;32(14):1625-1636. doi: 10.1177/09612033231211820.
- 23. Merashli M, Bucci T, Pastori D, et al. Antiphospholipid antibodies and lower extremity peripheral artery disease: A systematic review and meta-analysis. *Semin Arthritis Rheum*. 2020 Dec;50(6):1291-1298. doi: 10.1016/j.semarthrit.2020.08.012. 24. Vikerfors A, Johansson AB, Gustafsson JT, et al. Clinical manifestations and anti-
- son JT, et al. Clinical manifestations and antiphospholipid antibodies in 712 patients with systemic lupus erythematosus: evaluation of two diagnostic assays. *Rheumatology (Oxford)*. 2013 Mar;52(3):501–9. doi: 10.1093/
- 25. Petri M. Update on anti-phospholipid

rheumatology/kes252.

- antibodies in SLE: the Hopkins' Lupus Cohort. *Lupus*. 2010 Apr;19(4):419–23. doi: 10.1177/0961203309360541.
- 26. Vasugi Z, Danda D. Systemic lupus erythematosis with antiphospholipid antibody syndrome: a mimic of Buerger's disease. J Postgrad Med. 2006 Apr-Jun;52(2):132-3. 27. Giannakakis S, Galyfos G, Stefanidis I, et al. Hybrid treatment of lower limb critical ischemia in a patient with systemic lupus erythematosus. Ann Vasc Surg. 2015 Apr;29(3): 596.e1-5. doi: 10.1016/j.avsg.2014.10.040. 28. Панафидина ТА, Попкова ТВ. Сердечная недостаточность при системной красной волчанке: факторы риска и особенности диагностики. Научно-практическая ревматология. 2018;56(3):380-385. Panafidina TA, Popkova TV. Heart failure in systemic lupus erythematosus: risk factors and diagnostic features. Nauchno-Prakticheskaya Revmatologiya. 2018;56(3):380-385. (In Russ.).
- 29. Ajeganova S, Hafström I, Frostegerd J. Patients with SLE have higher risk of cardiovascular events and mortality in comparison with controls with the same levels of traditional risk factors and intima-media measures, which is related to accumulated disease damage and antiphospholipid syndrome: a case-control study over 10 years. *Lupus Sci Med.* 2021 Feb;8(1):e000454. doi: 10.1136/lupus-2020-000454.
- 30. Forte F, Buonaiuto A, Calcaterra I, et al. Association of systemic lupus erythematosus with peripheral arterial disease: a meta-analysis of literature studies. *Rheumatology (Oxford)*. 2020 Nov;59(11):3181-3192. doi: 10.1093/rheumatology/keaa414. 31. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. *Arthritis Rheum*. 2013 Jan;65(1):1-11. doi: 10.1002/art.37715.
- 32. Islam MA, Alam SS, Kundu S, et al. Prevalence of antiphospholipid antibodies in Behcet's disease: A systematic review and meta-analysis. *PLoS One*. 2020 Jan 13;15(1): e0227836. doi: 10.1371/journal.pone. 0227836.
- 33. al-Dalaan AN, al-Ballaa SR, al-Janadi MA, et al. Association of anti-cardiolipin antibodies with vascular thrombosis and neurological manifestation of Beh3ets disease. *Clin Rheumatol.* 1993 Mar;12(1):28-30. doi: 10.1007/BF02231554.
- 34. Hari G, Skeik N. Digital ischemia in Behcet's disease: case-based review. *Rheumatol Int.* 2020 Jan;40(1):137-143. doi: 10.1007/s00296-019-04452-z.
- 35. Jbiniani O, Hammami S, Bdioui F, et al. The Budd-Chiari syndrome and Buerger's dise-

- ase: a case report. *Tunis Med*. 2009 Oct; 87(10):706-708.
- 36. Fakour F, Fazeli B. Visceral bed involvement in thromboangiitis obliterans: a systematic review. *Vasc Health Risk Manag.* 2019 Aug 15:15:317-353. doi: 10.2147/VHRM.S182450. 37. Puechal X, Fiessinger JN, Kahan A, Menkes CJ. Rheumatic manifestations in patients with thromboangiitis obliterans (Buerger's disease). *J Rheumatol.* 1999 Aug;26(8): 1764-8.
- 38. Johnson JA, Enzenauer RJ. Inflammatory arthritis associated with thromboangiitis obliterans. *J Clin Rheumatol*. 2003 Feb;9(1):37–40. doi: 10.1097/01.RHU.0000049712.74443.70. 39. Lambotte O, Chazerain P, Vinciguerra C, et al. Thromboangiitis obliterans with inaugural rheumatic manifestations. A report of three cases. *Rev Rhum Engl Ed*. 1997 May;64(5): 334-8.
- 40. Takanashi T, Horigome R, Okuda Y, et al. Buerger's disease manifesting nodular erythema with livedo reticularis. *Intern Med.* 2007; 46(21):1815-9. doi: 10.2169/internalmedicine. 46.0143.
- 41. Chen HH, Chao WC, Chen YH, et al. Risk of immune-mediated inflammatory diseases in newly diagnosed ankylosing spondylitis patients: a population-based matched cohort study. Arthritis Res Ther. 2019 Aug 29; 21(1):196. doi: 10.1186/s13075-019-1980-1. 42. Lopalco G, Iannone F, Rigante D, et al. Coexistence of axial spondyloarthritis and thromboangiitis obliterans in a young woman. Reumatismo. 2015 Jun 30;67(1):17-20. doi: 10.4081/reumatismo.2015.810. 43. Diaz-Pena R, Vidal-Castineira JR, Lopez-Vazquez A, Lopez-Larrea C. HLA-B*40:01 is associated with ankylosing spondylitis in HLA-B27-positive populations. J Rheumatol. 2016 Jun;43(6):1255-6. doi: 10.3899/ jrheum.151096.
- 44. Siddiqui MZ, Reis ED, Soundararajan K, Kerstein MD. Buerger's disease affecting mesenteric arteries: a rare cause of intestinal ischemia a case report. *Vasc Surg.* 2001 May-Jun;35(3):235-8. doi: 10.1177/153857440103500314.
- 45. Burke AP, Sobin LH, Virmani R. Localized vasculitis of the gastrointestinal tract. *Am J Surg Pathol.* 1995 Mar;19(3):338-49. doi: 10.1097/00000478-199503000-00012. 46. Li QL, He DH, Huang YH, Niu M. Thromboangiitis obliterans in two brothers. *Exp Ther Med.* 2013 Aug;6(2):317–320. doi:10.3892/etm.2013.1160.
- 47. Fazeli B, Poredos P, Schernthaner G, et al. An International Delphi Consensus on Diagnostic Criteria for Buerger's Disease. *Ann Vasc Surg.* 2022 Sep:85:211-218. doi: 10.1016/j.avsg.2022.03.028.

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 14.02.2025/05.05.2025/13.05.2025

Заявление о конфликте интересов/Conflict of Interest Statement

Статья подготовлена в рамках фундаментальной научной темы № РК 125020501434-1.

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared within the framework of the basic research project № PK 125020501434-1.

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Середавкина H.B. https://orcid.org/0000-0001-5781-2964 Решетняк Т.М. https://orcid.org/0000-0003-3552-2522 Лила А.М. https://orcid.org/0000-0002-6068-3080

Возможности применения лорноксикама в лечении боли при ревматических заболеваниях

Алексеева Л.И.^{1,2}, Раскина Т.А.³, Таскина Е.А.¹, Лила А.М.^{1,2}

¹ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва;
²ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования»
Минздрава России, Москва; ³ФГБОУ ВО «Кемеровский государственный медицинский университет»
Минздрава России, Кемерово

¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1; ³Россия, 650056, Кемерово, ул. Ворошилова, 22A

Нестероидные противовоспалительные препараты (НПВП) занимают одну из центральных позиций в комплексной системе контроля острой и хронической скелетно-мышечной боли и имеют широкий круг показаний, в том числе ревматические заболевания. Лорноксикам относится к НПВП класса оксикамов, является сбалансированным ингибитором циклооксигеназы (ЦОГ) 1 и ЦОГ2, характеризуется быстрым началом действия, высокой скоростью элиминации и коротким периодом полувыведения, что снижает риск его аккумуляции и определяет хорошую переносимость. Продемонстрирована сопоставимость трех терапевтических форм лорноксикама (Ксефокам таблетки, Ксефокам для инъекций и Ксефокам Рапид), что определяет отсутствие необходимости в корректировке дозы при переходе с инъекционной на пероральную форму.

Ключевые слова: нестероидные противовоспалительные препараты; лорноксикам (Ксефокам); ревматические заболевания; эффективность; безопасность.

Контакты: Людмила Ивановна Алексеева; dr.alekseeva@gmail.com

Для цитирования: Алексеева ЛИ, Раскина ТА, Таскина ЕА, Лила АМ. Возможности применения лорноксикама в лечении боли при ревматических заболеваниях. Современная ревматология. 2025;19(5):127—132. https://doi.org/10.14412/1996-7012-2025-5-127-132

Possibilities of using of lornoxicam in the treatment of pain in rheumatic diseases Alekseeva L.I.^{1,2}, Raskina T.A.³, Taskina E.A.¹, Lila A.M.^{1,2}

¹V.A. Nasonova Research Institute of Rheumatology, Moscow; ²Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow; ³Kemerovo State Medical University, Ministry of Health of Russia, Kemerovo

¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²2/1, Barrikadnaya Street, Build. 1, Moscow 125993, Russia; ³22A, Voroshilova Street, Kemerovo 650056, Russia

Nonsteroidal anti-inflammatory drugs (NSAIDs) occupy one of the central positions in the multimodal control of acute and chronic musculoskeletal pain and have broad indications, including rheumatic diseases. Lornoxicam, an oxicam-class NSAID, is a balanced cyclooxygenase (COX)-1/COX-2 inhibitor characterized by rapid onset of its effect, fast elimination, and a short half-life, which reduces the risk of its accumulation and provides good tolerability. Therapeutic equivalence has been demonstrated among the three lornoxicam formulations (Xefocam tablets, Xefocam injection, and Xefocam Rapid), obviating the need for dose adjustment when switching from parenteral to oral administration.

 $\textbf{\textit{Keywords:}} \ nonsteroidal \ anti-inflammatory \ drugs; \ lornoxicam \ (\textit{Xefocam}); \ rheumatic \ diseases; \ efficacy; \ safety.$

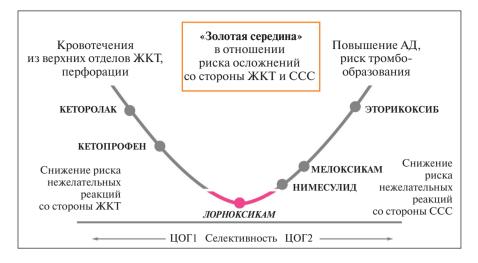
Contact: Liudmila Ivanovna Alekseeva; dr.alekseeva@gmail.com

For citation: Alekseeva LI, Raskina TA, Taskina EA, Lila AM. Possibilities of using of lornoxicam in the treatment of pain in rheumatic diseases. Revmatologiya=Modern Rheumatology Journal. 2025;19(5):127–132 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-127-132

Основным классом обезболивающих средств, который наиболее востребован в реальной клинической практике, являются нестероидные противовоспалительные препараты (НПВП). Они занимают одну из центральных позиций в комплексной системе контроля острой и хронической скелетно-мышечной боли [1–4]. Так, в серии популяционных исследований установлено, что в развитых странах мира НПВП регулярно принимают 20–50% пациентов с остеоартритом (ОА). Как показано в метаанализе Z. Yang и со-

авт. [5], оценивших данные 51 наблюдательного исследования (n=6 494 509), НПВП при ОА используют в среднем 43.9% больных

Ведущим механизмом действия этих препаратов является ингибирование фермента циклооксигеназы (ЦОГ) 2, который вырабатывается клетками воспалительного ответа (макрофагами, нейтрофилами, цитотоксическими Т-лимфоцитами, синовиальными фибробластами и др.) после стимуляции последних провоспалительными цитокинами и хемокинами

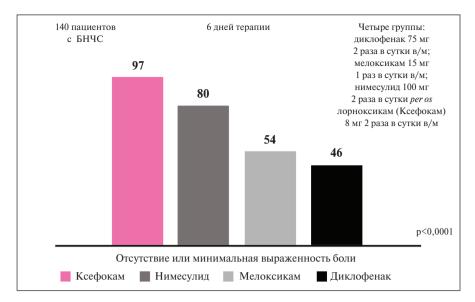

в области повреждения или воспаления живой ткани. ЦОГ2 осуществляет синтез из арахидоновой кислоты простагландина (ПГ) H_2 , предшественника ПГ E_2 , мощного медиатора воспаления и боли. Опосредованно снижая образование ПГ E_2 , НПВП обеспечивают анальгетическое, противовоспалительное и жаропонижающее действие [1, 3, 6, 7].

Продукт ЦОГ, ПГН2, быстро превращается в биоактивные ПГ посредством активности различных ферментов-синтетаз. ПГЕ2, который играет ключевую роль в воспалительной реакции, синтезируется при участии трех различных ферментов: микросомальной ПГЕ2-синтетазы 1 (mPGES1), цитозольной ПГЕ2-синтетазы (cPGES) и микросомальной ПГЕ2-синтетазы 2 (mPGES2). Последние два фермента структурно и биологически отличаются от mPGES1, ответственной за био-

синтез ПГЕ2. Во время воспаления именно ЦОГ2 и mPGES1 быстро (в течение нескольких часов) индуцируются провоспалительными цитокинами в макрофагах и фибробластах [8]. Поэтому оба фермента являются основными объектами для исследований и разработки противовоспалительных препаратов.

Важная роль ПГЕ2 и mPGES1 в патогенезе ревматических заболеваний хорошо известна [9]. MPGES1 экспрессируется в больших количествах и колокализована с ЦОГ2 в синовиальных фибробластах и макрофагах, которые играют ведущую роль в патогенезе ревматоидного артрита (РА) [10]. При ОА наблюдается высокая экспрессия mPGES1 и ЦОГ2 в хондроцитах и клетках синовиальной оболочки [11]. Совместная индукция ЦОГ2 и mPGES1 запускает избыточную продукцию $\Pi\Gamma E_2$, способствующую хроническому течению воспаления, возникновению боли и прогрессированию деструктивных процессов в суставе. Недавние исследования отчетливо продемонстрировали, что путь биосинтеза ПГЕ2 не поддается должному воздействию противоревматических препаратов и, следовательно, может приводить к субклиническому течению воспаления и рецидивам заболевания [12]. Таким образом, сочетание общепринятых методов лечения ревматических заболеваний с препаратами, воздействующими на mPGES1, вероятно, позволит осуществлять оптимальный контроль воспалительного процесса.

НПВП подавляют биосинтез не только патогенного ПГЕ2, но и физиологически важных простаноидов, что приводит к нежелательным явлениям (НЯ). Подавление изофермента ЦОГ1 ассоциируется с возникновением эрозий и кровотечений в желудочно-кишечном тракте (ЖКТ), нарушением функции почек и свертываемости крови, тогда как ЦОГ2 — со значительно большим числом тромботических сердечно-сосудистых событий [13]. Индуцируемая mPGES1 вызывает большой интерес как альтернативная мишень для регуляции синтеза $\Pi\Gamma E_2$ с улучшенной селективностью и профилем безопасности по сравнению с традиционными НПВП или селективными ингибиторами ЦОГ2 [14]. Ингибиторы mPGES1 могут достигать сравнимой с НПВП эффективности в подавлении воспаления и боли, при этом


Рис. 1. Лорноксикам: сбалансированное ингибирование ЦОГ1 и ЦОГ2 [20—22]. ССС — сердечно-сосудистая система; АД — артериальное давление **Fig. 1.** Lornoxicam: balanced inhibition of COX-1 and COX-2 [20—22]. CCC — cardiovascular system; АД — blood pressure

они не вызывают желудочно-кишечных или сердечно-сосудистых последствий, связанных с подавлением цитопротективных или антитромботических $\Pi\Gamma$.

Преобладающее большинство НПВП, включая аспирин, индометацин, диклофенак, мефенамовую кислоту и все «профены», такие как кетопрофен, флурбипрофен, напроксен и ибупрофен, содержат функциональную группу карбоновой кислоты. Исключение составляют фенилбутазон и оксикамы, в составе которых нет карбоксильной группы. Примечательно, что фенилбутазон заложил основы для разработки селективных к ЦОГ2 целекоксиба, рофекоксиба и вальдекоксиба, которые также не содержат карбоксильную группу [15].

Термин «оксикам» был выбран Советом по принятым названиям США для описания НПВП, принадлежащих к классу енольной кислоты, производных 4-гидрокси-1,2-бензотиазин-3-карбоксамида, которые имеют наименьшее число общих структурных элементов с другими НПВП. Обширные исследования, направленные на поиск новых мощных, не содержащих карбоновых кислот противовоспалительных агентов, привели к разработке оксикамов [16]. Первый представитель этого класса, пироксикам (Feldene), был синтезирован в США в 1982 г. компанией Pfizer и сразу же получил признание на рынке, став на несколько лет одним из 50 наиболее назначаемых препаратов. Вслед за пироксикамом были разработаны другие оксикамы, включая изоксикам, мелоксикам, теноксикам и лорноксикам. В последнее время, после того как было установлено, что некоторые производные оксикама являются мощными ингибиторами mPGES1, интерес к этому классу НПВП резко возрос.

Лорноксикам, относящийся к классу оксикамов, является сбалансированным ингибитором ЦОГ1/ЦОГ2 [17] и отличается от других оксикамов быстрым началом действия, высокой скоростью элиминации и низким объемом распределения [18]. Так, внедрение хлорного заместителя позволяет снизить типичное для оксикамов продолжительное время полувыведения из плазмы до $4\,\mathrm{y}$ (у пироксикама оно составляет $24-50\,\mathrm{y}$, у теноксикама $-60-75\,\mathrm{y}$). Короткий период полувыведения лорноксикама снижает риск его аккумуляции, что определяет хорошую переносимость препарата [19].

Рис. 2. Выраженность БНЧС в зависимости от применяемого НПВП, % пациентов [42]. B/m- внутримышечное введение

Fig. 2. Intensity of dorsalgia depending on the NSAID used, % of patients [42]. B/M — intramuscular administration

Лорноксикам в равной мере блокирует ЦОГ1 и ЦОГ2, при этом по способности блокировать ЦОГ он превосходит другие препараты из группы оксикамов. В серии исследований *in vitro*, посвященных оценке ингибирующего действия разных классов НПВП на ЦОГ1 и ЦОГ2, было показано, что лорноксикам — наиболее мощный ингибитор обоих изоферментов (рис.1).

Сбалансированное ингибирование ЦОГ1/ЦОГ2, характерное для лорноксикама, дополняется значимым подавлением продукции провоспалительных цитокинов: интерлейкина (ИЛ) 1, ИЛ6, фактора некроза опухоли α (ФНО α) и оксида азота, которые, как известно, способствуют развитию воспаления. Противовоспалительная активность лорноксикама была показана при лечении острого панкреатита, когда добавление препарата к комбинации стандартных методов терапии позволяло снизить уровни ИЛ1, ИЛ8, ФНО α , а также число осложнений и улучшить прогноз выживаемости пациентов [23]. В отличие от некоторых НПВП, подавление лорноксикамом ЦОГ не приводит к переключению метаболизма арахидоновой кислоты на 5-липоксигеназный путь и повышению образования лейкотриенов, что существенно уменьшает риск возникновения НЯ.

В работах последних лет показано, что оксикамы являются мощными ингибиторами как ЦОГ1 и ЦОГ2, так и mPGES1 — основного фермента, ответственного за биосинтез ПГЕ2 во время воспалительной реакции [24]. Помимо ингибирования ЦОГ и mPGES1, были выявлены новые интересные свойства аналогов оксикамов. Имея в своей структуре несколько гетероатомов, оксикамы являются превосходными лигандами для хелатирования металлов [25]. Также было обнаружено, что координационные комплексы Cu(II)-оксикам напрямую связываются с ДНК, вызывая искажения остова ДНК [26]. Это наблюдение может объяснить антипролиферативные и хемосупрессивные эффекты оксикамов в отношении различных линий клеток на уровне как белка, так и транскрипции [27]. Кроме того, у аналогов оксикама отмечен мощный нейропротективный эффект в отношении

токсичности в клетках дофаминергической нейробластомы человека SH-SY5Y и в модели болезни Паркинсона у мышей [28].

Лорноксикам оказывает выраженное анальгетическое действие, обусловленное нарушением генерации болевых рецепторов и ослаблением восприятия боли. Для него характерно активное ингибирование ЦОГ с ПГ-депрессивным действием и одномоментная усиленная стимуляция выработки физиологического эндорфина. Препарат не влияет на опиоидные рецепторы, не обладает снотворным, седативным и анксиолитическим эффектом, не снижает скорость реакции и активность центральной нервной системы [17, 19].

Лорноксикам представлен в трех лекарственных формах: таблетки Ксефокам, таблетки Ксефокам Рапид и Ксефокам лиофилизат для инъекций со сходным действием. Так, в исследовании S. Radhofer-Welte и соавт. [29] у

18 здоровых лиц (средний возраст — 26,9 года) оценивались фармакокинетические параметры лорноксикама в таблетках, лорноксикама быстрого высвобождения и лорноксикама для инъекций. Показано, что все эти лекарственные формы лорноксикама обеспечивают эквивалентную экспозицию, что свидетельствует о сопоставимости разных форм препарата. При этом авторы отмечают, что более высокая концентрация препарата достигается в более короткие сроки при использовании лорноксикама быстрого высвобождения и лорноксикама для инъекций [29]. Благодаря сопоставимости эффекта трех лекарственных форм лорноксикама не требуется корректировки дозы при переводе больного с инъекционной на пероральную форму.

В настоящее время разрабатываются трансферосомные трансдермальные пластыри, содержащие лорноксикам, что может стать потенциальным решением проблемы НЯ со стороны ЖКТ.

НПВП рекомендуются пациентам с острой, подострой или обострением хронической боли в нижней части спины (БНЧС) [30]. Сравнительное исследование эффективности коротких курсов различных НПВП у 140 пациентов с БНЧС выявило преимущество лорноксикама по сравнению с другими препаратами (рис. 2).

Эффективность лорноксикама изучена у пациентов с ОА. Так, в исследовании Н. Веггу и соавт. [31] оценены эффективность и переносимость лорноксикама при ОА коленных (КС) и тазобедренных (ТБС) суставов. Препарат назначался в трех режимах (6 мг однократно в сутки, 4 мг дважды в сутки и 6 мг дважды в сутки), длительность исследования составила 4 нед. Было показано, что лорноксикам оказывает значимое анальгетическое действие в дозах 8 и 12 мг/сут, причем в дозе 12 мг/сут оно было более выраженным. Аналогичные результаты были получены и при оценке индекса Лекена, однако значимые различия при использовании этого индекса наблюдались только при назначении дозы 12 мг/сут. Авторы отметили хорошую переносимость препарата и отсутствие изменений лабораторных показателей.

В сравнительном исследовании В. Kidd и W. Frenzel [32] оценивалась эффективность лорноксикама в дозах 12 и 16 мг/сут и диклофенака в дозе 150 мг/сут у 135 пациентов с ОА ТБС или КС. Длительность наблюдения составила 12 нед. Во всех трех группах после проведения терапии функциональный статус пациентов с ОА статистически значимо улучшился. В целом 46% пациентов во всех терапевтических группах отметили улучшение течения заболевания и уменьшение интенсивности боли на 42—48%. После 12 нед применения лорноксикама в дозе 16 мг/сут значимо большее число пациентов и врачей оценили его действие как «хорошее», «очень хорошее» и «отличное» по сравнению с таковым диклофенака 150 мг/сут и лорноксикама 12 мг/сут.

В исследовании А. Goregaonkar и соавт. [33] (273 пациента индийского происхождения с ОА ТБС и КС, из них 159 мужчин и 114 женщин, средний возраст – 44,7 года) была проведена сравнительная оценка эффективности и переносимости лорноксикама (8 мг 2 раза в сутки) и диклофенака (50 мг 3 раза в сутки). Через 4 нед лечения уровень боли по визуальной аналоговой шкале (ВАШ) снизился в группе лорноксикама на 83,1%, а в группе диклофенака на 79,3%, индекс WOMAC – на 90,6 и 88,9% соответственно. Частота НЯ со стороны ЖКТ в исследуемых группах существенно не различалась (при назначении лорноксикама – 14,6%, диклофенака -18,4%), кардиоваскулярные события, в том числе отеки и повышение артериального давления (АД), не регистрировались. Авторы делают вывод о сопоставимости эффективности и переносимости лорноксикама и диклофенака после 4 нед лечения.

В сравнительное исследование лорноксикама (16 мг/сут) и рофекоксиба (25 мг/сут) у больных ОА (COLOR Study) было включено 2520 пациентов, длительность наблюдения составила 25 дней. На фоне терапии рофекоксибом боль в суставах при движении уменьшилась на 45,3%, в покое — на 42,0%, в ночные часы — на 42,5%, на фоне терапии лорноксикамом эффект был значительнее: 55,8; 55,8 и 59,9% соответственно. НЯ регистрировались у 5,4% больных, получавших лорноксикам, и у 12,0% пациентов, принимавших рофекоксиб. Оба препарата продемонстрировали эффективность и безопасность, однако по анальгетическому и противовоспалительному действию лорноксикам статистически значимо превосходил рофекоксиб [34].

Работы, посвященные изучению эффективности лорноксикама при РА, немногочисленны. Так, в исследовании І. Caruso и соавт. [35] (n=316) лорноксикам в дозе 12 мг/сут был сопоставим по эффективности с диклофенаком 150 мг/сут к концу 3-й недели лечения.

НПВП способны вызывать широкий спектр класс-специфических НЯ со стороны многих жизненно важных органов и систем организма. Учитывая повсеместное использование НПВП и высокую коморбидность у пациентов старших возрастных групп, НПВП-индуцированные осложнения рассматриваются как серьезная медицинская и социальная проблема.

Высокая безопасность лорноксикама имеет хорошую доказательную базу. В 2009 г. Ј. Pleiner и соавт. [36] был опубликован первый метаанализ 50 исследований (10 520 пациентов, участвовавших в клинических исследованиях II—IV фазы с 1988 по 2005 г.), в котором сравнивались НЯ при использовании лорноксикама и других НПВП (диклофенак, ибупрофен, напроксен и др.), опиоидов (морфин) и плацебо.

Показано, что риск возникновения НЯ у пациентов, получавших лорноксикам и плацебо, был сопоставим, различия по этому показателю с другими НПВП также оказались статистически незначимыми. Так, все зарегистрированные НЯ в группе лорноксикама отмечены в 30,6% случаев, в группе других НПВП — в 29,8%, в группе плацебо — в 21,3%, НЯ со стороны ЖКТ — в 16,46; 16,49 и 9,48% соответственно. Сделан вывод, что использование лорноксикама ассоциируется со значительно более низким риском НЯ, чем применение опиоидов, и не увеличивает этот риск по сравнению с другими НПВП и плацебо.

В 2016 г. L. Parada и соавт. [37] представили результаты 60 сравнительных исследований (6420 пациентов получали лорноксикам, 1192- плацебо и 3770- анальгетик сравнения). Все НЯ были зарегистрированы у 21% пациентов группы лорноксикама, НЯ со стороны ЖКТ — у 14% (в группе плацебо — у 8%). Показано, что лорноксикам (n=1287) характеризовался меньшим риском гастроинтестинальных НЯ по сравнению с другими НПВП (n=1010; ОШ 0.78; 95% ДИ 0.64-0.96; p=0.017).

Дополнительным фактором риска развития НЯ при назначении НПВП является пожилой возраст (65 лет и более). В связи с этим важно отметить сопоставимость частоты всех НЯ и НЯ со стороны ЖКТ на фоне терапии лорноксикамом у лиц моложе и старше 65 лет: ОШ - 0,96 (95% ДИ 0,83- 1,12; p=0,61) и ОШ - 1,04 (95% ДИ 0,86-1,26; p=0,70) соответственно [36].

В настоящее время осложнения со стороны ССС рассматриваются как ведущая проблема, связанная с применением НПВП. В большинстве случаев использование этих препаратов отягощает течение уже имеющихся кардиоваскулярных заболеваний, способствуя их прогрессированию и дестабилизации, тем самым существенно повышая риск развития кардиоваскулярных катастроф — инфаркта миокарда, ишемического инсульта и внезапной коронарной смерти.

В программе SOS (Safety of Non-steroidal Anti-inflammatory Drugs), посвященной изучению популяционного риска серьезных осложнений НПВП, были оценены частота ишемического инсульта, инфаркта миокарда и число госпитализаций, связанных с сердечной недостаточностью. Анализ этих данных показал, что терапия лорноксикамом не ассоциировалась с повышением риска развития указанных состояний [38].

Российские исследования подтверждают эффективность и хорошую переносимость лорноксикама у больных ОА. Так, в 30-дневное исследование Ш.А. Темиркуловой и соавт. [39] было включено 38 женщин с длительностью заболевания от 5 до 15 лет со II—III рентгенологической стадией ОА и артериальной гипертензией давностью более 5 лет. Пациентки 1-й группы (n=20) получали лорноксикам 16 мг/сут, 2-й группы (n=18) — среднесуточные дозы диклофенака. В обеих группах отмечена положительная динамика индекса Лекена и острофазовых показателей, в 1-й группе суточное мониторирование не выявило повышения АД относительно исходных цифр, в то время как во 2-й группе требовалась дополнительная коррекция АД.

А.Л. Верткин и соавт. [40] оценили профиль безопасности лорноксикама у 60 пациентов 40—70 лет с ОА (хроническая боль ≥40 баллов по ВАШ) и кардиоваскулярной патологией (различные формы ишемической болезни сердца, артериальная гипертензия или их сочетание). В течение 12 мес на-

блюдения у пациентов, принимавших лорноксикам, в отличие от пациентов, получавших диклофенак натрия, зарегистрировано двукратное снижение частоты НПВП-гастропатии, отсутствие динамики уровня АД, а также прирост толщины задней стенки левого желудочка. Кроме того, по данным магнитно-резонансной томографии на фоне применения лорноксикама за 12 мес наблюдения не изменилась толщина хряща КС.

Исследование И.Г. Хрипуновой и соавт. [41], которое продолжалось 3 нед, включало 30 пациентов с ОА: 21 женщина и 9 мужчин в возрасте 40-70 лет, боль по ВАШ ->60 мм, в 75% случаев имелись признаки синовита. Через 7 дней после начала лечения лорноксикамом 16 мг/сут у 60% пациентов отмечено уменьшение боли, а к концу наблюдения интен-

сивность боли в покое и при движении составляла уже 30—40 мм по ВАШ. Проявления синовита были купированы у всех больных. Ни в одном случае не потребовалось отмены препарата.

Таким образом, результаты многочисленных клинических исследований свидетельствуют о высокой эффективности лорноксикама в лечении боли при ревматических заболеваниях. По анальгетическому эффекту лорноксикам сопоставим с другими НПВП и наркотическими анальгетиками или превосходит их. Безопасность препарата имеет весомую доказательную базу. Наличие трех лекарственных форм лорноксикама существенно облегчает выбор препарата для купирования боли у пациентов в реальной клинической практике.

ЛИТЕРАТУРА/REFERENCES

1. Яхно НН, редактор. Боль. Практическое руководство. Москва: МЕДпресс-информ; 2022

Yakhno NN, editor. Pain. Practical guide. Moscow: MEDpress-inform; 2022.

- 2. Насонов ЕЛ, Яхно НН, Каратеев АЕ и др. Общие принципы лечения скелетномышечной боли: междисциплинарный консенсус. Научно-практическая ревматология. 2016;54(3):247-265.
- Nasonov EL, Yakhno NN, Karateev AE, et al. General principles of musculoskeletal pain treatment: interdisciplinary consensus. *Nauchno-prakticheskaya revmatologiya*. 2016;54(3):247-265. (In Russ.).
- 3. Khalil NA, Ahmed EM, Tharwat T, Mahmoud Z. NSAIDs between past and present; a long journey towards an ideal COX-2 inhibitor lead. *RSC Adv.* 2024 Sep25;14(42): 30647-30661. doi: 10.1039/d4ra04686b.
- 4. Pota V, Coppolino F, Barbarisi A, et al. Pain in Intensive Care: A Narrative Review. *Pain Ther.* 2022 Jun;11(2):359-367. doi: 10.1007/s40122-022-00366-0.
- 5. Yang Z, Mathieson S, Kobayashi S, et al. Prevalence of Nonsteroidal Antiinflammatory Drugs Prescribed for Osteoarthritis: A Systematic Review and Meta-Analysis of Observational Studies. *Arthritis Care Res (Hoboken)*. 2023 Nov;75(11):2345-2358. doi: 10.1002/acr.25157.
- 6. Ju Z, Li M, Xu J, et al. Recent development on COX-2 inhibitors as promising antiinflammatory agents: The past 10 years. *Acta Pharm Sin B*. 2022 Jun;12(6):2790-2807. doi: 10.1016/j.apsb.2022.01.002.
- 7. Каратеев АЕ, Алейникова ТЛ. Эйкозаноиды и воспаление. Современная ревматология. 2016;10(4):73-86.
- Karateev AE, Aleinikova TL. Eicosanoids and inflammation. *Sovremennaya Revmatologiya* = *Modern Rheumatology Journal*. 2016;10(4): 73-86. (In Russ.). doi: 10.14412/1996-7012-2016-4-73-86.
- 8. Westman M, Korotkova M, af Klint E, et al. Expression of microsomal prostaglandin E synthase 1 in rheumatoid arthritis synovium.

- *Arthritis Rheum.* 2004 Jun;50(6):1774-80. doi: 10.1002/art.20286.
- 9. Korotkova M, Jakobsson PJ. Microsomal prostaglandin e synthase-1 in rheumatic diseases. *Front Pharmacol*. 2011 Jan 20;1:146. doi: 10.3389/fphar.2010.00146
- 10. Korotkova M, Westman M, Gheorghe KR, et al. Effects of antirheumatic treatments on the prostaglandin E2 biosynthetic pathway. *Arthritis Rheum.* 2005 Nov;52(11):3439-47. doi: 10.1002/art.21390.
- 11. Kojima F, Naraba H, Miyamoto S, et al. Membrane-associated prostaglandin E synthase-1 is upregulated by proinflammatory cytokines in chondrocytes from patients with osteoarthritis. *Arthritis Res Ther.* 2004;6(4): R355-65. doi: 10.1186/ar1195.
- 12. Gheorghe KR, Thurlings RM, Westman M, et al. Prostaglandin E2 synthesizing enzymes in rheumatoid arthritis B cells and the effects of B cell depleting therapy on enzyme expression. *PLoS One*. 2011 Jan 27; 6(1):e16378. doi: 10.1371/journal.pone.
- 13. Каратеев АЕ, Лила АМ, Мазуров ВИ и др. Консенсус экспертов 2024: рациональное использование нестероидных противовоспалительных препаратов. Современная ревматология. 2025; 19(Прил. 1):1-40.
- Karateev AE, Lila AM, Mazurov VI, et al. Expert consensus 2024: rational use of non-steroidal anti-inflammatory drugs. *Sovremennaya revmatologiya = Modern Rheumatology Journal*. 2025;19(S1):1-40. (In Russ.). doi: 10.14412/1996-7012-2025-1S-1-40 14. Samuelsson B, Morgenstern R, Jakobsson PJ. Membrane prostaglandin E synthase-1: a novel therapeutic target. *Pharmacol Rev*. 2007 Sep;59(3):207-24. doi: 10.1124/pr.59.3.1.
- 15. Gans KR, Galbraith W, Roman RJ, et al. Anti-inflammatory and safety profile of DuP 697, a novel orally effective pros taglandin synthesis inhibitor. *J Pharmacol Exp Ther*. 1990 Jul;254(1):180-7.
- 16. Lombardino JG, Wiseman EH,

- McLamore WM. Synthesis and antiinflammatory activity of some 3-carboxamides of 2-alkyl-4-hydroxy 2H21,2-benzothiazine 1,1-dioxide. *J Med Chem.* 1971 Dec;14(12): 1171-5. doi: 10.1021/jm00294a008.

 17. Berg J, Fellier H, Christoph T, et al. The analgesic NSAID lornoxicam inhibits cyclooxygenase (COX)-1/-2, inducible nitric oxide synthase (iNOS), and the formation of interleukin (IL)-6 in vitro. *Inflamm Res.* 1999 Jul;48(7):369-79. doi: 10.1007/s00011 0050474.
- 18. Radhofer-Welte S, Dittrich P, Simin M, Branebjerg PE. Comparative bioavailability of lornoxicam as single doses of quick-release tablet, standard tablet and intramuscular injection: a randomized, open-label, crossover phase I study in healthy volunteers. *Clin Drug Investig.* 2008;28(6):345-51. doi: 10.2165/00044011-200828060-00002.
- 19. Ankier SI, Brimelow AE, Crome P, et al. Chlortenoxicam pharmacokinetics in young and elderly human volunteers. *Postgrad Med J*. 1988 Oct;64(756):752-4. doi: 10.1136/pgmj. 64.756.752.
- 20. Berg J, Fellier H, Christoph T, et al. The analgesic NSAID lornoxicam inhibits cyclooxygenase (COX)-1/-2, inducible nitric oxide synthase (iNOS), and the formation of interleukin (IL)-6 in vitro. *Inflamm Res.* 1999 Jul;48(7):369-79. doi: 10.1007/s0001100 50474.
- 21. Parada L, Marstein JP, Danilov A. Tolerability of the COX-1/COX-2 inhibitor lornoxicam in the treatment of acute and rheumatic pain. *Pain Manag.* 2016 Oct;6(5):445-54. doi: 10.2217/pmt.16.7.
- 22. Arfe A, Scotti L, Varas-Lorenzo C, et al. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. *BMJ*. 2016 Sep 28:354:i4857. doi: 10.1136/bmj.i4857. 23. Gorsky VA, Agapov MA, Khoreva MV, et al. The effect of lornoxicam on TLR2 and TLR4 messenger RNA expression and tumor necrosis factor-α, interleukin-6, and interleukin-8 secretion in patients with systemic

complications of acute pancreatitis. *Pancreas*. 2015 Jul;44(5):824-30. doi: 10.1097/MPA. 00000000000000344.

24. Korotkova M, Jakobsson PJ. Characterization of Microsomal Prostaglandin E Synthase 1 Inhibitors. *Basic Clin Pharmacol Toxicol.* 2014 Jan;114(1):64-9. doi: 10.1111/bcpt.12162.

25. Tamasi G, Bernini C, Corbini G, et al. Synthesis, spectroscopic and DFT structural characterization of two novel ruthenium(III) oxicam complexes. In vivo evaluation of antiinflammatory and gastric damaging activities. J Inorg Biochem. 2014 May:134:25-35. doi: 10.1016/j.jinorgbio.2014.01.011. 26. Roy S, Banerjee R, Sarkar M. Direct binding of Cu(II)-com plexes of oxicam NSAIDs with DNA backbone. J Inorg Biochem. 2006 Aug;100(8):1320-31. doi: 10.1016/j.jinorgbio.2006.03.006. 27. Ritland SR, Gendler SJ. Chemoprevention of intestinal adenomas in the ApcMin mouse by piroxicam: kinetics, strain effects and resistance to chemosuppression. Carcinogenesis. 1999 Jan;20(1):51-8. doi: 10.1093/ carcin/20.1.51.

28. Tasaki Y. Yamamoto J. Omura T. et al. Oxicam structure in non-steroidal anti-inflammatory drugs is essential to exhibit Aktmediated neuroprotection against 1-methyl-4-phenyl pyridinium induced cytotoxicity. Eur J Pharmacol. 2012 Feb 15;676(1-3):57-63. doi: 10.1016/j.ejphar.2011.11.046. 29. Radhofer-Welte S, Dittrich P, Simin M, Branebjerg PE. Comparative bioavailability of lornoxicam as single doses of quick-release tablet, standard tablet and intramuscular inj-ection: a randomized, open-label, crossover phase I study in healthy volunteers. Clin Drug Investig. 2008;28(6):345-51. doi: 10.2165/00044011-200828060-00002. 30. Клинические рекомендации «Скелетно-мышечные (неспецифические) боли в нижней части спины», МЗ РФ, 2023 год. Clinical guidelines "Musculoskeletal (nonspecific) pain in the lower back", Ministry of

Health of the Russian Federation, 2023. 31. Berry H, Bird HA, Black C, et al. A double-blind, multicentre, placebo controlled trial of lornoxicam in patients with osteoarthritis of the hip and knee. Ann Rheum Dis. 1992 Feb: 51(2):238-42. doi: 0.1136/ard.51.2.238. 32. Kidd B, Frenzel W. A multicenter randomized double blind study comparing lornoxicam with diclofenac in osteoarthritis. J Rheumatol. 1996 Sep;23(9):1605-11. 33. Goregaonkar A, Mathiazhagan KJ, Shah RR, et al. Comparative assessment of the effectiveness and tolerability of lornoxicam 8 mg BID and diclofenac 50 mg TID in adult indian patients with osteoarthritis of the hip or knee: A 4-week, double-blind, randomized, comparative, multicenter study. Curr Ther Res Clin Exp. 2009 Feb;70(1):56-68. doi: 10.1016/j.curtheres.2009.02.006. 34. Rose P, Steinhauser C. Comparison of

34. Rose P, Steinhauser C. Comparison of Lornoxicam and Rofecoxib in Patients with Activated Osteoarthritis (COLOR Study). *Clin Drug Investig*, 2004;24(4):227-36. doi: 10.2165/00044011-200424040-00004.

35. Caruso I, Montrone F, Boari L, et al. Lornoxicam versus diclofenac in rheumatoid arthritis: a double-blind, multicenter study. *Adv Ther.* 1994;11(3):132-8.

36. Pleiner J, Nell G, Branebjerg PE, et al. Safety of lornoxicam: an interim meta-analysis of comparative clinical trials. *Eur J Pain*. 2009;13(Suppl 1):191. doi: 10.1016/S1090-3801(09)60662-5

37. Parada L, Marstein JP, Danilov A. Tolerability of the COX-1/COX-2 inhibitor lornoxicam in the treatment of acute and rheumatic pain. *Pain Manag.* 2016 Oct;6(5):445-54. doi: 10.2217/pmt.16.7.

38. Schink T, Kollhorst B, Varas Lorenzo C, et al. Risk of ischemic stroke and the use of individual non-steroidal anti-inflammatory drugs: A multi-country European database study within the SOS Project. *PLoS One*. 2018 Sep 19;13(9):e0203362. doi: 10.1371/journal.pone.0203362.

39. Темиркулова ША, Имашева СС, Жаг-

марова ЛК, Насырова НЗ. Опыт применения ксефокама при лечении остеоартроза у пациентов с артеральной гипертонией (АГ). Научно-практическая ревматология. 2006;(2):114.

Temirkulova ShA, Imasheva SS, Zhagmarova LK, Nasyrova NZ. Experience of using xefocam in the treatment of osteoarthritis in patients with arterial hypertension (AH). *Nauchno-prakticheskaya revmatologiya*. 2006;(2): 114. (In Russ.).

40. Верткин АЛ, Наумов АВ, Семенов ПА и др. Оценка безопасности применения лорноксикама и диклофенака натрия в общемедицинской практике. Клиническая Геронтология. 2009;15(2):21-6.

Vertkin AL, Naumov AV, Semenov PA, et al. Safety assessment of the use of lornoxicam and diclofenac sodium in general medical practice. *Klinicheskaya Gerontologiya*. 2009; 15(2):21-6. (In Russ.).

41. Хрипунова ИГ, Хрипунова АА, Мнацаканян СГ. Ксефокам при купировании болевого синдрома у пацентов с остеоартрозом (ОА). Научно-практическая ревматология. 2006;(2):119. Khripunova IG, Khripunova AA, Mnatsakanyan SG. Xefocam for pain relief in patients with osteoarthritis (ОА). Nauchno-prakticheskaya revmatologiya. 2006;(2):119. (In Russ.).

42. Ковальчук ВВ, Ефимов МА. Сравнительная характеристика эффективности и переносимости кратких курсов терапии различными нестероидными противовоспалительными препаратами при лечении пациентов с дорсалгиями. Журнал неврологии и психиатрии им. С.С. Корсакова. 2010;110(1):55-58.

Koval'chuk VV, Efimov MA. Comparative characteristics of the efficacy and tolerability of short courses of therapy with various non-steroidal anti-inflammatory drugs in the treatment of patients with dorsalgia. *Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova*. 2010;110(1):55-58. (In Russ.).

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 02.07.2025/14.09.2025/17.09.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Статья спонсируется компанией «Нижфарм». Конфликт интересов не повлиял на результаты исследования. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article is sponsored by NIZHPHARM. The conflict of interest has not affected the results of the investigation. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Алексеева Л.И. https://orcid.org/0000-0001-7017-0898 Pаскина Т.А. https://orcid.org/0000-0002-5804-4298 Таскина Е.А. https://orcid.org/0000-0001-8218-3223 Лила А.М. https://orcid.org/0000-0002-6068-3080

Влияние мясных продуктов на уровень мочевой кислоты и риск развития подагры: обзор современных данных. Часть 1

Желябина О.В.¹, Елисеев М.С.¹, Чикина М.Н.¹, Кузьмина Я.И.¹, Лила А.М.^{1,2}

¹ΦГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва; ²ΦГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва

¹Россия, 115522, Москва, Каширское шоссе, 34A; ²Россия, 125993, Москва, ул. Баррикадная, 2/1, стр. 1

В первой части обзора анализируется влияние красного мяса, мясных продуктов, субпродуктов и альтернативных источников белка, включая искусственное мясо, на уровень мочевой кислоты в сыворотке крови и риск развития подагры. На протяжении десятилетий мясные продукты, содержащие пурины, считались одним из основных факторов риска гиперурикемии (ГУ) и подагры. Однако новые исследования демонстрируют, что связь между потреблением мяса и развитием подагры далеко не столь однозначна, как считалось ранее. Авторы попытались ответить на вопрос, действительно ли полный отказ от этих продуктов необходим или можно найти баланс между питанием и контролем ГУ.

Ключевые слова: подагра; питание; мясные продукты; молочные продукты; овощи; фруктоза.

Контакты: Максим Сергеевич Елисеев; elicmax@yandex.ru

Для цитирования: Желябина ОВ, Елисеев МС, Чикина МН, Кузьмина ЯИ, Лила АМ. Влияние мясных продуктов на уровень мочевой кислоты и риск развития подагры: обзор современных данных. Часть 1. Современная ревматология. 2025;19(5):133—136. https://doi.org/10.14412/1996-7012-2025-5-133-136

Impact of meat products on serum uric acid levels and risk of gout: a review of current evidence. Part 1

Zhelyabina O.V.¹, Eliseev M.S.¹, Chikina M.N.¹, Kuzmina Ya.I.¹, Lila A.M.^{1,2}

¹V.A. Nasonova Research Institute of Rheumatology, Moscow; ²Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow

¹34A, Kashirskoe Shosse, Moscow 115522, Russia; ²2/1, Barrikadnaya Street, Build.1, Moscow 125993, Russia

The first part of this review analyzes the impact of red meat, meat products, meat by-products, and alternative protein sources, including artificial meat, on serum uric acid levels and the risk of developing gout. For decades, meat products rich in purines were considered among the main risk factors for hyperuricemia (HUA) and gout. However, recent studies suggest that the relationship between meat consumption and the development of gout is far less straightforward than previously thought. The authors attempt to address whether complete exclusion of these products is truly necessary, or whether a balance between diet and control of HUA can be achieved.

Keywords: gout; nutrition; meat products; dairy products; vegetables; fructose.

Contact: Maksim Sergeevich Eliseev; elicmax@yandex.ru

For citation: Zhelyabina OV, Eliseev MS, Chikina MN, Kuzmina YaI, Lila AM. Impact of meat products on serum uric acid levels and risk of gout: a review of current evidence. Part 1. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(5):133–136 (In Russ.). https://doi.org/10.14412/1996-7012-2025-5-133-136

Подагра: современные тенденции

Подагра остается одной из наиболее актуальных медицинских и социальных проблем в современном обществе. Это хроническое метаболическое заболевание, характеризующееся гиперурикемией (ГУ) с образованием кристаллов мочевой кислоты (МК) и их отложением в суставах, что приводит к развитию артрита и деструкции суставов [1]. Заболеваемость подагрой и ее распространенность растут, особенно в развитых странах, что сопряжено со значительными медицинскими и экономическими последствиями [2].

В последние десятилетия неуклонный рост заболеваемости отчасти связан с изменением образа жизни (употреблением большого количества продуктов, богатых пуринами, алкоголя, низкой физической активностью, избыточной массой тела) [3]. Подагра все чаще выявляется у лиц с ожирением, метаболическим синдромом (МС) и сахарным диабетом 2-го типа (СД 2-го типа). Поэтому эффективное ведение больных подагрой требует комплексного подхода, одним из компонентов которого является изменение образа жизни [3, 4].

Мочевая кислота (МК): метаболизм и биохимия

Образование МК – сложный многоступенчатый процесс, тесно связанный с метаболизмом пуриновых оснований, аденина и гуанина, которые являются главными компонентами нуклеиновых кислот – ДНК и РНК. Эти пуриновые основания играют ключевую роль в биохимических процессах клетки, включая синтез ДНК и РНК, что делает их жизненно важными для клеточного метаболизма и передачи генетической информации. Синтез пуриновых соединений в клетках организма включает ряд сложных биохимических реакций, катализируемых специфическими ферментами [5]. Пуриновые соединения в ходе метаболических процессов превращаются в МК. Образование МК проходит в несколько этапов и требует участия разных ферментов. Вначале пуриновые основания подвергаются дезаминированию, что приводит к синтезу гипоксантина, который под действием фермента ксантиноксидазы (КО) превращается в ксантин и далее в МК [6]. Этот процесс сопровождается выделением активных форм кислорода, и высокая активность фермента КО ведет к развитию окислительного стресса [7]. На активность КО и, следовательно, на уровень МК в крови влияют генетические факторы, также связаны с ГУ ожирение, инсулинорезистентность и метаболический синдром, хронические заболевания почек [6, 8]. Другие органы, такие как кишечник, также вносят вклад в баланс МК [9]. Существенное влияние на уровень МК оказывают и диетические факторы [6].

Влияние пуринов на уровень МК в организме

Пурины представляют собой натуральные вещества, содержащиеся во многих продуктах питания. В зависимости от влияния на уровень МК их можно разделить на три категории: высокоурикогенные, умеренно урикогенные и низкоурикогенные.

Высокоурикогенные пурины входят в состав продуктов, которые могут значительно повышать уровень МК в организме и вызывать обострение симптомов подагры. К таким продуктам относятся органы животных (печень, почки, мозг), определенные виды мяса и рыбы (говядина, сардины, анчоусы, устрицы, треска). Пациентам с подагрой рекомендуется ограничивать их в своем рационе.

Умеренно урикогенные пурины присутствуют в продуктах, которые оказывают менее значительное воздействие на уровень МК. Это некоторые виды рыбы (например, лосось, тунец), мясо птицы (курица, индейка), определенные овощи (шпинат, горошек, цветная капуста). Их употребление в небольших количествах допустимо при подагре, однако следует учитывать индивидуальные особенности и реакцию организма на эти продукты. Так, хотя повышение уровня МК в этих случаях не столь выражено, вероятность тригтерного влияния таких продуктов на развитие острых приступов артрита остается высокой [10].

Низкоурикогенные пурины содержатся в продуктах, которые влияют на уровень МК незначительно. Продукты этой категории включают большинство овощей и фруктов (например, яблоки, груши, цитрусовые), а также молочные продукты и злаки. Они могут составлять основу диеты пациентов с подагрой, поскольку не приводят к повышению уровня МК и могут способствовать поддержанию его в пределах нормы [11].

Изучение урикогенности различных пуринов и их воздействия на уровень МК имеет принципиальное значение

для разработки диетических рекомендаций. Пурины естественным образом встречаются во всех растительных продуктах. Было обнаружено, что по крайней мере 10-15 мг пурина на 100 г присутствует во всех растительных продуктах. Содержание пурина в животных источниках (например, мясо и рыба) обычно варьируется от ≈ 120 до >400 мг на 100 г, в то время как в растительных (большинство несоевых бобовых, зерновых, семян, фруктов и овощей) — от ≈ 7 до 70 мг/на 100 г. Однако некоторые растительные продукты (шпинат, щавель, фасоль) могут содержать более высокие концентрации пурина — 100-500 мг на 100 г [12].

Пациентам с подагрой и ГУ следует избегать употребления в больших количествах только тех продуктов, которые содержат максимальное количество пуринов (≥300 мг на 100 г), но таких продуктов не так много — это печень животных, молоки, печень морского черта, супы и бульоны (особенно порошковые), пивные дрожжи, сардины, в том числе сушеные, креветки, сублимированный тофу, сушеная соя [6, 13]. К ним можно отнести также петрушку, но в больших количествах ее употребление мало реально. Очевидно, что и большинство из указанных продуктов вряд ли будут основой пищевого рациона.

В то же время, хотя, например, в зерновых продуктах пуринов содержится намного меньше, они могут употребляться в больших объемах и их вклад в общее количество употребляемых пуринов может быть также высок. Таким образом, очевидно, что многократно снизить объем поступающих в организм пуринов нереально [6]. Однако, так как линейная зависимость между содержанием пуринов в продуктах питания и их урикогенностью часто отсутствует, оптимизировать диету следует исходя из урикогенности, а не механического подсчета содержания пуринов в пище.

В настоящем обзоре проанализировано влияния различных мясных продуктов и их заменителей на уровень МК и риск развития подагры на основе современных эпидемиологических и экспериментальных данных.

Красное и белое мясо

Красное мясо (говядина, свинина, баранина и др.) содержит большое количество пуринов и жиров, и его употребление способствует повышению уровня МК. Так, в метаанализе R. Li и соавт. [14] показано, что красное мясо в больших количествах увеличивает риск развития подагры (отношение шансов, ОШ 1,29; 95% доверительный интервал, ДИ 1,16-1,44). Белое мясо (курица и индейка) оказывает не столь выраженное влияние на уровень МК и риск развития подагры по сравнению с красным мясом и морепродуктами. В этом случае для верхнего квинтиля потребления белого мяса по сравнению с нижним квинтилем ОШ развития подагры составляет всего 1,12 (95% ДИ, 0,85-1,48), т. е. риск развития подагры статистически значимо не увеличивается. Таким образом, белое мясо может быть более приемлемым вариантом для пациентов с подагрой и ГУ, но его употребление все же следует контролировать [15].

Интересно, что, например, жирная свиная корейка является менее урикогенной, чем свиная вырезка [16]. Так же и говядина рибай превосходит говяжье филе по содержанию жира, но считается менее урикогенной. Следовательно, отдельные продукты могут быть более калорийными за счет большего содержания жира, но обладать меньшей урикогенностью из-за небольшого количества урикогенных гипоксантина и аденина [17].

Влияет на содержание пуринов, а значит, на уровень МК и способ обработки мяса. Приготовление его при высоких температурах (жарка или гриль) может привести к поступлению в организм большего количества пуринов по сравнению с другими методами приготовления (варка, тушение). Высокие температуры способствуют разложению белков и карбонизации жиров, что увеличивает количество пуринов в продукте. Так, жареное мясо содержит больше пуринов, чем вареное [18].

Искусственное мясо

Искусственное мясо представляет собой продукт, созданный из растительных белков или стволовых клеток животных, выращенных в лабораторных условиях. При необходимости контроля уровня МК у пациентов с ГУ искусственное мясо может иметь ряд преимуществ. Группа чешских исследователей оценила содержание пуринов (аденин, гуанин, гипоксантин и ксантин) на 100 г белка в 39 имеющихся в продаже заменителях мяса. Исследование показало, что в среднем этот показатель находился в диапазоне от низкого до умеренного — не более 150 мг на 100 г. Уровень пуринов на единицу белка в искусственном мясе оказался ниже, чем в трех мясных продуктах, использованных для сравнения: куриная печень, куриные ножки и говядина [19].

Рыба и морепродукты

Некоторые виды рыбы, такие как сардины, анчоусы и треска, также содержат большое количество пуринов. Например, в сардинах их концентрация (210,4 мг на 100 г) сопоставима с таковой во многих сортах мяса, а в сушеных анчоусах (1108,6 мг на 100 г) — намного превышает ее [6] .Так, и употребление нежирной рыбы было значимо связано с повышенным уровнем МК в сыворотке (p=0,012). Оценочное значение эффекта (β =1,079) предполагает, что для каждого увеличения употребления нежирной рыбы на 1 ед. происходит последующее повышение уровня МК в сыворотке на 1,079 ед. [20].

Вопрос о влиянии питания на уровень МК и риск развития подагры продолжает оставаться дискуссионным. На протяжении десятилетий мясные продукты, содержащие пурины, считались одним из основных факторов риска ГУ и подагры. Однако новые исследования демонстрируют, что связь между употреблением мяса и развитием подагры далеко не столь однозначна, как считалось ранее [21].

В ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой» проведена сравнительная оценка частоты и количества употребления мясных и рыбных продуктов у пациентов с бессимптомной ГУ (БГУ) и подагрой. В исследование было включено 112 взрослых пациентов, 57 (50,9%) из которых имели диагноз БГУ и 55 (49,1%) страдали подагрой. Пациенты были сопоставимы по полу и возрасту. Средний уровень сывороточной МК при подагре оказался статистически значимо выше, чем при БГУ (504,7 и 431 мкмоль/л соответственно; p=0,0003). Аналогично и уровень креатинина в группе подагры был выше $(103.8\pm30 \text{ и } 78.0\pm19.3 \text{ мкмоль/л соответственно;}$ р=0,005), что может свидетельствовать о более выраженных нарушениях функции почек у пациентов с подагрой. Анализ частоты употребления мясных продуктов показал, что в целом рацион пациентов с БГУ и подагрой существенно не различался. Некоторые пациенты употребляли мясные продукты, в том числе говядину и колбасные изделия, ежедневно до 2-3 раз, в то время как другие практически полностью отказались от мяса. Например, бутерброды с говядиной и продукты из баранины отсутствовали в рационе у 50 (47%) пациентов с БГУ и у 40 (37%) с подагрой (различия статистически незначимы). Подобная ситуация наблюдалась и в отношении других видов мяса, включая свинину, куриное мясо и мясные полуфабрикаты. Более того, четверть всех пациентов практически не употребляла рыбу и морепродукты, при этом также не выявлено различий между группами [22].

Таким образом, полученные нами данные пилотного исследования не позволяют рассматривать употребление мяса как фактор, определяющий статус ГУ или способствующий трансформации БГУ в подагру. Эти данные косвенно подтверждает гипотезу о том, что диета, хотя и влияет на уровень МК, не является ключевым триггером развития подагры. Вероятно, питание оказывает большее воздействие на сопутствующие кардиометаболические заболевания, что подчеркивает необходимость пересмотра парадигмы немедикаментозного лечения подагры.

Заключение. Настоящий обзор демонстрирует неоднозначность влияния мясных продуктов на уровень МК, что требует дальнейших исследований, направленных на учет индивидуальных факторов риска.

ЛИТЕРАТУРА/REFERENCES

- 1. Елисеев МС. Подагра: руководство для врачей. Москва: ГЭОТАР-Медиа; 2025. 200 с.
- Eliseev MS. Gout: a guide for doctors. Moscow: GEOTAR-Media; 2025. 200 p.
 2. Han T, Chen W, Qiu X, et al. Epidemiology of gout Global burden of disease research from 1990 to 2019 and future trend predictions. *Ther Adv Endocrinol Metab.* 2024 Mar 4: 15:20420188241227295. doi: 10.1177/
- 3. Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. *Nat Rev Rheumatol.* 2020 Jul;16(7):380-390. doi: 10.1038/s41584-020-0441-1.

20420188241227295.

4. Елисеев МС. Рекомендации Американской коллегии ревматологов (2020 г.) по

- ведению больных подагрой: что нового и что спорно. Научно-практическая ревматология. 2021;59(2):129-133.
- Eliseev MS. Recommendations of the American College of Rheumatology (2020) on the management of gout patients: what's new and what's controversial. *Nauchno-prakticheskaya revmatologiya*. 2021;59(2):129-133.
- 5. Wu X, You C. The biomarkers discovery of hyperuricemia and gout: proteomics and metabolomics. *PeerJ*. 2023 Jan 6:11:e14554. doi: 10.7717/peerj.14554.
- 6. Kaneko K, Aoyagi Y, Fukuuchi T, et al. Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia. *Biol Pharm Bull.* 2014;37(5):709-21. doi: 10.1248/bpb.b13-00967.

- 7. Aziz N, Jamil RT. Biochemistry, Xanthine Oxidase. In: StatPearls. Treasure Island: Stat-Pearls Publishing; 2023.
- 8. Елисеев МС, Барскова ВГ. Метаболический синдром при подагре. Вестник Российской академии медицинских наук. 2008;(6):29-32. Eliseev MS, Barskova VG. Metabolic syndrome in gout. Vestnik Rossiiskoi akademii meditsinskikh nauk. 2008;(6): 29-32. (In Russ.).
- 9. Hosomi A, Nakanishi T, Fujita T, Tamai I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. *PLoS One*. 2012;7(2):e30456. doi: 10.1371/journal. pone.0030456.
- 10. Flynn TJ, Cadzow M, Dalbeth N, et al. Positive association of tomato consumption with serum urate: support for tomato con-

sumption as an anecdotal trigger of gout flares. *BMC Musculoskelet Disord*. 2015 Aug 19:16:196. doi: 10.1186/s12891-015-0661-8. 11. Helget LN, Mikuls TR. Environmental Triggers of Hyperuricemia and Gout. *Rheum Dis Clin North Am*. 2022 Nov;48(4):891-906. doi: 10.1016/j.rdc.2022.06.009.

12. Jakse B, Jakse B, Pajek M, et al. Uric Acid and Plant-Based Nutrition. *Nutrients*. 2019 Jul 26;11(8):1736. doi: 10.3390/nu11081736. 13. Yamanaka H; Japanese Society of Gout and Nucleic Acid Metabolism. Japanese guideline for the management of hyperuricemia and gout: second edition. *Nucleosides Nucleotides Nucleic Acids*. 2011 Dec; 30(12):1018-29. doi: 10.1080/15257770. 2011.596496.

14. Li R, Yu K, Li C. Dietary factors and risk of gout and hyperuricemia: a meta-analysis and systematic review. *Asia Pac J Clin Nutr.* 2018;27(6):1344-1356. doi: 10.6133/apjcn. 201811 27(6).0022.

15. Choi HK, Atkinson K, Karlson EW, et al. Purine-rich foods, dairy and protein intake, and the risk of gout in men. *N Engl J Med*.

2004 Mar 11;350(11):1093-103. doi: 10.1056/ NEJMoa035700.

16. Rong S, Zou L, Zhang Y, et al. Determination of purine contents in different parts of pork and beef by high performance liquid chromatography. Food Chem. 2015 Mar 1:170: 303-7. doi: 10.1016/j.foodchem.2014.08.059. 17. Yuan J, Yang C, Cao J, et al. Effects of Low Temperature-Ultrasound-Papain (LTUP) Combined Treatments on Purine Removal from Pork Loin and Its Influence on Meat Quality and Nutritional Value. Foods. 2024 Apr 16;13(8):1215. doi: 10.3390/foods13081215.

18. Wu M, Zhang W, Shen X, et al. Simultaneous Determination of Purines and Uric Acid in Chinese Chicken Broth Using TFA/FA Hydrolysis Coupled with HPLC-VWD. *Foods*. 2021 Nov 16;10(11):2814. doi: 10.3390/foods10112814.

19. Havlik J, Plachy V, Fernandez J, et al. Dietary purines in vegetarian meat analogues. *J Sci Food Agric*. 2010 Nov;90(14):2352-7.

doi: 10.1002/jsfa.4089. 20. Ou G, Wu J, Wang S, et al. Dietary Factors and Risk of Gout: A Two-Sample Mendelian Randomization Study. *Foods*. 2024 Apr 21;13(8):1269. doi: 10.3390/foods 13081269.

21. Danve A, Sehra ST, Neogi T. Role of diet in hyperuricemia and gout. *Best Pract Res Clin Rheumatol.* 2021 Dec;35(4):101723. doi: 10.1016/j.berh.2021.101723.

22. Елисеев МС, Желябина ОВ, Черемушкина ЕВ. Сравнение частоты и количества употребления в пищу мясных продуктов у пациентов с подагрой и асимптоматической гиперурикемией (предварительные данные пилотного исследования). Русский медицинский журнал. Медицинское обозрение. 2023;7(7):445-451.

Eliseev MS, Zhelyabina OV, Cheremushkina EV. Comparison of the frequency and quantity of meat consumption in patients with gout and asymptomatic hyperuricemia (preliminary data from a pilot study). *Russkii meditsinskii zhurnal. Meditsinskoe obozrenie.* 2023; 7(7):445-451. (In Russ.).

Поступила/отрецензирована/принята к печати Received/Reviewed/Accepted 14.04.2025/27.07.2025/25.08.2025

Заявление о конфликте интересов / Conflict of Interest Statement

Статья подготовлена в рамках фундаментальной научной темы «Разработка подходов к фенотипированию аутовоспалительных дегенеративных ревматических заболеваний на основе сравнительного изучения биохимических, иммунологических и генетических факторов, связанных с состоянием костной, хрящевой, мышечной и жировой тканей» № 125020501433-4.

Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.

The article was prepared within the framework of the fundamental research project "Development of approaches to phenotyping autoinflammatory degenerative rheumatic diseases based on a comparative study of biochemical, immunological, and genetic factors related to the state of bone, cartilage, muscle, and adipose tissues" (№ 125020501433-4).

The investigation has not been sponsored. There are no conflicts of interest. The authors are solely responsible for submitting the final version of the manuscript for publication. All the authors have participated in developing the concept of the article and in writing the manuscript. The final version of the manuscript has been approved by all the authors.

Желябина О.В. https://orcid.org/0000-0002-5394-7869 Елисеев М.С. https://orcid.org/0000-0003-1191-5831 Чикина М.Н. https://orcid.org/0000-0002-8777-7597 Кузьмина Я.И. https://orcid.org/0009-0006-6138-9736 Лила А.М. https://orcid.org/0000-0002-6068-3080

ЮБИЛЕЙ/ANNIVERSARY

Александру Михайловичу ЛИЛА - 65 лет

2025 г. отмечен знаменательной датой — исполнилось 65 лет Александру Михайловичу Лила, профессору, членукорреспонденту Российской академии наук (РАН), заслуженному врачу Российской Федерации, директору Научно-исследовательского института ревматологии им. В.А. Насоновой, заведующему кафедрой ревматологии Российской медицинской академии непрерывного профессионального образования, главному внештатному специалисту-ревматологу Минздрава России, члену президиума Ассоциации ревматологов России.

Жизненный путь Александра Михайловича неразрывно связан с отечественной медициной, наукой, военной службой и организацией здравоохранения. Его имя по праву стоит в ряду ведущих ученых и клиницистов, определяющих лицо современной российской ревматологии.

А.М. Лила родился на Украине, в Черкасской области, у него рано проявились такие качества, как целеустремленность и тяга к знаниям. Школу он окончил с золотой медалью и в 1978 г. поступил в Военно-медицинскую академию им. С.М. Кирова (ВМА им. С.М. Кирова), одно из самых престижных учебных заведений страны. Академию А.М. Лила также окончил с отличием в 1984 г., получив диплом врача. Этот этап положил начало его научной и клинической работе, в которой соединились традиции военной медицины и передовые исследования в области внутренних болезней.

Службу в вооруженных силах он проходил в должности врача поликлиники и ординатора терапевтического отделения Военного госпиталя ракетных войск стратегического назначения. Уже тогда молодой врач отличался внимательным отношением к пациентам, собранностью и стремлением к глубокому пониманию клинических процессов. С 1989 г. его научная судьба связана с адъюнктурой при кафедре гемато-

логии и клинической иммунологии ВМА им. С.М. Кирова. Научным руководителем Александра Михайловича стал выдающийся ученый, академик Вадим Иванович Мазуров, под чьим началом в 1992 г. он успешно защитил кандидатскую диссертацию по внутренним болезням.

Уже во время преподавания на кафедре ВМА им. С.М. Кирова, а затем в научных исследованиях А.М. Лила большое внимание уделял вопросам гематологических нарушений при ревматических заболеваниях. Итогом многолетних трудов стала докторская диссертация (1999 г.), посвященная клинико-иммунологическим особенностям течения анемии и гемобластозов у больных ревматологического профиля. Это исследование во многом предопределило дальнейшее развитие гематологической ревматологии в России.

В начале 2000-х годов Александр Михайлович продолжил педагогическую деятельность в Санкт-Петербургской медицинской академии последипломного образования. Здесь он занимал должности профессора кафедры терапии и ревматологии им. Э.Э. Эйхвальда, ученого секретаря, проректора по научной работе. Благодаря его усилиями были обновлены образовательные программы для врачей различных специальностей, внедрены новые формы тематического усовершенствования и дистанционные технологии, повысился уровень подготовки молодых специалистов в ординатуре.

Большую роль в профессиональной карьере Александра Михайловича сыграла организаторская работа. В 2011 г. он принимал непосредственное участие в объединении двух старейших образовательных заведений Санкт-Петербурга — Санкт-Петербургской медицинской академии последипломного образования и Санкт-Петербургской государственной медицинской академии им. И.И. Мечникова, — исполняя обязанности ректора до их объединения в Севе-

ЮБИЛЕЙ/ANNIVERSARY

ро-Западный государственный медицинский университет им. И.И. Мечникова. Этот проект стал важным шагом для всей системы медицинского образования страны, обеспечив преемственность традиций и современный уровень подготовки кадров. До 2017 г. во вновь созданном университете Александр Михайлович занимал должность проректора по учебной работе, профессора кафедры терапии и ревматологии им. Э.Э. Эйхвальда.

С 2017 г. его деятельность связана с Научно-исследовательским институтом ревматологии им. В.А. Насоновой. В 2018 г. А.М. Лила был избран директором института. С этого времени институт под его руководством укрепил позиции ведущего научного центра страны, ориентированного на инновации в диагностике и терапии ревматических заболеваний. Развивается научная и материальная база института, создана медицинская цифровая информационная система, в научные проекты внедряются элементы искусственного интеллекта, расширяются возможности генноинженерной биологической терапии. По инициативе Александра Михайловича коллективом института разрабатываются новые и совершенствуются имеющиеся национальные клинические рекомендации, стандарты оказания ревматологической помощи населению, внедряются современные программы лечения и профилактики ревматических заболеваний, многие из которых защищены патентами, ведется активное сотрудничество с международным научным сообществом. Профессор А.М. Лила является инициатором, организатором и участником многих российских и международных научных мероприятий (в том числе Европейского конгресса по ревматологии EULAR и крупнейшего ревматологического конгресса Азиатско-Тихоокеанской лиги ассоциаций ревматологов, APLAR), что позволяет достойно представлять отечественную ревматологию на мировом уровне.

С 2019 г. Александр Михайлович возглавляет кафедру ревматологии в Российской медицинской академии непрерывного профессионального образования. Клинической базой кафедры является Научно-исследовательский институт ревматологии им. В.А. Насоновой, что обеспечивает прямую интеграцию научной работы, образовательного процесса и практического здравоохранения.

Особое внимание А.М. Лила уделяет развитию российской школы ревматологов. Под его руководством формируется новое поколение специалистов, которых отличает основательная клиническая подготовка, исследовательская активность и вовлеченность в международное сотрудничество.

А.М. Лила — автор более 700 научных публикаций, включая монографии, руководства и учебники. Александр Михайлович является главным редактором журнала «Современная ревматология», научный рейтинг которого за годы его руководства значительно вырос, журнал вошел в международные базы данных и стал важной площадкой для распространения достижений отечественной науки. Профессор А.М. Лила — член редакционных советов журналов «Научнопрактическая ревматология», «Клиницист», «Клиническая медицина», «Ревматология Казахстана», «Вестник СЗГМУ им. И.И. Мечникова» и ряда других изданий, активно участвует в работе Ассоциации ревматологов России.

Заслуги Александра Михайловича получили высокую оценку. Он награжден медалями «70 лет Вооруженных Сил СССР» (1988), «За безупречную службу» III степени (1989), «За отличие в военной службе» II степени (1997), ему вручен нагрудный знак «Отличник здравоохранения» (2010), присвоены почетные звания «Почетный работник науки и высоких технологий Российской Федерации» (2020) и «Заслуженный врач Российской Федерации» (2022).

В 2022 г. А.М. Лила избран членом-корреспондентом РАН. В 2024 г. он был награжден орденом Пирогова за заслуги перед отечественной наукой, многолетнюю плодотворную деятельность и в связи с 300-летием со дня основания РАН, а также медалью «100 лет со дня рождения Н.Н. Бурденко» за создание лучшей академической школы отделения медицинских наук РАН, а в этом году — медалью «За безупречный труд и отличие» Министерства науки и высшего образования Российской Федерации. Эти награды свидетельствуют не только о высоком профессиональном признании, но и о значимости работы А.М. Лила для всей медицинской отрасли страны.

Сегодня Александр Михайлович продолжает активную деятельность как ученый, врач, педагог и организатор. Под его руководством российская ревматология занимает прочные позиции на международной арене, развивается научная школа, создаются условия для внедрения новых технологий в науку и практику отечественного здравоохранения.

Профессор А.М. Лила — крупный ученый, опытный врач, талантливый педагог, дальновидный руководитель. Одновременно он тонкий, доброжелательный и отзывчивый человек, который пользуется заслуженным авторитетом и уважением в профессиональном сообществе. Коллеги отмечают его чуткость, внимание к молодым специалистам, готовность поддержать и направить каждого, кто в этом нуждается. К нему всегда можно обратиться за помощью и советом, дверь его кабинета всегда открыта для коллег и учеников. А пациенты благодарны за профессионализм и заботу, за возможность получать помощь на самом высоком уровне.

От имени коллектива Научно-исследовательского института ревматологии им. В.А. Насоновой, профессионального сообщества ревматологов России и редакции журнала «Современная ревматология» искренние поздравляем дорогого Александра Михайловича с юбилеем! Ваш юбилей — не только личная дата, но и событие для всего медицинского сообщества. Ваш многолетний труд, выдающийся вклад в развитие медицины, формирование научной школы и забота о пациентах — достояние всей страны. Мы сердечно благодарим Вас за преданность делу и огромный вклад в развитие ревматологии как клинической и научной специальности. Желаем Вам крепкого здоровья, долголетия, творческих успехов, новых свершений и дальнейших успехов в Вашей разносторонней деятельности!

Коллектив Научно-исследовательского института ревматологии им. В.А. Насоновой, Ассоциация ревматологов России, редакция журнала «Современная ревматология»