Preview

Современная ревматология

Расширенный поиск

Mолекулярные основы новых подходов к терапии остеоартрита (часть I)

https://doi.org/10.14412/1996-7012-2021-4-7-12

Полный текст:

Аннотация

Остеоартрит (ОА) – наиболее распространенное заболевание лиц пожилого возраста, которое сопровождается болевым синдромом и повреждает все ткани сустава. ОА характеризуется прогрессирующей потерей суставного хряща, склеротическими изменениями субхондральной кости и образованием остеофитов. Деструкция хряща обусловлена резорбцией внеклеточного матрикса, который состоит преимущественно из коллагена II типа и протеогликана аггрекана. Избыточное расщепление коллагена II типа при ОА связано с повышением синтеза и активности металлопротеиназ и экспрессией провоспалительных цитокинов – интерлейкина 1β и фактора некроза опухолей α.
В настоящее время терапия ОА носит симптоматический характер, часто неэффективна и в ряде случаев сопровождаются неблагоприятными реакциями. Необходим поиск новых терапевтических подходов при ОА с использованием современных технологий, в том числе знаний о метаболических нарушениях, которые вызывают заболевание. В статье описываются перспективные методы лечения ОА: применение стволовых клеток, субклеточных структур и молекул-миметиков, основанные на современных представлениях о молекулярных и клеточных механизмах, которые нарушаются в ходе развития и прогрессирования заболевания.

Об авторах

Е. В. Четина
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

Елена Васильевна Четина

115522, Москва, Каширское шоссе, 34А



Г. А. Маркова
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

115522, Москва, Каширское шоссе, 34А



А. М. Лила
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования»
Россия

кафедра ревматологии

115522, Москва, Каширское шоссе, 34А
125993, Москва, ул. Баррикадная, 2/1, стр. 1



Литература

1. Лила АМ, Алексеева ЛИ, Таскина ЕА. Современные подходы к терапии остеоартрита с учетом обновленных международных рекомендаций. Русский медицинский журнал. Медицинское обозрение. 2019;3(11-2):48-52.

2. Mithoefer K, McAdams T, Williams RJ, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009 Oct;37(10):2053-63. doi: 10.1177/0363546508328414. Epub 2009 Feb 26.

3. Martincic D, Radosavljevic D, Drobnic M. Ten-year clinical and radiographic outcomes after autologous chondrocyte implantation of femoral condyles. Knee Surg Sports Traumatol Arthrosc. 2014 Jun;22(6):1277-83. doi: 10.1007/s00167-013-2778-3. Epub 2013 Nov 21.

4. Jo CH, Lee YG, Shin WH, et al. Intraarticular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014 May;32(5):1254-66. doi: 10.1002/stem.1634.

5. Freitag J, Bates D, Boyd R, et al. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy. A review. BMC Musculoskelet Disord. 2016 May 26;17:230. doi: 10.1186/s12891-016-1085-9.

6. Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol. 2013 Oct;9(10):584-94. doi: 10.1038/nrrheum.2013.109. Epub 2013 Jul 23.

7. Kim GB, Shon OJ. Current perspectives in stem cell therapies for osteoarthritis of the knee. Yeungnam Univ J Med. 2020 Jul;37(3): 149-58. doi: 10.12701/yujm.2020.00157. Epub 2020 Apr 13.

8. Buzhor E, Leshansky L, Blumenthal J, et al. Cell-based therapy approaches: the hope for incurable diseases. Regen Med. 2014;9(5):649-72. doi: 10.2217/rme.14.35.

9. Johnson MH, McConnell JM. Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol. 2004 Oct;15(5):583-97. doi: 10.1016/j.semcdb.2004.04.002.

10. Airenne KJ, Hu YC, Kost TA, et al. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther. 2013 Apr;21(4):739-49. doi: 10.1038/mt.2012.286. Epub 2013 Feb 26.

11. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143-7. doi: 10.1126/science.284.5411.143.

12. Vezina Audette R, Lavoie-Lamoureux A, Lavoie JP, Laverty S. Inflammatory stimuli differentially modulate the transcription of paracrine signaling molecules of equine bone marrow multipotent mesenchymal stromal cells. Osteoarthritis Cartilage. 2013 Aug; 21(8):1116-24. doi: 10.1016/j.joca.2013.05.004. Epub 2013 May 14.

13. Orozco L, Munar A, Soler R, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013 Jun 27;95(12):1535-41. doi: 10.1097/TP.0b013e318291a2da.

14. Wong KL, Lee KB, Tai BC, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up. Arthroscopy. 2013 Dec;29(12):2020-8. doi: 10.1016/j.arthro.2013.09.074.

15. Wakitani S, Okabe T, Horibe S, et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011 Feb;5(2): 146-50. doi: 10.1002/term.299.

16. Davatchi F, Abdollahi BS, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011 May;14(2): 211-5. doi: 10.1111/j.1756-185X.2011.01599.x. Epub 2011 Mar 4.

17. Davatchi F, Sadeghi Abdollahi B, Mohyeddin M, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum Dis. 2016 Mar;19(3):219-25. doi: 10.1111/1756-185X.12670. Epub 2015 May 20.

18. Medical Advisory Secretariat. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis. Ont Health Technol Assess Ser. 2005;5(6):1-57. Epub 2005 Apr 1.

19. Shapiro SA, Kazmerchak SE, Heckman MG, et al. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am J Sports Med. 2017 Jan;45(1):82-90. doi: 10.1177/0363546516662455. Epub 2016 Sep 30.

20. Lee WS, Kim HJ, Kim KI, et al. Intraarticular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl Med. 2019 Jun;8(6):504-11. doi: 10.1002/sctm.18-0122. Epub 2019 Mar 5.

21. Filardo G, Madry H, Jelic M, et al. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc. 2013 Aug;21(8): 1717-29. doi: 10.1007/s00167-012-2329-3. Epub 2013 Jan 11.

22. Kubosch EJ, Lang G, Furst D, et al. The potential for synovium-derived stem cells in cartilage repair. Curr Stem Cell Res Ther. 2018 Feb 23;13(3):174-84. doi: 10.2174/1574888X12666171002111026.

23. Sasaki A, Mizuno M, Ozeki N, et al. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. PLoS One. 2018 Aug 23;13(8):e0202922. doi: 10.1371/journal.pone.0202922. eCollection 2018.

24. Koga H, Muneta T, Ju YJ, et al. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells. 2007 Mar;25(3):689-96. doi: 10.1634/stem-cells.2006-0281. Epub 2006 Nov 30.

25. Shimomura K, Yasui Y, Koizumi K, et al. First-in-human pilot study of implantation of a scaffold-free tissue-engineered construct generated from autologous synovial mesenchymal stem cells for repair of knee chondral lesions. Am J Sports Med. 2018 Aug;46(10): 2384-93. doi: 10.1177/0363546518781825. Epub 2018 Jul 3.

26. Jin YZ, Lee JH. Mesenchymal stem cell therapy for bone regeneration. Clin Orthop Surg. 2018 Sep;10(3):271-8. doi: 10.4055/cios.2018.10.3.271. Epub 2018 Aug 22.

27. Klontzas ME, Kenanidis EI, Heliotis M, et al. Bone and cartilage regeneration with the use of umbilical cord mesenchymal stem cells. Expert Opin Biol Ther. 2015;15(11): 1541-52. doi: 10.1517/14712598.2015.1068755. Epub 2015 Jul 15.

28. Ha CW, Park YB, Chung JY, Park YG. Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model. Stem Cells Transl Med. 2015 Sep;4(9):1044-51. doi: 10.5966/sctm.2014-0264. Epub 2015 Aug 3.

29. Packer M. The Alchemist’s Nightmare: Might Mesenchymal Stem Cells That Are Recruited to Repair the Injured Heart Be Transformed Into Fibroblasts Rather Than Cardiomyocytes? Circulation. 2018 May 8; 137(19):2068-73. doi: 10.1161/CIRCULATIONAHA.117.032190.

30. Felsenfeld GA. Brief history of epigenetics. Cold Spring Harb Perspect Biol. 2014 Jan 1;6(1):a018200. doi: 10.1101/cshperspect.a018200.

31. Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019 Nov;20(11):675-91. doi: 10.1038/s41576-019-0158-7. Epub 2019 Aug 8.

32. Patop IL, Wü st S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019 Aug 15;38(16):e100836. doi: 10.15252/embj.2018100836. Epub 2019 Jul 25.

33. Zaiou M. circRNAs Signature as Potential Diagnostic and Prognostic Biomarker for Diabetes Mellitus and Related Cardiovascular Complications. Cells. 2020 Mar 9;9(3):659. doi: 10.3390/cells9030659.

34. Abbaszadeh-Goudarzi K, Radbakhsh S, Pourhanifeh MH, et al. Circular RNA and Diabetes: Epigenetic Regulator with Diagnostic role. Curr Mol Med. 2020; 20(7):516-26. doi: 10.2174/1566524020666200129142106.

35. Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7(2): e30733. doi: 10.1371/journal.pone.0030733. Epub 2012 Feb 1.

36. Liu Q, Zhang X, Hu X, et al. Circular RNA Related to the Chondrocyte ECM Regulates MMP13 Expression by Functioning as a MiR-136 'Sponge' in Human Cartilage Degradation. Sci Rep. 2016 Mar 2;6:22572. doi: 10.1038/srep22572.

37. Liu Q, Zhang X, Hu X, et al. Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis. Mol Ther Nucleic Acids. 2017 Jun 16;7:223-30. doi: 10.1016/j.omtn.2017.04.004. Epub 2017 Apr 12.

38. Yu CX, Sun S. An Emerging Role for Circular RNAs in Osteoarthritis. Yonsei Med J. 2018 May;59(3):349-55. doi: 10.3349/ymj.2018.59.3.349.

39. Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014 Jan;15(1):1-19. doi: 10.1093/bib/bbs075. Epub 2012 Nov 22.

40. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013 Mar 21;495(7441):384-8. doi: 10.1038/nature11993. Epub 2013 Feb 27.

41. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016 Apr;17(4):205-11. doi: 10.1038/nrm.2015.32. Epub 2016 Feb 24.

42. Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials: current status and future directions. Cancer Treat Rev. 2016 Nov;50:35-47. doi: 10.1016/j.ctrv.2016.08.004. Epub 2016 Aug 28.

43. Mianehsaz E, Mirzaei HR, MahjoubinTehran M, et al. Mesenchymal stem cellderived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther. 2019 Nov 21;10(1):340. doi: 10.1186/s13287-019-1445-0.

44. Mirzaei H, Sahebkar A, Jaafari MR, et al. Diagnostic and therapeutic potential of exosomes in cancer: the beginning of a new tale? J Cell Physiol. 2017 Dec;232(12):3251-60. doi: 10.1002/jcp.25739. Epub 2017 Apr 25.

45. Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Semin Cell Dev Biol. 2017 Jul;67:56-64. doi: 10.1016/j.semcdb.2016.11.008. Epub 2016 Nov 18.

46. Zhang S, Chu W, Lai R, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage. 2016 Dec; 24(12):2135-40. doi: 10.1016/j.joca.2016.06.022. Epub 2016 Jul 5.

47. Shipin Zhang, Kristeen Ye Wen Teo, et al. MSC Exosomes Alleviate Temporomandibular Joint Osteoarthritis by Attenuating Inflammation and Restoring Matrix Homeostasis. Biomaterials. 2019 Apr;200:35-47. doi: 10.1016/j.biomaterials.2019.02.006. Epub 2019 Feb 8.

48. Mohammadi Ayenehdeh J, Niknam B, Rasouli S, et al. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes. Immunol Lett. 2017 Aug;188:21-31. doi: 10.1016/j.imlet.2017.05.006. Epub 2017 May 12.

49. Saeedi Borujeni MJ, Esfandiary E, Taheripak G, et al. Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome. J Cell Biochem. 2018 Feb;119(2): 1257-72. doi: 10.1002/jcb.26271. Epub 2017 Aug 23.

50. Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017 Jan 1;7(1):180-95. doi: 10.7150/thno.17133. eCollection 2017.

51. Heldring N, Mäger I, Wood MJ, et al. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther. 2015 Aug;26(8): 506-17. doi: 10.1089/hum.2015.072. Epub 2015 Aug 3.

52. Nemirov D, Nakagawa Y, Sun Z, et al. Effect of Lubricin Mimetics on the Inhibition of Osteoarthritis in a Rat Anterior Cruciate Ligament Transection Model. Am J Sports Med. 2020 Mar;48(3):624-34. doi: 10.1177/0363546519898691. Epub 2020 Jan 31.

53. Gibor G, Ilan N, Journo S, et al. Heparanase is expressed in adult human osteoarthritic cartilage and drives catabolic responses in primary chondrocytes. Osteoarthritis Cartilage. 2018 Aug;26(8):1110-17. doi: 10.1016/j.joca.2018.05.013. Epub 2018 May 24.

54. Weksler-Zangen S, Mizrahi T, Raz I, Mirsky N. Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulinpotentiating agent: in vivo and in vitro studies. Br J Nutr. 2012 Sep;108(5):875-82. doi: 10.1017/S0007114511006167. Epub 2011 Dec 15.

55. Peansukmanee S, Vaughan-Thomas A, Carter SD, et al. Effects of hypoxia on glucose transport in primary equine chondrocytes in vitro and evidence of reduced GLUT1 gene expression in pathologic cartilage in vivo. J Orthop Res. 2009 Apr;27(4): 529-35. doi: 10.1002/jor.20772.

56. Afonso V, Champy R, Mitrovic D, et al. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007 Jul;74(4):324-9. doi: 10.1016/j.jbspin.2007.02.002. Epub 2007 May 24.

57. Coleman MC, Brouillette MJ, Andresen NS, et al. Differential Effects of Superoxide Dismutase Mimetics after Mechanical Overload of Articular Cartilage. Antioxidants (Basel). 2017 Nov 30;6(4):98. doi: 10.3390/antiox6040098.

58. Terkeltaub R, Johnson K, Murphy A, Ghosh S. Invited review: The mitochondrion in osteoarthritis. Mitochondrion. 2002 Feb; 1(4):301-19. doi: 10.1016/s1567-7249(01)00037-x.

59. Wolff KJ, Ramakrishnan PS, Brouillette MJ, et al. Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. J Orthop Res. 2013 Feb;31(2):191-6. doi: 10.1002/jor.22223. Epub 2012 Aug 28.

60. Goodwin W, McCabe D, Sauter E, et al. Rotenone prevents impact-induced chondrocyte death. J Orthop Res. 2010 Aug;28(8): 1057-63. doi: 10.1002/jor.21091.

61. Gavriilidis C, Miwa S, von Zglinicki T, et al. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 2013 Feb;65(2):378-87. doi: 10.1002/art.37782.


Для цитирования:


Четина Е.В., Маркова Г.А., Лила А.М. Mолекулярные основы новых подходов к терапии остеоартрита (часть I). Современная ревматология. 2021;15(4):7-12. https://doi.org/10.14412/1996-7012-2021-4-7-12

For citation:


Chetina E.V., Markova G.A., Lila A.M. Molecular basis for new approaches to therapy of osteoarthritis (part I). Modern Rheumatology Journal. 2021;15(4):7-12. (In Russ.) https://doi.org/10.14412/1996-7012-2021-4-7-12

Просмотров: 199


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)