Preview

Modern Rheumatology Journal

Advanced search

The role of the metabolic status of lymphocytes in the pathogenesis of rheumatoid arthritis

https://doi.org/10.14412/1996-7012-2021-5-26-32

Abstract

Objective: to study in dynamics metabolic changes in lymphocytes on the model of adjuvant-induced rheumatoid arthritis (RA) in warm-blooded animals.
Material and methods. The RA model was elicited by administering Freund's complete adjuvant (AF) to male Wistar rats. Lymphocyte metabolism was corrected with a mixture of citric and succinic acids, which was injected for 4 weeks (at doses of 17 and 88 mg/kg body weight) from the first day of model formation. Animals of the control group were injected subcutaneously with isotonic sodium chloride solution. The total number of leukocytes, the size of lymphocytes and the activity of lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH) in these cells were determined. Changes in the musculoskeletal system were assessed radiographically and actometrically in the «open field» model.
Results and discussion. In the first 2 weeks of the experiment in the model group, an increase in the level of leukocytes by 65% compared to the control (p=0.002) was noted, an increase in the activity of lymphocytes SDH by 51% and a decrease in the total («horizontal») mobility of animals by 30% were also revealed. Subsequently, the level of leukocytes decreased by 25%, the activity of LDH and SDH – by 38%, the radius of lymphocytes – by 14% (p<0.01). The action of carboxylic acids was dose-dependent: at the maximum dose, no statistically significant differences in the total number of leukocytes, LDH and SDH activity in lymphocytes, as well as their sizes were found between the group with adjuvant- induced RA and the control group.
Conclusion. In animals with adjuvant-induced RA, correction of the metabolic status of lymphocytes with a mixture of citric and succinic acids, which are key substrates of the Krebs cycle, led to a decrease in structural damage of musculoskeletal system and, as a consequence, to the maintenance of normal range of motion.

About the Authors

S. V. Skupnevsky
Institute for Biomedical Research, Vladikavkaz Scientific Center
Russian Federation

47, Pushkin Street, Vladikavkaz 362025



E. G. Pukhaeva
Institute for Biomedical Research, Vladikavkaz Scientific Center
Russian Federation

47, Pushkin Street, Vladikavkaz 362025



A. K. Badtiev
Institute for Biomedical Research, Vladikavkaz Scientific Center
Russian Federation

47, Pushkin Street, Vladikavkaz 362025



F. K. Rurua
Institute for Biomedical Research, Vladikavkaz Scientific Center
Russian Federation

47, Pushkin Street, Vladikavkaz 362025



F. E. Batagova
Institute for Biomedical Research, Vladikavkaz Scientific Center
Russian Federation

47, Pushkin Street, Vladikavkaz 362025



Zh. G. Farnieva
Institute for Biomedical Research, Vladikavkaz Scientific Center
Russian Federation

47, Pushkin Street, Vladikavkaz 362025



References

1. Silman AJ, Pearson JE. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 2002;4 Suppl 3(Suppl 3):S265-72. doi: 10.1186/ar578. Epub 2002 May 9.

2. http://www.revmo-nadegda.ru/sites/default/files/file_files/revmatoidnyy_artrit_versiya_2015.pdf

3. Jagpal A, Navarro-Millan I. Cardiovascular co-morbidity in patients with rheumatoid arthritis: a narrative review of risk factors, cardiovascular risk assessment and treatment. BMC Rheumatol. 2018 Apr 11;2:10. doi: 10.1186/s41927-018-0014-y.eCollection 2018.

4. Hsieh PH, Wu O, Geue C, et al. Economic burden of rheumatoid arthritis: a systematic review of literature in biologic era. Ann Rheum Dis. 2020 Jun;79(6):771-7. doi: 10.1136/annrheumdis-2019-216243. Epub 2020 Apr 3.

5. Mikhaylenko DS, Nemtsova MV, Bure IV, et al. Genetic Polymorphisms Associated with Rheumatoid Arthritis Development and Antirheumatic Therapy Response. Int J Mol Sci. 2020 Jul 11;21(14):4911. doi: 10.3390/ijms21144911.

6. Listing J, Gerhold K, Zink A. The risk of infections associated with rheumatoid arthritis, with its comorbidity and treatment. Rheumatology (Oxford). 2013 Jan;52(1):53-61. doi: 10.1093/rheumatology/kes305. Epub 2012 Nov 28.

7. Nikulina SYu, Chernova AA, Bol'shakova TYu, et al. Genes for predisposition to rheumatoid arthritis. Sibirskoe meditsinskoe obozrenie. 2014;(3):11-8. (in Russ.).

8. Nasonov EL, Nasonova VA, editors. Revmatologiya: natsional'noe rukovodstvo [Rheumatology. National guidelines]. Moscow: GEOTAR-Media; 2010. 720 p..

9. Hussain T, Tan B, Yin Y, et al. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid Med Cell Longev. 2016; 2016:7432797. doi: 10.1155/2016/7432797.Epub 2016 Sep 22.

10. Moro-Garcia MA, Mayo JC, Sainz RM, et al. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol. 2018 Mar 1;9:339.doi: 10.3389/fimmu.2018.00339. eCollection 2018.

11. Vladimirov YuA, Archakov AI. Perekisnoe okislenie lipidov v biologicheskikh membranakh [Lipid peroxidation in biological membranes]. Moscow: Nauka; 1972. 252 p.

12. Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016 Oct;28(5):514-24. doi: 10.1016/j.smim.2016.10.009.Epub 2016 Nov 4.

13. Sanchez-Lopez E, Cheng A, Guma M. Can Metabolic Pathways Be Therapeutic Targets in Rheumatoid Arthritis? J Clin Med. 2019 May 27;8(5):753. doi: 10.3390/jcm8050753.

14. Padda IS, Goyal A. Leflunomide. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. 2021 May 24.

15. Asquith DL, Miller AM, McInnes IB, et al. Animal models of rheumatoid arthritis. Eur J Immunol. 2009 Aug;39(8):2040-4. doi: 10.1002/eji.200939578.

16. Hong JI, Park IY, Kim HA. Understanding the Molecular Mechanisms Underlying the Pathogenesis of Arthritis Pain Using Animal Models. Int J Mol Sci. 2020 Jan 14;21(2):533. doi: 10.3390/ijms21020533.

17. Taranov OS, Yakubitskii SN, Nepomnyashchikh TS, et al. Adjuvantinduced arthritis in guinea pigs. Acta naturae. 2016;8(4):119-26. (in Russ.)

18. https://www.ncbi.nlm.nih.gov/books/NBK54050/

19. http://vnipchi.rospotrebnadzor.ru/s/203/files/ND/safety/95493_486.pdf

20. Badtiev AK, Skupnevskii SV, Pukhaeva EG, et al. The corrective effect of a mixture of citric and succinic acids in a model of induced autoimmune rheumatoid arthritis in rats. Sovremennye problemy nauki i obrazovaniya. 2020;(6):176. (In Russ.).

21. http://www.freepatent.ru/images/patents/100/2364868/patent-2364868.pdf

22. Sheibak VM, Pavlyukovets AYu. Biochemical heterogeneity of T-lymphocytes. Vestnik Vitebskogo gosudarstvennogo meditsinskogo universiteta. 2018;17(6):7-17. (In Russ.).

23. Lin AP, Anderson SL, Minard KI, et al. Effects of excess succinate and retrograde control of metabolite accumulation in yeast tricarboxylic cycle mutants. J Biol Chem. 2011 Sep 30;286(39):33737-46. doi: 10.1074/jbc.M111.266890. Epub 2011 Aug 12.

24. Tsyganskii RA. Fiziologiya i patologiya zhivotnoi kletki [Physiology and pathology of the animal cell]. Saint-Petersburg, Moscow, Krasnodar: Lan'; 2009. 172 p.


Review

For citations:


Skupnevsky SV, Pukhaeva EG, Badtiev AK, Rurua FK, Batagova FE, Farnieva ZG. The role of the metabolic status of lymphocytes in the pathogenesis of rheumatoid arthritis. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2021;15(5):26-32. (In Russ.) https://doi.org/10.14412/1996-7012-2021-5-26-32

Views: 773


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)