Preview

Modern Rheumatology Journal

Advanced search

Risk factors for type 2 diabetes mellitus in patients with gout: results from a prospective study

https://doi.org/10.14412/1996-7012-2022-1-52-59

Abstract

The development of type 2 diabetes mellitus (DM) (DM2) in patients with gout can be influenced by both conventional and directly linked to gout risk factors (RFs).
Objective: to identify RFs for the development of DM2 in patients with gout, including those directly associated with gout, based on long-term prospective follow-up data.
Patients and methods. The study included 444 patients with gout older than 18 years (49 women, 395 men) who did not have DM. The followup period ranged from 2 to 8 years. The studied RFs for DM2 were: gender, age, family history of DM2, obesity, alcohol consumption >20 units per week, insufficient physical activity, unbalanced nutrition, history of hyperglycemia, coronary heart disease (CHD), arterial hypertension (AH), chronic heart failure, antihypertensive drugs, diuretics, glucocorticoids (GCs), urate-lowering therapy, serum levels of cholesterol, triglycerides, CRP, uric acid (UA), glucose, creatinine, glomerular filtration rate <60 ml/min/1.73 m2, the presence of tophi, >4 attacks of gout per year, ≥5 affected joints during the disease.
Results and discussion. DM2 developed in 108 (24.3%) patients. These patients were older, had a family history of DM, more often received antihypertensive therapy, diuretics, and glucocorticoids (49.1; 73.1; 27.8 and 47.2%, respectively) than patients who did not develop DM2 (25.6; 50.5; 14.8 and 36.4%, respectively; p<0.05 for all cases). In addition, patients with DM2 were more likely to have subcutaneous tophi (59.3% versus 30.0%; p=0.001), among them there were more individuals (67.6% versus 31.6%; p=0.001) with frequent attacks of arthritis (>4 attacks per year). UA levels >480 and 600 μmol/l were also significantly more frequent (p=0.0002) in patients with DM2 (71.3 and 34.3%, respectively).
According to logistic regression data, factors that increase the risk of developing DM2 were: family history of DM, a history of hyperglycemia, CHD, AH, intake of GCs, antihypertensive drugs, the presence of tophi, >4 exacerbations of gout per year. Febuxostat use and UA <300 μmol/L were associated with a lower risk of DM2.
Conclusion. The occurrence of DM2 in gout is associated not only with well-known risk factors, but also with hyperuricemia and microcrystalline inflammation. Febuxostat therapy is associated with a lower risk of developing DM2.

About the Authors

O. V. Zhelyabina
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Olga Vladimirovna Zhelyabina

34A, Kashirskoe shosse, Moscow 115522



M. S. Eliseev
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

34A, Kashirskoe shosse, Moscow 115522



S. I. Glukhova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

34A, Kashirskoe shosse, Moscow 115522



M. N. Chikina
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

34A, Kashirskoe shosse, Moscow 115522



T. S. Panevin
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

34A, Kashirskoe shosse, Moscow 115522



References

1. Global Burden of Disease Study 2015. Global burden of disease study 2015 (GBD 2015) results. Seattle: Institute for Health Metrics and Evaluation (IHME), University of Washington; 2016. http://ghdx.healthdata.org/gbd-results-tool.

2. Ismail L, Materwala H, Al Kaabi J. Association of risk factors with type 2 diabetes: A systematic review. Comput Struct Biotechnol J. 2021;19:1759-85. doi:10.1016/j.csbj.2021.03.003.

3. Lontchi-Yimagou E, Sobngwi E, Matsha TE, et al. Diabetes mellitus and inflammation. Curr Diab Rep. 2013 Jun;13(3):435-44. doi: 10.1007/s11892-013-0375-y.

4. Muriach M, Flores-Bellver M, Romero FJ, et al. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev. 2014;2014:102158. doi: 10.1155/2014/102158. Epub 2014 Aug 24.

5. Song Y, Liu X, Zhu X, et al. Increasing trend of diabetes combined with hypertension or hypercholesterolemia: NHANES data analysis 1999-2012. Sci Rep. 2016 Nov 2;6:36093. doi: 10.1038/srep36093.

6. Singh JA, Reddy SG, Kundukulam J. Risk factors for gout and prevention: a systematic review of the literature. Curr Opin Rheumatol. 2011 Mar;23(2):192-202. doi: 10.1097/BOR.0b013e3283438e13.

7. Liu Q, Gamble G, Pickering K, et al.Prevalence and clinical factors associated with gout in patients with diabetes and prediabetes. Rheumatology (Oxford). 2012 Apr;51(4):757-9. doi: 10.1093/rheumatology/ker384. Epub 2011 Dec 16.

8. Wallace SL, Robinson H, Masi AT, et al. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 1977 Apr;20(3):895-900. doi: 10.1002/art.1780200320.

9. Alberti G. A desktop guide to Type 2 diabetes mellitus. European Diabetes Policy Group 1998-1999 International Diabetes Federation European Region. Exp Clin Endocrinol Diabetes. 1999;107(7):390-420.

10. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000; 894:i-253.

11. Bellou V, Belbasis L, Tzoulaki I, et al. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS One. 2018 Mar 20;13(3):e0194127. doi: 10.1371/journal.pone.0194127.eCollection 2018.

12. Choi BC, Shi F. Risk factors for diabetes mellitus by age and sex: results of the National Population Health Survey. Diabetologia. 2001 Oct;44(10):1221-31. doi: 10.1007/s001250100648.

13. Sarkar D, Lebedeva IV, Emdad L, et al. Human polynucleotide phosphorylase (hpnpaseold-35): a potential link between aging and inflammation. Cancer Res. 2004 Oct 15;64(20):7473-8. doi: 10.1158/0008-5472.CAN-04-1772..

14. Suastika K, Dwipayana P, Semadi MS, et al. Age is an important risk factor for type 2 diabetes mellitus and cardiovascular diseases. Glucose Tolerance: Intech Open; 2012. P. 67–76.

15. Yki-Jarvinen H. Pathogenesis of non-insulin-dependent diabetes mellitus. Lancet.1994 Jan 8;343(8889):91-5. doi: 10.1016/s0140-6736(94)90821-4.

16. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018 Feb;14(2):88-98. doi: 10.1038/nrendo.2017.151. Epub 2017 Dec 8.

17. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017 Jun 3;389(10085): 2239-51. doi: 10.1016/S0140-6736(17)30058-2. Epub 2017 Feb 10.

18. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014 Aug 30;384(9945):766-81. doi: 10.1016/S0140-6736(14)60460-8. Epub 2014 May 29.

19. Wang Y, Rimm EB, Stampfer MJ, et al. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005 Mar;81(3): 555-63. doi: 10.1093/ajcn/81.3.555.

20. Hardoon SL, Morris RW, Thomas MC, et al. Is the recent rise in type 2 diabetes incidence from 1984 to 2007 explained by the trend in increasing BMI?: evidence from a prospective study of British men. Diabetes Care. 2010 Jul;33(7):1494-6. doi: 10.2337/dc09-2295. Epub 2010 Apr 22.

21. Neeland IJ, Turer AT, Ayers CR, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA. 2012 Sep 19;308(11):1150-9. doi: 10.1001/2012.jama.11132.

22. Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and metaanalysis. J Gastroenterol Hepatol. 2016 May; 31(5):936-44. doi: 10.1111/jgh.13264.

23. Valenti L, Bugianesi E, Pajvani U, et al. Nonalcoholic fatty liver disease: cause or consequence of type 2 diabetes? Liver Int. 2016 Nov;36(11):1563-1579. doi: 10.1111/liv.13185. Epub 2016 Jun 30.

24. Sattar N, Gill JM. Type 2 diabetes as a disease of ectopic fat? BMC Med. 2014 Aug 26;12:123. doi: 10.1186/s12916-014-0123-4.

25. Lao XQ, Ma WJ, Sobko T, et al. Overall obesity is leveling-off while abdominal obesity continues to rise in a Chinese population experiencing rapid economic development: analysis of serial cross-sectional health survey data 2002-2010. Int J Obes (Lond). 2015 Feb; 39(2):288-94. doi: 10.1038/ijo.2014.95. Epub 2014 May 26.

26. Collaboration A.P.C.S. Body mass index and risk of diabetes mellitus in the asia-pacific region. Asia Pac J Clin Nutr. 2006;15(2):127-33.

27. Ohnishi H, Saitohi S, Takagii S, et al. Incidence of type 2 diabetes in individuals with central obesity in a rural Japanese population: the Tanno and Sobetssu study: response to Oda. Diabetes Care. 2006 Aug;29(8):1989. doi: 10.2337/dc06-0950.

28. Li T, He S, Liu S, et al. Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation in mouse skeletal muscle. Free Radic Res. 2015 Oct;49(10):1269-74. doi: 10.3109/10715762.2015.1066784. Epub 2015 Aug 11.

29. Keating SE, Hackett DA, George J, et al. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012 Jul;57(1):157-66. doi: 10.1016/j.jhep.2012.02.023. Epub 2012 Mar 10.

30. GrØntved A, Rimm EB, Willett WC, et al. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch Intern Med. 2012 Sep 24;172(17):1306-12. doi: 10.1001/archinternmed.2012.3138.

31. Yeung EH, Pankow JS, Astor BC, et al. Increased risk of type 2 diabetes from a family history of coronary heart disease and type 2 diabetes. Diabetes Care. 2007 Jan;30(1):154-6. doi: 10.2337/dc06-1463.

32. Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes. 1999 May;48(5):937-42. doi: 10.2337/diabetes.48.5.937.

33. Mazzone T, Chait A, Plutzky J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet. 2008 May 24;371(9626):1800-9. doi: 10.1016/S0140-6736(08)60768-0.

34. Fox CS. Cardiovascular disease risk factors, type 2 diabetes mellitus, and the Framingham Heart Study. Trends Cardiovasc Med. 2010 Apr;20(3):90-5. doi: 10.1016/j.tcm.2010.08.001.

35. Hu X, Rong S, Wang Q, et al. Association between plasma uric acid and insulin resistance in type 2 diabetes: A Mendelian randomization analysis. Diabetes Res Clin Pract. 2021 Jan;171:108542. doi: 10.1016/j.diabres.2020.108542. Epub 2020 Nov 21.

36. Eliseev MS, Barskova VG. Disorders of carbohydrate metabolism in gout: frequency of detection and clinical features. Terapevticheskii arkhiv. 2010; 82(5):50-4. (In Russ.).

37. Wardhana W, Rudijanto A. Effect of Uric Acid on Blood Glucose Levels. Acta Med Indones. 2018 Jul;50(3):253-6.

38. Sautin YY, Nakagawa T, Zharikov S, et al. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 2007 Aug;293(2):C584-96. doi: 10.1152/ajpcell.00600.2006. Epub 2007 Apr 11.

39. Corry DB, Eslami P, Yamamoto K, et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 2008 Feb;26(2):269-75. doi: 10.1097/HJH.0b013e3282f240bf.

40. Kanellis J, Kang DH. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Semin Nephrol. 2005 Jan;25(1):39-42. doi: 10.1016/j.semnephrol.2004.09.007.

41. Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013 Oct;62(10):3307-15. doi: 10.2337/db12-1814.

42. Maedler K, Spinas GA, Lehmann R, et al. Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes. 2001 Aug;50(8):1683-90. doi: 10.2337/diabetes.50.8.1683.

43. Nakagawa T, Tuttle KR, Short RA, et al. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol. 2005 Dec;1(2):80-6. doi: 10.1038/ncpneph0019.

44. Dehghan A, van Hoek M, Sijbrands EJ, et al. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care. 2008 Feb;31(2):361-2. doi: 10.2337/dc07-1276. Epub 2007 Oct 31.

45. Krishnan E, Pandya BJ, Chung L, et al. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012 Jul 15;176(2):108-16. doi: 10.1093/aje/kws002. Epub 2012 Jul 2.

46. Bandaru P, Shankar A. Association between Serum Uric Acid Levels and Diabetes Mellitus. Int J Endocrinol. 2011;2011:604715. doi: 10.1155/2011/604715. Epub 2011 Nov 2.

47. Oda E, Kawai R, Sukumaran V, et al. Uric acid is positively associated with metabolic syndrome but negatively associated with diabetes in Japanese men. Intern Med. 2009; 48(20):1785-91. doi: 10.2169/internalmedicine.48.2426. Epub 2009 Oct 15.

48. Nan H, Dong Y, Gao W, et al. Diabetes associated with a low serum uric acid level in a general Chinese population. Diabetes Res Clin Pract. 2007 Apr;76(1):68-74. doi: 10.1016/j.diabres.2006.07.022. Epub 2006 Sep 11.

49. Sluijs I, Holmes MV, van der Schouw YT, et al. A Mendelian Randomization Study of Circulating Uric Acid and Type 2 Diabetes. Diabetes. 2015 Aug;64(8):3028-36. doi: 10.2337/db14-0742. Epub 2015 Apr 27.

50. Fang YJ, Chung YL, Lin CL, et al. Association between Gout, Urate-Lowering Therapy, and Risk of Developing Type 2 Diabetes Mellitus: A Nationwide Population-Based Retrospective Cohort Study. Biomed Res Int. 2020 Jul 28;2020:6358954. doi: 10.1155/2020/6358954. eCollection 2020.

51. Becker MA, Schumacher HR, Espinoza LR, et al. The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: the CONFIRMS trial. Arthritis Res Ther. 2010;12(2):R63. doi: 10.1186/ar2978. Epub 2010 Apr 6.

52. Donath MY. Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia. 2016 Apr;59(4):679-82. doi: 10.1007/s00125-016-3873-z. Epub 2016 Feb 11.

53. Maedler K, Sergeev P, Ris F, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest. 2002 Sep;110(6): 851-60. doi: 10.1172/JCI15318.

54. Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006 Mar 9; 440(7081):237-41. doi: 10.1038/nature04516. Epub 2006 Jan 11.

55. Eliseev MS, Zhelyabina OV, Mukagova MV, et al. Clinical experience with the interleukin 1 blocker canakinumab in patients with chronic tophaceous gout: abolishment of arthritis and prevention of exacerbations when allopuninol is used. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2015;9(2): 16-22 (In Russ.). doi: 10.14412/1996-7012-2015-2-16-22

56. So A, De Smedt T, Revaz S, et al. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther. 2007;9(2):R28. doi: 10.1186/ar2143.

57. Vitale A, Cantarini L, Rigante D, et al. Anakinra treatment in patients with gout and type 2 diabetes. Clin Rheumatol. 2015 May; 34(5):981-4. doi: 10.1007/s10067-014-2601-7. Epub 2014 Apr 15.


Review

For citations:


Zhelyabina OV, Eliseev MS, Glukhova SI, Chikina MN, Panevin TS. Risk factors for type 2 diabetes mellitus in patients with gout: results from a prospective study. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2022;16(1):52-59. (In Russ.) https://doi.org/10.14412/1996-7012-2022-1-52-59

Views: 1554


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)