Preview

Современная ревматология

Расширенный поиск

Значение гиперферритинемии как диагностического и прогностического биомаркера

https://doi.org/10.14412/1996-7012-2022-2-74-80

Полный текст:

Аннотация

Ферритин – сложный белковый комплекс (железопротеид), выполняющий роль основного внутриклеточного депо железа у человека и животных, состоящий из белка апоферритина и атома трехвалентного железа в составе фосфатного гидроксида. Референсное значение ферритина у женщин – 200 мкг/л, у мужчин – 300 мкг/л. Ферритин является маркером общего запаса железа в организме, его низкий уровень специфичен для дефицита железа. Также ферритин участвует в иммунных процессах и обладает как провоспалительной, так и иммуноподавляющей активностью. Гиперферритинемия является неспецифическим признаком, возникающим при ряде иммуновоспалительных, инфекционных заболеваний, а также при избытке запасов железа в организме. Гиперферритинемия – критериальный признак синдрома активации макрофагов у пациентов с системным ювенильным идиопатическим артритом, системной красной волчанкой и болезнью Кавасаки, а также прогностический биомаркер болезни Стилла у взрослых. Высокий уровень ферритина встречается при катастрофическом антифосфолипидном синдроме, а также при инфекционной патологии, такой как септический шок и COVID-19, в том числе при мультисистемном воспалительном синдроме, связанном с COVID-19. Концентрация ферритина – важный параметр оценки активности и прогноза заболевания, позволяющий обоснованно подходить к выбору терапии у данных пациентов.

Об авторах

М. И. Каледа
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

Мария Игоревна Каледа

Россия, 115522, Москва, Каширское шоссе, 34А



Е. С. Федоров
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

Россия, 115522, Москва, Каширское шоссе, 34А



Литература

1. Chen Z, Xu W, Ma W, et al. Clinical laboratory evaluation of COVID-19. Clin Chim Acta. 2021 Aug;519:172-82. doi: 10.1016/j.cca.2021.04.022

2. Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996 Jul 31;1275(3):161-203. doi: 10.1016/0005-2728(96)00022-9.

3. Sandnes M, Ulvik RJ, Vorland M, Reikvam H. Hyperferritinemia – A Clinical Overview. J Clin Med. 2021 May 7;10(9):2008. doi: 10.3390/jcm10092008

4. Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002 May 15; 99(10):3505-16. doi: 10.1182/blood.v99.10.3505

5. Cullis JO, Fitzsimons EJ, Griffiths WJ, et al; British Society for Haematology. Investigation and management of a raised serum ferritin. Br J Haematol. 2018 May;181(3):331-40. doi: 10.1111/bjh.15166

6. Wang W, Knovich MA, Coffman LG, et al. Serum ferritin: Past, present and future. Biochim Biophys Acta. 2010 Aug;1800(8):760-9. doi: 10.1016/j.bbagen.2010.03.011

7. Ghosh S, Hevi S, Chuck SL. Regulated secretion of glycosylated human ferritin from hepatocytes. Blood. 2004 Mar 15;103(6):2369-76. doi: 10.1182/blood-2003-09-3050

8. Kannengiesser C, Jouanolle AM, Hetet G, et al. A new missense mutation in the L ferritin coding sequence associated with elevated levels of glycosylated ferritin in serum and absence of iron overload. Haematologica. 2009 Mar;94(3):335-9. doi: 10.3324/haematol.2008.000125

9. Truman-Rosentsvit M, Berenbaum D, Spektor L, et al. Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood. 2018 Jan 18;131(3):342-52. doi: 10.1182/blood-2017-02-768580

10. Recalcati S, Invernizzi P, Arosio P, Cairo G. New functions for an iron storage protein: the role of ferritin in immunity and autoimmunity. J Autoimmun. 2008 Feb-Mar; 30(1-2):84-9. doi: 10.1016/j.jaut.2007.11.003

11. Ruscitti P, Di Benedetto P, Berardicurti O, et al. Pro-inflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci Rep. 2020 Jul 22;10(1): 12232. doi: 10.1038/s41598-020-69031-w

12. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016 Jul;16(7):407-20. doi: 10.1038/nri.2016.58

13. Serra M, Longo F, Roetto A, et al. A child with hyperferritinemia: Case report. Ital J Pediatr. 2011 May 12;37:20. doi: 10.1186/1824-7288-37-20.

14. Knovich MA, Storey JA, Coffman LG, et al. Ferritin for the clinician. Blood Rev. 2009 May;23(3):95-104. doi: 10.1016/j.blre.2008.08.001. Epub 2008 Oct 2.

15. Beaton MD, Adams PC. Treatment of hyperferritinemia. Ann Hepatol. 2012 MayJun;11(3):294-300.

16. Zandman-Goddard G, Shoenfeld Y. Hyperferritinemia in autoimmunity. Isr Med Assoc J. 2008 Jan;10(1):83-4.

17. Zandman-Goddard G, Orbach H, Agmon-Levin N, et al. Hyperferritinemia is associated with serologic antiphospholipid syndrome in SLE patients. Clin Rev Allergy Immunol. 2013 Feb;44(1):23-30. doi: 10.1007/s12016-011-8264-0

18. Da Costa R, Szyper-Kravitz M, Szekanecz Z, et al. Ferritin and prolactin levels in multiple sclerosis. Isr Med Assoc J. 2011 Feb; 13(2):91-5.

19. Agmon-Levin N, Rosбrio C, Katz BS, et al. Ferritin in the antiphospholipid syndrome and its catastrophic variant (cAPS). Lupus. 2013 Nov;22(13):1327-35. doi: 10.1177/0961203313504633

20. Ellervik C, Marott JL, Tybjжrg-Hansen A, et al. Total and cause-specific mortality by moderately and markedly increased ferritin concentrations: general population study and metaanalysis. Clin Chem. 2014 Nov;60(11):1419-28. doi: 10.1373/clinchem.2014.229013

21. Bennett TD, Hayward KN, Farris RW, et al. Very high serum ferritin levels are associated with increased mortality and critical care in pediatric patients. Pediatr Crit Care Med. 2011 Nov;12(6):e233-6. doi: 10.1097/PCC.0b013e31820abca8

22. Henry BM, de Oliveira MHS, Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020 Jun 25;58(7):1021-8. doi: 10.1515/cclm-2020-0369

23. Gуmez-Pastora J, Weigand M, Kim J, et al. Hyperferritinemia in critically ill COVID-19 patients – Is ferritin the product of inflammation or a pathogenic mediator? Clin Chim Acta. 2020 Oct;509:249-51. doi: 10.1016/j.cca.2020.06.033

24. Rosario C, Zandman-Goddard G, Meyron-Holtz EG, et al. The hyperferritinemic syndrome: macrophage activation syndrome, Still's disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med. 2013 Aug 22;11:185. doi: 10.1186/1741-7015-11-185

25. Ruscitti P, Berardicurti O, Di Benedetto P, et al. Severe COVID-19, Another Piece in the Puzzle of the Hyperferritinemic Syndrome. An Immunomodulatory Perspective to Alleviate the Storm. Front Immunol. 2020 May 28;11:1130. doi: 10.3389/fimmu.2020.01130

26. Henderson LA, Cron RQ. Macrophage Activation Syndrome and Secondary Hemophagocytic Lymphohistiocytosis in Childhood Inflammatory Disorders: Diagnosis and Management. Paediatr Drugs. 2020 Feb;22(1):29-44. doi: 10.1007/s40272-019-00367-1

27. Crayne C, Cron RQ. Pediatric macrophage activation syndrome, recognizing the tip of the Iceberg. Eur J Rheumatol. 2019 Dec 3; 7(Suppl 1):1-8. doi: 10.5152/eurjrheum.2019.19150

28. Ravelli A, Davм S, Minoia F, et al. Macrophage Activation Syndrome. Hematol Oncol Clin North Am. 2015;29(5):927-41. doi: 10.1016/j.hoc.2015.06.010

29. Ravelli A, Minoia F, Davм S, et al; Paediatric Rheumatology International Trials Organisation, the Childhood Arthritis and Rheumatology Research Alliance, the Pediatric Rheumatology Collaborative Study Group, the Histiocyte Society. 2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis. Ann Rheum Dis. 2016 Mar;75(3):481-9. doi: 10.1136/annrheumdis-2015-208982.

30. Shimizu M, Mizuta M, Yasumi T, et al. Validation of Classification Criteria of Macrophage Activation Syndrome in Japanese Patients With Systemic Juvenile Idiopathic Arthritis. Arthritis Care Res (Hoboken). 2018 Sep;70(9):1412-5. doi: 10.1002/acr.23482. Epub 2018 Jul 5.

31. Schulert GS, Minoia F, Bohnsack J, et al. Effect of Biologic Therapy on Clinical and Laboratory Features of Macrophage Activation Syndrome Associated With Systemic Juvenile Idiopathic Arthritis. Arthritis Care Res (Hoboken). 2018 Mar;70(3):409-19. doi: 10.1002/acr.23277

32. Shimizu M, Mizuta M, Okamoto N, et al. Tocilizumab modifies clinical and laboratory features of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2020 Jan 10;18(1):2. doi: 10.1186/s12969-020-0399-1

33. Allen CE, Yu X, Kozinetz CA, McClain KL. Highly elevated ferritin levels and the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2008 Jun; 50(6):1227-35. doi: 10.1002/pbc.21423.

34. Eloseily EMA, Minoia F, Crayne CB, et al. Ferritin to Erythrocyte Sedimentation Rate Ratio: Simple Measure to Identify Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis. ACR Open Rheumatol. 2019 Jul 13;1(6):345-9. doi: 10.1002/acr2.11048. eCollection 2019 Aug.

35. Gorelik M, Fall N, Altaye M, et al. Follistatin-like protein 1 and the ferritin/erythrocyte sedimentation rate ratio are potential biomarkers for dysregulated gene expression and macrophage activation syndrome in systemic juvenile idiopathic arthritis. J Rheumatol. 2013 Jul;40(7):1191-9. doi: 10.3899/jrheum.121131. Epub 2013 May 15.

36. Kong XD, Xu D, Zhang W, et al. Clinical features and prognosis in adult-onset Still's disease: a study of 104 cases. Clin Rheumatol. 2010 Sep;29(9):1015-9. doi: 10.1007/s10067-010-1516-1

37. Di Benedetto P, Cipriani P, Iacono D, et al. Ferritin and C-reactive protein are predictive biomarkers of mortality and macrophage activation syndrome in adult onset Still’s disease. Analysis of the multicentre Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale (GIRRCS) cohort. PLoS One. 2020 Jul 9;15(7):e0235326. doi: 10.1371/journal.pone.0235326. eCollection 2020.

38. Maranini B, Ciancio G, Govoni M. Adult-Onset Still’s Disease: Novel Biomarkers of Specific Subsets, Disease Activity, and Relapsing Forms. Int J Mol Sci. 2021 Dec 11; 22(24):13320. doi: 10.3390/ijms222413320.

39. Kirino Y, Kawaguchi Y, Tada Y, et al. Beneficial use of serum ferritin and heme oxygenase-1 as biomarkers in adult-onset Still's disease: A multicenter retrospective study. Mod Rheumatol. 2018 Sep;28(5):858-64. doi: 10.1080/14397595.2017.1422231. Epub 2018 Jan 11.

40. Kim JW, Jung JY, Suh CH, Kim HA. Systemic immune-inflammation index combined with ferritin can serve as a reliable assessment score for adult-onset Still's disease. Clin Rheumatol. 2021 Feb;40(2):661-8. doi: 10.1007/s10067-020-05266-2

41. Cervera R, Font J, Gуmez-Puerta JA, et al; Catastrophic Antiphospholipid Syndrome Registry Project Group. Validation of the preliminary criteria for the classification of catastrophic antiphospholipid syndrome. Ann Rheum Dis. 2005 Aug;64(8):1205-9. doi: 10.1136/ard.2004.025759.

42. Rodrнguez-Pintу I, Moitinho M, Santacreu I, et al; CAPS Registry Project Group (European Forum on Antiphospholipid Antibodies). Catastrophic antiphospholipid syndrome (CAPS): Descriptive analysis of 500 patients from the International CAPS Registry. Autoimmun Rev. 2016 Dec;15(12):1120-4. doi: 10.1016/j.autrev.2016.09.010

43. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018 Jul 7; 392(10141):75-87. doi: 10.1016/S0140-6736(18)30696-2

44. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013 Aug 29; 369(9):840-51. doi: 10.1056/NEJMra1208623

45. Goldstein B, Giroir B, Randolph A; International Consensus Conference on Pediatric Sepsis. International Pediatric Sepsis Consensus Conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005 Jan;6(1):2-8. doi: 10.1097/01.PCC.0000149131.72248.E6.

46. Kernan KF, Ghaloul-Gonzalez L, Shakoory B, et al. Adults with septic shock and extreme hyperferritinemia exhibit pathogenic immune variation. Genes Immun. 2019 Jul;20(6):520-6. doi: 10.1038/s41435-018-0030-3. Epub 2018 Jul 6.

47. Garcia PC, Longhi F, Branco RG, et al. Ferritin levels in children with severe sepsis and septic shock. Acta Paediatr. 2007 Dec; 96(12):1829-31. doi: 10.1111/j.1651-2227.2007.00564.x

48. Ghosh S, Baranwal AK, Bhatia P, Nallasamy K. Suspecting Hyperferritinemic Sepsis in Iron-Deficient Population: Do We Need a Lower Plasma Ferritin Threshold? Pediatr Crit Care Med. 2018 Jul;19(7):e367-e373. doi: 10.1097/PCC.0000000000001584

49. Carcillo JA, Sward K, Halstead ES, et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network Investigators. A Systemic Inflammation Mortality Risk Assessment Contingency Table for Severe Sepsis. Pediatr Crit Care Med. 2017 Feb;18(2):143-50. doi: 10.1097/PCC.0000000000001029

50. Cheng L, Li H, Li L, et al. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Lab Anal. 2020 Oct;34(10):e23618. doi: 10.1002/jcla.23618

51. Mahat RK, Panda S, Rathore V, et al. The dynamics of inflammatory markers in coronavirus disease-2019 (COVID-19) patients: A systematic review and meta-analysis. Clin Epidemiol Glob Health. 2021 Jul-Sep;11:100727. doi: 10.1016/j.cegh.2021.100727

52. Zhao Y, Yin L, Patel J, et al. The inflammatory markers of multisystem inflammatory syndrome in children (MIS-C) and adolescents associated with COVID-19: A metaanalysis. J Med Virol. 2021 Jul;93(7):4358-69. doi: 10.1002/jmv.26951

53. Toniati P, Piva S, Cattalini M, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020 Jul;19(7):102568. doi: 10.1016/j.autrev.2020.102568

54. Ramiro S, Mostard RLM, Magro-Checa C, et al. Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study. Ann Rheum Dis. 2020 Sep;79(9):1143-51. doi: 10.1136/annrheumdis-2020-218479

55. Gordon AC, Mouncey PR, Al-Beidh F, et al; REMAP-CAP Investigators. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med. 2021 Apr 22;384(16):1491-502. doi: 10.1056/NEJMoa2100433

56. Bats ML, Rucheton B, Fleur T, et al. Covichem: A biochemical severity risk score of COVID-19 upon hospital admission. PLoS One. 2021 May 6;16(5):e0250956. doi: 10.1371/journal.pone.0250956

57. Guan X, Zhang B, Fu M, et al. Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: results from a retrospective cohort study. Ann Med. 2021 Dec; 53(1):257-66. doi: 10.1080/07853890.2020.1868564

58. Kar S, Chawla R, Haranath SP, et al. Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID). Sci Rep. 2021 Jun 17;11(1):12801. doi: 10.1038/s41598-021-92146-7

59. Sonnweber T, Boehm A, Sahanic S, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients' performance: a prospective observational cohort study. Respir Res. 2020 Oct 21;21(1):276. doi: 10.1186/s12931-020-01546-2

60. Moreno-Perez O, Merino E, Leon-Ramirez JM, et al. Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study. J Infect. 2021 Mar;82(3):378-83. doi: 10.1016/j.jinf.2021.01.004. Epub 2021 Jan 12.


Рецензия

Для цитирования:


Каледа М.И., Федоров Е.С. Значение гиперферритинемии как диагностического и прогностического биомаркера. Современная ревматология. 2022;16(2):74-80. https://doi.org/10.14412/1996-7012-2022-2-74-80

For citation:


Kaleda M.I., Fedorov E.S. Significance of hyperferritinemia as a diagnostic and prognostic biomarker. Modern Rheumatology Journal. 2022;16(2):74-80. (In Russ.) https://doi.org/10.14412/1996-7012-2022-2-74-80

Просмотров: 1403


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)