Analysis of the mechanisms of development of neurorheumatological consequences of COVID-19 and the possibility of their pharmacological correction
https://doi.org/10.14412/1996-7012-2022-2-92-98
Abstract
We present the review of clinical and experimental studies on the pathogenesis of neurorheumatological complications (NRC) in COVID-19. The influence of systemic hyperinflammation caused by impaired innate immunity on the functioning of the neurovascular endothelium and the bloodbrain barrier, activation of signaling pathways of innate immunity and parainfectious autoimmunity in the central nervous system were analyzed.
Hyperinflammation has been shown to contribute to the development of NRC in COVID-19. The potential therapeutic efficacy of drugs, including those based on chondroitin sulfate, which can be used for the prevention and treatment of NRC in COVID-19, is considered.
About the Authors
I. V. SarvilinaRussian Federation
Irina Vladislavovna Sarvilina
74, Socialisticheskaya street, Rostov-on-Don 344002, Russia
A. M. Lila
Russian Federation
34A, Kashirskoe shosse, Moscow 115522, Russia
2/1, Barrikadnaya street, building 1, Moscow 125993, Russia
O. A. Gromova
Russian Federation
42, Vavilov street, Moscow 119333, Russia
I. Yu. Torshin
Russian Federation
42, Vavilov street, Moscow 119333, Russia
O. A. Shavlovskaya
Russian Federation
8/2 Furmanny side street, Moscow 105062, Russia
E. A. Taskina
Russian Federation
34A, Kashirskoe shosse, Moscow 115522, Russia
References
1. Nouh A, Carbunar O, Ruland S. Neurology of rheumatologic disorders. Curr Neurol Neurosci Rep. 2014 Jul;14(7):456. doi: 10.1007/s11910-014-0456-6.
2. Grachev SE. Neurorheumatology is an interdisciplinary clinical field. Characteristics and classification of neurological manifestations of systemic rheumatic diseases. Neironauki. 2005;(1):54-7. (In Russ.).
3. Raskina TA, Semenov VA, Koroleva MV, Letayeva MV. Neurological manifestations of systemic rheumatic diseases. Possibilities of pharmacological correction. Sovpemennaya revmatologiya = Modern rheumatology. 2011; 11(4):61-5. (In Russ.). doi: 10.14412/1996-7012-2011-701
4. Hua LH, Obeidat AZ, Longbrake EE. Outcomes and future directions for neuroimmunology/multiple sclerosis fellowship training: Survey of recent trainees. Mult Scler Relat Disord. 2020 Sep;44:102296. doi: 10.1016/j.msard.2020.102296
5. Liampas A, Nteveros A, Parperis K, et al. Primary Sjцgren's syndrome (pSS)-related cerebellar ataxia: a systematic review and metaanalysis. Acta Neurol Belg. 2021 Oct 5. doi: 10.1007/s13760-021-01784-1. Online ahead of print.
6. Goglin S, Cho TA. Clinical approach to neuro-rheumatology. J Neurol Sci. 2021 Dec 15;431:120048. doi: 10.1016/j.jns.2021.120048
7. Chuchalin AG, editor. Mikronutrienty protiv koronavirusov [Micronutrients against coronaviruses]. Moscow: GEOTAR-Media; 2020. 112 p.
8. Schett G, Sticherling M, Neurath M. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol. 2020 May;20(5):271-2. doi: 10.1038/s41577-020-0312-7.
9. Pascolini S, Vannini A, Deleonardi G, et al. COVID-19 and immunological dysregulation: can autoantibodies be useful? Clin Transl Sci. 2021 Mar;14(2):502-8. doi: 10.1111/cts.12908.
10. Epub 2021 Jan 20.
11. Mahmudpour M, Roozbeh J, Keshavarz M, et al. COVID-19 cytokine storm: the anger of inflammation. Cytokine. 2020 Sep;133:155151. doi: 10.1016/j.cyto.2020.155151. Epub 2020 May 30.
12. Liua Y, Sawalhab A, Lua Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021 Mar 1;33(2):155-62. doi: 10.1097/BOR.0000000000000776.
13. Najjar S, Najjar A, Chong D, et al. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflammation. 2020 Aug 6;17(1):231. doi: 10.1186/s12974-020-01896-0.
14. Yong S. Persistent brainstem dysfunction in long-COVID: a hypothesis. ACS Chem Neurosci. 2021 Feb 17;12(4):573-80. doi: 10.1021/acschemneuro.0c00793. Epub 2021 Feb 4.
15. Taboada M, Carinena A, Moreno E, et al. Post-COVID-19 functional status six-months after hospitalization. J Infect. 2021 Apr;82(4):e31-e33. doi: 10.1016/j.jinf.2020.12.022. Epub 2020 Dec 26.
16. Belopasov VV, Yachou Y, Samoilova EM, Baklaushev VP. The nervous system damage in COVID-19. Klinicheskaya praktika. 2020; 11(2):60-80. (In Russ.).
17. Waheed S, Bayas A, Hindi F, et al. Neurological complications of COVID-19: GuillainBarre syndrome following pfizer COVID-19 vaccine. Cureus. 2021 Feb 18;13(2):e13426. doi: 10.7759/cureus.13426.
18. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020 May;94:55-8. doi: 10.1016/j.ijid.2020.03.062. Epub 2020 Apr 3.
19. Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI Features. Radiology. 2020 Aug;296(2):E119-E120. doi: 10.1148/radiol.2020201187. Epub 2020 Mar 31.
20. Rossi A. Imaging of acute disseminated encephalomyelitis. Neuroimaging Clin N Am. 2008 Feb;18(1):149-61; ix. doi: 10.1016/j.nic.2007.12.007.
21. Li Y, BaiW, Hirano N, et al. Neurotropic virus tracing suggests a membranous-coatingmediated mechanism for transsynaptic communication. J Comp Neurol. 2013 Jan 1; 521(1):203-12. doi: 10.1002/cne.23171.
22. Baig A. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther. 2020 May;26(5):499-501. doi: 10.1111/cns.13372. Epub 2020 Apr 7.
23. Baig A, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020 Apr 1; 11(7):995-8. doi: 10.1021/acschemneuro.0c00122. Epub 2020 Mar 13.
24. Wang K, Chen W, Sen Zhou Y, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. 2020:2020.03.14.988345. doi:10.1101/2020.03.14.988345
25. Cantuti-Castelvetri L, Ojha R, Pedro L, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. bioRxiv. 2020:2020.06.07.137802. doi:10.1101/2020.06.07.137802
26. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-80.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.
27. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020 Apr 23;382(17):e38. doi: 10.1056/NEJMc2007575. Epub 2020 Apr 8.
28. Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020 May;47(5):1275-80. doi: 10.1007/s00259-020-04735-9. Epub 2020 Feb 28.
29. Lou J, Movassaghi M, Gordy D, et al. Neuropathology of COVID-19 (neuroCOVID): clinicopathological update. Free Neuropathol. 2021 Jan 18;2:2. doi: 10.17879/freeneuropathology-2021-2993.
30. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X. Epub 2020 Feb 18.
31. Liu J, Li S, Liang B, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020 May;55:102763. doi: 10.1016/j.ebiom.2020.102763. Epub 2020 Apr 18.
32. MuskardinW. Intravenous Anakinra for macrophage activation syndrome may hold lessons for treatment of cytokine storm in the setting of coronavirus disease 2019. ACR Open Rheumatol. 2020 May;2(5):283-5. doi: 10.1002/acr2.11140. Epub 2020 May 10.
33. Park M. Macrophages: a Trojan horse in COVID-19? Nat Rev Immunol. 2020 Jun; 20(6):351. doi: 10.1038/s41577-020-0317-2.
34. Conti P, Caraffa A, Tete` G, et al. Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19. J Biol Regul Homeost Agents. 2020 Sep-Oct,;34(5):1629-32. doi: 10.23812/20-2EDIT.
35. Oliviero B, Varchetta S, Mele D, et al. Expansion of atypical memory B cells is a prominent feature of COVID-19. Cell Mol Immunol. 2020 Oct;17(10):1101-3. doi: 10.1038/s41423-020-00542-2. Epub 2020 Sep 2.
36. Sommer A, Marxreiter F, Krach F, et al. Th17 Lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell. 2019 Jun 6;24(6):1006. doi: 10.1016/j.stem.2019.04.019.
37. Khan Z, Ahmad U, Ualiyeva D, et al. Guillain-Barre syndrome: An autoimmune disorder post-COVID-19 vaccination? Clinical Immunology Communications. 2022;(2):1-5. doi: 10.1016/j.clicom.2021.12.002
38. Marra A, Vargas M, Striano P, et al. Posterior reversible encephalopathy syndrome: the endothelial hypotheses. Med Hypotheses. 2014 May;82(5):619-22. doi: 10.1016/j.mehy.2014.02.022. Epub 2014 Mar 1.
39. Pusch E, Renz H, Skevaki C. Respiratory virus-induced heterologous immunity:part of the problem or part of the solution? Allergo J. 2018;27(3):28-45. doi: 10.1007/s15007-018-1580-4. Epub 2018 Apr 26.
40. Pohl D, Alper G, van Haren K, et al. Acute disseminated encephalomyelitis:updates on an inflammatory CNS syndrome. Neurology. 2016 Aug 30;87(9 Suppl 2):S38-45. doi: 10.1212/WNL.0000000000002825.
41. Esmaeilzadeh A, Elahi R. Immunobiology and immunotherapy of COVID-19: a clinically updated overview. J Cell Physiol. 2021 Apr;236(4):2519-43. doi: 10.1002/jcp.30076. Epub 2020 Oct 6.
42. Barlow A, Landolf K, Barlow B, et al. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy. 2020 May;40(5):416-37. doi: 10.1002/phar.2398. Epub 2020 May 6.
43. Stroud C, Hegde A, Cherry C, et al. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J Oncol Pharm Pract. 2019 Apr;25(3):551-7. doi: 10.1177/1078155217745144. Epub 2017 Dec 5.
44. Giovannoni G, Hawkes C, Lechner-Scott J, et al. The COVID-19 pandemic and the use of MS disease-modifying therapies. Mult Scler Relat Disord. 2020 Apr;39:102073. doi: 10.1016/j.msard.2020.102073. Epub 2020 Mar 27.
45. Willis M, Robertson N. Multiple sclerosis and the risk of infection: Considerations in the threat of the novel coronavirus, COVID-19/SARS-CoV-2. J Neurol. 2020 May; 267(5):1567-9. doi: 10.1007/s00415-020-09822-3.
46. Novi G, Mikulska M, Briano F, et al. COVID-19 in a MS patient treated with ocrelizumab: Does immunosupression have a protective role? Mult Scler Relat Disord. 2020 Jul; 42:102120. doi: 10.1016/j.msard.2020.102120. Epub 2020 Apr 15.
47. Torshin IYu, Gromova OA, Chuchalin AG, Zhuravlev YuI. Chemoreactome screening of pharmaceutical effects on SARS-CoV-2 and human virome to help decide on drug-based COVID-19 therapy. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya. 2021;14(2):191-211. (In Russ.).
48. https://clinicaltrials.gov/ct2/show/NCT04276688
49. https://clinicaltrials.gov/ct2/show/NCT04280588
50. Paul A, Hossain M, Mahboob T, et al. Does Oxidative Stress Management Help Alleviation of COVID-19 Symptoms in Patients Experiencing Diabetes? Nutrients. 2022 Jan 13;14(2):321. doi: 10.3390/nu14020321.
51. Gromova OA, Torshin IYu, Putilina MV, et al. Nociception: the roles of vitamin D. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1):145-53. (In Russ.). doi: 10.14412/2074-2711-2021-1-145-153
52. Theoharides T. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors. 2020 May;46(3):306-8. doi: 10.1002/biof.1633. Epub 2020 Apr 27.
53. Gigante A, Aquili A, Farinelli L, et al. Sodium chromo-glycate and palmitoylethanolamide: a possible strategy to treat mast cell-induced lung inflammation in COVID-19. Med Hypotheses. 2020 Oct;143:109856. doi: 10.1016/j.mehy.2020.109856. Epub 2020 May 19.
54. Torshin IYu, Gromova OA, Nechaeva GI, Reier IA. Systematic analysis of molecular biological mechanisms for supporting connective tissue metabolism with chondroitin sulfate. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1):154-62. (In Russ.). doi: 10.14412/2074-2711-2021-1-154-162
55. Gross A, Theoharides T. Chondroitin sulfate inhibits secretion of TNF and CXCL8 from human mast cells stimulated by IL-33. Biofactors. 2019 Jan;45(1):49-61. doi: 10.1002/biof.1464. Epub 2018 Dec 6.
56. Kempuraj D, Selvakumar G, Ahmed M, et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist. Oct-Dec 2020;26(5-6):402-14. doi: 10.1177/1073858420941476. Epub 2020 Jul 18.
57. Torshin IYu, Gromova OA, Lila AM, et al. Toll-like receptors as a part of osteoarthritis pathophysiology: anti-inflammatory, analgesic and neuroprotective effects. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2021;13(4):123-9. (In Russ.). doi: 10.14412/2074-2711-2021-4-123-129
58. TorshinIYu, Lila AM, Naumov AV, et al. Meta-analysis of clinical trials of osteoarthritis treatment effectiveness with Chondroguard. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya. 2020;13(4):388-99. (In Russ.).
59. https://www.sciencedirect.com/journal/journal-of-the-neurological-sciences/specialissue/109QBJSVZ2T
Review
For citations:
Sarvilina IV, Lila AM, Gromova OA, Torshin IY, Shavlovskaya OA, Taskina EA. Analysis of the mechanisms of development of neurorheumatological consequences of COVID-19 and the possibility of their pharmacological correction. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2022;16(2):92-98. (In Russ.) https://doi.org/10.14412/1996-7012-2022-2-92-98