Depletion-restitution therapy for autoimmune rheumatic diseases. Part 1. Fundamental prerequisites and efficacy of modern treatment technologies: anti-B-cell drugs and CAR-T therapy
https://doi.org/10.14412/1996-7012-2025-2-7-17
Abstract
The key element in the pathogenesis of systemic autoimmune rheumatic diseases is the breakdown of immunological tolerance and the formation of a pool of autoreactive cells. This leads to uncontrolled activation of the effector arm of cellular (T-lymphocytes) and humoral (B-lymphocytes and plasma cells) immunity, proliferation of autoreactive clones, and the formation and persistence of immunological memory cells. In this process, T-cells, B-cells, and plasma cells of immunological memory, in interaction with a complex of pathogenic signals from the microenvironment, ensure the stability and adaptability of the developing inflammatory process.
In modern clinical practice, the prevailing approach to prescribing medications is the "therapeutic pyramid" strategy, which involves gradual escalation of treatment until remission is achieved. This approach does not address the mechanisms of immunological tolerance and, as a result, requires lifelong therapy and is associated with numerous adverse effects.
The term “depletion-restitution therapy” is proposed (from English “depletion” – exhaustion; and Latin “restitutio ad integrum” – restoration to the original state, complete recovery) to describe an alternative approach. This approach is characterized by methods based on massive, shortterm cytotoxic impact, leading to profound reduction of pathogenic autoreactive cellular clones, followed by repopulation with "naive" cellular elements. Consequently, this restores tolerance mechanisms and enables the formation of ultra-long, drug-free remissions.
Currently, the principles of depletion-restitution therapy have already been integrated into oncology, hematology, and neurology. Among the most promising potential targets for such therapy in rheumatology are the effectors of the humoral immune system: B-cells, plasmablasts, and plasma cells. At the present stage, the most promising methods for implementing this approach are CAR-T cells and therapeutic bispecific monoclonal antibodies.
Keywords
About the Authors
A. M. LilaRussian Federation
34A, Kashirskoe Shosse, Moscow 115522
1, Barrikadnaya Street, Build. 1, Moscow 125993
A. L. Maslyanskiy
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
2, Akkuratova Street, Saint-Petersburg 197341
7–9, Universitetskaya Embankment, Saint-Petersburg 199034
D. A. Dibrov
Russian Federation
Danil Alekseevich Dibrov
34A, Kashirskoe Shosse, Moscow 115522
A. V. Torgashina
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
E. G. Zotkin
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
M. Yu. Samsonov
Russian Federation
111, Leninsky Prospect, Moscow 119421
References
1. Nasonov EL. Prospects of anti-B-cell therapy in rheumatology. Nauchno-prakticheskaya revmatologiya 2018;56(5):539-548. (In Russ.).
2. Pouw JN, Leijten EFA, van Laar JM, Boes M. Revisiting B cell tolerance and autoantibodies in seropositive and seronegative autoimmune rheumatic disease (AIRD). Clin Exp Immunol. 2021 Feb;203(2):160-173. doi: 10.1111/cei.13542. Epub 2020 Nov 15.
3. Maschmeyer P, Chang HD, Cheng Q, et al. Immunological memory in rheumatic inflammation – a roadblock to tolerance induction. Nat Rev Rheumatol. 2021 May;17(5):291-305. doi: 10.1038/s41584-021-00601-6. Epub 2021 Apr 6.
4. Khader Y, Beran A, Ghazaleh S, et al. Predictors of remission in rheumatoid arthritis patients treated with biologics: a systematic review and meta-analysis. Clin Rheumatol. 2022 Dec;41(12):3615-3627. doi: 10.1007/s10067-022-06307-8. Epub 2022 Aug 16.
5. Ugarte-Gil MF, Mendoza-Pinto C, Reategui-Sokolova C, et al. Achieving remission or low disease activity is associated with better outcomes in patients with systemic lupus erythematosus: a systematic literature review. Lupus Sci Med. 2021 Sep;8(1):e000542. doi: 10.1136/lupus-2021-000542.
6. Smolen JS, Breedveld FC, Burmester GR, et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis. 2016 Jan;75(1):3-15. doi: 10.1136/annrheumdis-2015-207524. Epub 2015 May 12.
7. Konzett V, Aletaha D. Management strategies in rheumatoid arthritis. Nat Rev Rheumatol. 2024 Dec;20(12):760-769. doi: 10.1038/s41584-024-01169-7. Epub 2024 Oct 24.
8. Riley TR, George MD. Risk for infections with glucocorticoids and DMARDs in pati ents with rheumatoid arthritis. RMD Open. 2021 Feb;7(1):e001235. doi: 10.1136/rmdopen-2020-001235.
9. Nguyen Y, Costedoat-Chalumeau N. Serious infections in patients with systemic lupus erythematosus: how can we prevent them? Lancet Rheumatol. 2023 May;5(5):e245-e246. doi: 10.1016/S2665-9913(23)00096-6.
10. Ramirez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov. 2024 Jul;23(7):501-524. doi: 10.1038/s41573-024-00959-8. Epub 2024 Jun 5.
11. Alexander T, Greco R. Hematopoietic stem cell transplantation and cellular therapies for autoimmune diseases: overview and future considerations from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2022 Jul;57(7):1055-1062. doi: 10.1038/s41409-022-01702-w. Epub 2022 May 16.
12. Schett G, Mackensen A, Mougiakakos D. CAR T-cell therapy in autoimmune diseases. Lancet. 2023 Nov 25;402(10416):2034-2044. doi: 10.1016/S0140-6736(23)01126-1. Epub 2023 Sep 22.
13. Sorensen PS, Sellebjerg F. Pulsed immune reconstitution therapy in multiple sclerosis. Ther Adv Neurol Disord. 2019 Mar 28:12: 1756286419836913. doi: 10.1177/1756286419836913 eCollection 2019.
14. Hecker M, Fitzner B, Boxberger N, et al. Transcriptome alterations in peripheral blood B cells of patients with multiple sclerosis receiving immune reconstitution therapy. J Neuroinflammation. 2023 Aug 2;20(1):181. doi: 10.1186/s12974-023-02859-x.
15. Muthu S, Jeyaraman M, Ranjan R, Jha SK. Remission is not maintained over 2 years with hematopoietic stem cell transplantation for rheumatoid arthritis: A systematic review with meta-analysis. World J Biol Chem. 2021 Nov 27;12(6):114-130. doi: 10.4331/wjbc.v12.i6.114.
16. Bagnato G, Versace AG, La Rosa D, et al. Autologous Haematopoietic Stem Cell Transplantation and Systemic Sclerosis: Focus on Interstitial Lung Disease. Cells. 2022 Mar 1; 11(5):843. doi: 10.3390/cells11050843.
17. Nasonov EL, Rumyantsev AG, Samsonov MYu. Pharmacotherapy of autoimmune rheumatic diseases – from monoclonal antibodies to CAR-T cells: 20 years later. Nauchno-prakticheskaya revmatologiya 2024;62(3):262-279. (In Russ.).
18. Maslyanskii AL, Mazurov VI, Zotkin EG, et al. Anti-B-cell therapy of autoimmune diseases. Meditsinskaya immunologiya. 2007; 9(1):15-34. (In Russ.).
19. Nishimura K, Sugiyama D, Kogata Y, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med. 2007 Jun 5;146(11):797-808. doi: 10.7326/0003-4819-146-11-200706050-00008.
20. Maslyanskii AL, Lapin SV, Mazing AV, et al. Diagnostic significance of serological markers of rheumatoid arthritis. Nauchno-prakticheskaya revmatologiya. 2012;50(5):20-24. (In Russ.).
21. Nasonov EL. Problems of immunopathology of rheumatoid arthritis: the evolution of the disease. Nauchno-prakticheskaya revmatologiya. 2017;55(3):277-294. (In Russ.).
22. Kerkman PF, Fabre E, van der Voort EI, et al. Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Ann Rheum Dis. 2016 Jun;75(6): 1170-6. doi: 10.1136/annrheumdis-2014-207182. Epub 2015 Jun 1.
23. Kerkman PF, Rombouts Y, van der Voort EI, et al. Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis. Ann Rheum Dis. 2013 Jul;72(7):1259-63. doi: 10.1136/annrheumdis-2012-202893. Epub 2013 Apr 26.
24. Humby F, Bombardieri M, Manzo A, et al. Ectopic lymphoid structures support on-going production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 2009 Jan 13;6(1):e1. doi: 10.1371/journal.pmed.0060001.
25. Corsiero E, Bombardieri M, Carlotti E, et al. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann Rheum Dis. 2016 Oct;75(10):1866-75. doi: 10.1136/annrheumdis-2015-208356. Epub 2015 Dec 9.
26. Kerkman PF, Kempers AC, van der Voort EI, et al. Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anti-citrullinated protein antibodies. Ann Rheum Dis. 2016 Dec;75(12): 2201-2207. doi: 10.1136/annrheumdis-2015-208554. Epub 2016 Apr 11.
27. Volkov M, van Schie KA, van der Woude D. Autoantibodies and B Cells: The ABC of rheumatoid arthritis pathophysiology. Immunol Rev. 2020 Mar;294(1):148-163. doi: 10.1111/imr.12829. Epub 2019 Dec 16.
28. Steffen U, Schett G, Bozec A. How Autoantibodies Regulate Osteoclast Induced Bone Loss in Rheumatoid Arthritis. Front Immunol. 2019 Jul 3:10:1483. doi: 10.3389/fimmu.2019.01483. e Collection 2019.
29. Nie Y, Zhao L, Zhang X. B Cell Aberrance in Lupus: the Ringleader and the Solution. Clin Rev Allergy Immunol. 2022 Apr;62(2): 301-323. doi: 10.1007/s12016-020-08820-7. Epub 2021 Feb 3.
30. Yung S, Chan TM. Mechanisms of Kidney Injury in Lupus Nephritis – the Role of AntidsDNA Antibodies. Front Immunol. 2015 Sep 15:6:475. doi: 10.3389/fimmu.2015.00475. eCollection 2015.
31. Fayyaz A, Igoe A, Kurien BT, et al. Haematological manifestations of lupus. Lupus Sci Med. 2015 Mar 3;2(1):e000078. doi: 10.1136/lupus-2014-000078. E Collection 2015.
32. Nasonov EL, Reshetnyak TM, Solov'ev SK, Popkova TV. Systemic lupus erythematosus and antiphospholipid syndrome: yesterday, today, tomorrow. Terapevticheskii arkhiv 2023; 95(5):367-374. (In Russ.).
33. Lovgren T, Eloranta ML, Kastner B, et al. Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjogren's syndrome autoantigen-associated RNA. Arthritis Rheum. 2006 Jun;54(6):1917-27. doi: 10.1002/art.21893.
34. Melissaropoulos K, Iliopoulos G, Sakkas LI, Daoussis D. Pathogenetic Aspects of Systemic Sclerosis: A View Through the Prism of B Cells. Front Immunol. 2022 Jun 23:13:925741. doi: 10.3389/fimmu.2022.925741. e Collection 2022.
35. Fleischmajer R, Perlish JS, Reeves JR. Cellular infiltrates in scleroderma skin. Arthritis Rheum. 1977 May;20(4):975-84. doi: 10.1002/art.1780200410.
36. Lafyatis R, O'Hara C, Feghali-Bostwick CA, Matteson E. B cell infiltration in systemic sclerosis-associated interstitial lung disease. Arthritis Rheum. 2007 Sep;56(9):3167-8. doi: 10.1002/art.22847.
37. Roumm AD, Whiteside TL, Meds ger TA Jr, Rodnan GP. Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum. 1984 Jun;27(6): 645-53. doi: 10.1002/art.1780270607.
38. De Santis M, Bosello SL, Peluso G, et al. Bronchoalveolar lavage fluid and progression of scleroderma interstitial lung disease. Clin Respir J. 2012 Jan;6(1):9-17. doi: 10.1111/j.1752-699X.2010.00228.x. Epub 2010 Nov 25.
39. Sato S, Hasegawa M, Fujimoto M, et alK. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol. 2000 Dec 1;165(11):6635-43. doi: 10.4049/jimmunol.165.11.6635.
40. Lazareva NM, Lapin SV, Mazing AV, et al. Optimization of the complex of serological methods for the diagnosis of systemic connective tissue diseases. Klinicheskaya laboratornaya diagnostika. 2011;(12):12-17. (In Russ.)]
41. Dumoitier N, Chaigne B, Regent A, et al. Scleroderma Peripheral B Lymphocytes Secrete Interleukin-6 and Transforming Growth Factor beta and Activate Fibroblasts. Arthritis Rheumatol. 2017 May;69(5):1078-1089. doi: 10.1002/art.40016.
42. Francois A, Chatelus E, Wachsmann D, et al. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res Ther. 2013 Oct 28;15(5): R168. doi: 10.1186/ar4352.
43. Numajiri H, Kuzumi A, Fukasawa T, et al. B Cell Depletion Inhibits Fibrosis via Suppression of Profibrotic Macrophage Differentiation in a Mouse Model of Systemic Sclerosis. Arthritis Rheumatol. 2021 Nov;73(11): 2086-2095. doi: 10.1002/art.41798. Epub 2021 Sep 28.
44. Nasonov EL, editor. Russian clinical guidelines. Rheumatology. Moscow: GEOTAR Media; 2020.
45. Fassbinder T, Saunders U, Mickholz E, et al. Differential effects of cyclophosphamide and mycophenolate mofetil on cellular and serological parameters in patients with systemic lupus erythematosus. Arthritis Res Ther. 2015 Apr 3;17(1):92. doi: 10.1186/s13075-015-0603-8.
46. Lee YH, Bae SC, Song GG. The efficacy and safety of rituximab for the treatment of active rheumatoid arthritis: a systematic review and meta-analysis of randomized controlled trials. Rheumatol Int. 2011 Nov;31(11): 1493-9. doi: 10.1007/s00296-010-1526-y. Epub 2010 May 16.
47. Habibi MA, Alesaeidi S, Zahedi M, et al. The Efficacy and Safety of Rituximab in ANCA-Associated Vasculitis: A Systematic Review. Biology (Basel). 2022 Dec 6;11(12): 1767. doi: 10.3390/biology11121767.
48. Kaegi C, Wuest B, Schreiner J, et al. Systematic Review of Safety and Efficacy of Rituximab in Treating Immune-Mediated Disorders. Front Immunol. 2019 Sep 6:10: 1990. doi: 10.3389/fimmu.2019.01990. e Collection 2019.
49. Isaacs JD, Cohen SB, Emery P, et al. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: a meta-analysis. Ann Rheum Dis. 2013 Mar;72(3):329-36. doi: 10.1136/annrheumdis-2011-201117. Epub 2012 Jun 11.
50. Chatzidionysiou K, Lie E, Nasonov E, et al. Highest clinical effectiveness of rituxi mab in autoantibody-positive patients with rheumatoid arthritis and in those for whom no more than one previous TNF antagonist has failed: pooled data from 10 European regist ries. Ann Rheum Dis. 2011 Sep;70(9):1575-80. doi: 10.1136/ard.2010.148759. Epub 2011 May 12.
51. Pugliesi A, de Oliveira AB, Oliveira AB, et al. Compared efficacy of rituximab, abatacept, and tocilizumab in patients with rheumatoid arthritis refractory to methotrexa te or TNF inhibitors agents: a systematic review and network meta-analysis. Adv Rheumatol. 2023 Jul 6;63(1):30. doi: 10.1186/s42358-023-00298-z.
52. Avdeeva AS, Satybaldyev AM, Demidova NV, et al. Evaluation of rituximab therapy in real clinical practice (according to the OREL Register of Rheumatoid Arthritis patients). Nauchno-prakticheskaya revmatologiya 2019; 57(3):274-279. (In Russ.).
53. De Keyser F, Hoffman I, Durez P, et al. Longterm followup of rituximab therapy in patients with rheumatoid arthritis: results from the Belgian MabThera in Rheumatoid Arthritis registry. J Rheumatol. 2014 Sep; 41(9):1761-5. doi: 10.3899/jrheum.131279. Epub 2014 Aug 15.
54. Harrold LR, Reed GW, Shewade A, et al. Effectiveness of Rituximab for the Treatment of Rheumatoid Arthritis in Patients with Prior Exposure to Anti-TNF: Results from the CORRONA Registry. J Rheumatol. 2015 Jul;42(7):1090-8. doi: 10.3899/jrheum.141043. Epub 2015 May 1.
55. Wendler J, Burmester GR, Sorensen H, et al. Rituximab in patients with rheumatoid arthritis in routine practice (GERINIS): six-year results from a prospective, multicentre, non-interventional study in 2,484 pati ents. Arthritis Res Ther. 2014 Mar 26;16(2): R80. doi: 10.1186/ar4521.
56. Shah K, Cragg M, Leandro M, Reddy V. Anti-CD20 monoclonal antibodies in Systemic Lupus Erythematosus. Biologicals. 2021 Jan:69:1-14. doi: 10.1016/j.biologicals.2020.11.002. Epub 2020 Dec 4.
57. Roveta A, Parodi EL, Brezzi B, et al. Lupus Nephritis from Pathogenesis to New Therapies: An Update. Int J Mol Sci. 2024 Aug 18;25(16):8981. doi: 10.3390/ijms25168981.
58. Tanaka Y, Nakayamada S, Yamaoka K, et al. Rituximab in the real-world treatment of lupus nephritis: A retrospective cohort study in Japan. Mod Rheumatol. 2023 Jan 3;33(1): 145-153. doi: 10.1093/mr/roac007.
59. Li K, Yu Y, Gao Y, et al. Comparative Effectiveness of Rituximab and Common Induction Therapies for Lupus Nephritis: A Systema tic Review and Network Meta-Analysis. Front Immunol. 2022 Apr 4:13:859380. doi: 10.3389/fimmu.2022.859380. e Collection 2022.
60. Rovin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012 Apr;64(4):1215-26. doi: 10.1002/art.34359. Epub 2012 Jan 9.
61. Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in mode rately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2010 Jan;62(1):222-33. doi: 10.1002/art.27233.
62. Garzanova LA. Rituximab in the treatment of systemic scleroderma. Nauchno-prakticheskaya revmatologiya 2023;61(4):466-474. (In Russ.).
63. Goswami RP, Ray A, Chatterjee M, et al. Rituximab in the treatment of systemic sclerosis-related interstitial lung disease: a systematic review and meta-analysis. Rheumatology (Oxford). 2021 Feb 1;60(2):557-567. doi: 10.1093/rheumatology/keaa550.
64. Maher TM, Tudor VA, Saunders P, et al. Rituximab versus intravenous cyclophosphamide in patients with connective tissue disease-associated interstitial lung disease in the UK (RECITAL): a double-blind, doubledummy, randomised, controlled, phase 2b trial. Lancet Respir Med. 2023 Jan;11(1):45-54. doi: 10.1016/S2213-2600(22)00359-9. Epub 2022 Nov 11.
65. Lindenberg L, Spengler L, Bang H, et al. Restrictive IgG antibody response against mutated citrullinated vimentin predicts response to rituximab in patients with rheumatoid arthritis. Arthritis Res Ther. 2015 Aug 13; 17(1):206. doi: 10.1186/s13075-015-0717-z.
66. Pirone C, Mendoza-Pinto C, van der Windt DA, et al. Predictive and prognostic factors influencing outcomes of rituximab therapy in systemic lupus erythematosus (SLE): A systematic review. Semin Arthritis Rheum. 2017 Dec;47(3):384-396. doi: 10.1016/j.semarthrit.2017.04.010. Epub 2017 May 5.
67. Youkhana K, Heiling H, Deal A, Moll S. The Effect of Rituximab on Antiphospholipid Titers in Patients with Antiphospholipid Syndrome. TH Open. 2023 Jul 5;7(3):e191-e194. doi: 10.1055/s-0043-1770784. e Collection 2023 Jul.
68. Tomita A. Genetic and Epigenetic Modulation of CD20 Expression in B-Cell Malignancies: Molecular Mechanisms and Significance to Rituximab Resistance. J Clin Exp Hematop. 2016;56(2):89-99. doi: 10.3960/jslrt.56.89.
69. Hiraga J, Tomita A, Sugimoto T, et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemo therapies: its prevalence and clinical significance. Blood. 2009 May 14;113(20):4885-93. doi: 10.1182/blood-2008-08-175208. Epub 2009 Feb 26.
70. Ramwadhdoebe TH, van Baarsen LGM, Boumans MJH, et al. Effect of rituximab treatment on T and B cell subsets in lymph node biopsies of patients with rheumatoid arthritis. Rheumatology (Oxford). 2019 Jun 1;58(6):1075-1085. doi: 10.1093/rheumatology/key428.
71. Kamburova EG, Koenen HJ, Borgman KJ, et al. A single dose of rituximab does not deplete B cells in secondary lymphoid organs but alters phenotype and function. Am J Transplant. 2013 Jun;13(6):1503-11. doi: 10.1111/ajt.12220. Epub 2013 Apr 9.
72. Rehnberg M, Amu S, Tarkowski A, et al. Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis. Arthritis Res Ther. 2009;11(4):R123. doi: 10.1186/ar2789. Epub 2009 Aug 17.
73. Teng YK, Levarht EW, Toes RE, et al. Residual inflammation after rituximab treatment is associated with sustained synovial plasma cell infiltration and enhanced B cell repopulation. Ann Rheum Dis. 2009 Jun;68(6): 1011-6. doi: 10.1136/ard.2008.092791. Epub 2008 Jul 22.
74. Thurlings RM, Vos K, Wijbrandts CA, et al. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann Rheum Dis. 2008 Jul;67(7):917-25. doi: 10.1136/ard.2007.080960. Epub 2007 Oct 26.
75. Kennedy AD, Beum PV, Solga MD, et al. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J Immunol. 2004 Mar 1;172(5):3280-8. doi: 10.4049/jimmunol.172.5.3280.
76. Golay J, Zaffaroni L, Vaccari T, et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complementmediated cell lysis. Blood. 2000 Jun 15; 95(12):3900-8.
77. Furie RA, Aroca G, Cascino MD, et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2022 Jan;81(1):100-107. doi: 10.1136/annrheumdis-2021-220920. Epub 2021 Oct 6
78. Mossner E, Brunker P, Moser S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010 Jun 3;115(22):4393-402. doi: 10.1182/blood-2009-06-225979. Epub 2010 Mar 1.
79. Tobinai K, Klein C, Oya N, Fingerle-Rowson G. A Review of Obinutuzumab (GA101), a Novel Type II Anti-CD20 Monoclonal Antibody, for the Treatment of Patients with B-Cell Malignancies. Adv Ther. 2017 Feb;34(2):324-356. doi: 10.1007/s12325-016-0451-1. Epub 2016 Dec 21.
80. Rubin SJS, Bloom MS, Robinson WH. B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol. 2019 May;15(5): 303-315. doi: 10.1038/s41584-019-0211-0.
81. Wingerchuk DM, Lennon VA, et al. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006 May 23;66(10):1485-9. doi: 10.1212/01.wnl.0000216139.44259.74.
82. Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuro myelitis optica spectrum disorder (N-MO-mentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019 Oct 12;394(10206):1352-1363. doi: 10.1016/S0140-6736(19)31817-3. Epub 2019 Sep 5.
83. Flanagan EP, Levy M, Katz E, et al. Inebilizumab for treatment of neuromyelitis optica spectrum disorder in patients with prior rituximab use from the N-MOmentum Study. Mult Scler Relat Disord. 2022 Jan:57:103352. doi: 10.1016/j.msard.2021.103352. Epub 2021 Oct 26.
84. Schiopu E, Chatterjee S, Hsu V, et al. Safety and tolerability of an anti-CD19 monoclonal antibody, MEDI-551, in subjects with systemic sclerosis: a phase I, randomized, placebo-controlled, escalating single-dose study. Arthritis Res Ther. 2016 Jun 7;18(1): 131. doi: 10.1186/s13075-016-1021-2.
85. Stone JH, Khosroshahi A, Zhang W, et al. Inebilizumab for Treatment of IgG4-Related Disease. N Engl J Med. 2024 Nov 14. doi: 10.1056/NEJMoa2409712. Online ahead of print.
86. Malavasi F, Deaglio S, Funaro A, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008 Jul;88(3):841-86. doi: 10.1152/physrev.00035.2007.
87. Wardowska A, Komorniczak M, Skoniecka A, et al. Alterations in peripheral blood B cells in systemic lupus erythematosus patients with renal insufficiency. Int Immunopharmacol. 2020 Jun:83:106451. doi: 10.1016/j.intimp.2020.106451. Epub 2020 Apr 2.
88. Lugar PL, Love C, Grammer AC, et al. Molecular characterization of circulating plasma cells in patients with active systemic lupus erythematosus. PLoS One. 2012;7(9): e44362. doi: 10.1371/journal.pone.0044362. Epub 2012 Sep 21.
89. Cole S, Walsh A, Yin X, et al. Integrative analysis reveals CD38 as a therapeutic target for plasma cell-rich pre-disease and established rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther. 2018 May 2; 20(1):85. doi: 10.1186/s13075-018-1578-z.
90. Chang X, Yue L, Liu W, et al. CD38 and E2F transcription factor 2 have uniquely increased expression in rheumatoid arthritis synovial tissues. Clin Exp Immunol. 2014 May; 176(2):222-31. doi: 10.1111/cei.12268.
91. Sanchez L, Wang Y, Siegel DS, Wang ML. Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. J Hematol Oncol. 2016 Jun 30;9(1):51. doi: 10.1186/s13045-016-0283-0.
92. Alexander T, Ostendorf L, Zernicke J, et al. LBA0007 Safety and efficacy of daratumumab in systemic lupus erythematosus – a single-center phase 2 open-label trial. Ann Rheum Dis. 2024;83(Suppl 1):237-238. doi: 10.1136/annrheumdis-2024-eular.LBA26.
93. Roccatello D, Fenoglio R, Caniggia I, et al. Daratumumab monotherapy for refractory lupus nephritis. Nat Med. 2023 Aug;29(8): 2041-2047. doi: 10.1038/s41591-023-02479-1. Epub 2023 Aug 10.
94. Ostendorf L, Burns M, Durek P, et al. Targeting CD38 with Daratumumab in Refractory Systemic Lupus Erythematosus. N Engl J Med. 2020 Sep 17;383(12):1149-1155. doi: 10.1056/NEJMoa2023325.
95. Katsuyama E, Humbel M, Suarez- Fueyo A, et al. CD38 in SLE CD4 T cells promotes Ca(2+) flux and suppresses interleukin-2 production by enhancing the expression of GM2 on the surface membrane. Nat Commun. 2024 Sep 27;15(1):8304. doi: 10.1038/s41467-024-52617-7.
96. Carpenter RO, Evbuomwan MO, Pittaluga S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of ultiple myeloma. Clin Cancer Res. 2013 Apr 15;19(8):2048-60. doi: 10.1158/1078-0432.CCR-12-2422. Epub 2013 Jan 23.
97. Salazar-Camarena DC, Palafox-Sanchez CA, Cruz A, et al. Analysis of the receptor BCMA as a biomarker in systemic lupus erythematosus patients. Sci Rep. 2020 Apr 10;10(1):6236. doi: 10.1038/s41598-020-63390-0.
98. Rodriguez-Carrio J, Alperi-Lopez M, Lopez P, et al. Profiling of B-Cell Factors and Their Decoy Receptors in Rheumatoid Arthritis: Association With Clinical Features and Treatment Outcomes. Front Immunol. 2018 Oct 11:9:2351. doi: 10.3389/fimmu.2018.02351. e Collection 2018.
99. Nagatani K, Itoh K, Nakajima K, et al. Rheumatoid arthritis fibroblast-like synoviocytes express BCMA and are stimulated by APRIL. Arthritis Rheum. 2007 Nov;56(11): 3554-63. doi: 10.1002/art.22929.
100. Verdun N, Marks P. Secondary Cancers after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med. 2024 Feb 15;390(7): 584-586. doi: 10.1056/NEJMp2400209. Epub 2024 Jan 24.
101. Shah K, Leandro M, Cragg M, et al. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy? Clin Exp Immunol 2024; 217(1):15-30. doi: 10.1093/cei/uxae031
Review
For citations:
Lila AM, Maslyanskiy AL, Dibrov DA, Torgashina AV, Zotkin EG, Samsonov MY. Depletion-restitution therapy for autoimmune rheumatic diseases. Part 1. Fundamental prerequisites and efficacy of modern treatment technologies: anti-B-cell drugs and CAR-T therapy. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(2):7-17. https://doi.org/10.14412/1996-7012-2025-2-7-17