Деплеционно-реституционная терапия аутоиммунных ревматических заболеваний. Часть 2. Перспективы применения биспецифических антител
https://doi.org/10.14412/1996-7012-2025-3-7-18
Аннотация
Одним из наиболее многообещающих подходов для деплеционно-реституционной терапии представляется разработка и применение лекарственных препаратов, созданных на основе биспецифических моноклональных антител (БМА). Терапевтические БМА – генно-инженерные биологические препараты (ГИБП), сконструированные на основе молекул иммуноглобулинов, способные одновременно селективно связываться с несколькими разными антигенами и, таким образом, являющиеся перспективным инструментом для создания новых лекарственных препаратов. Основанные на подобном принципе лекарства, содержащие в структуре одной молекулы иммуноглобулина несколько (минимум 2) антигенраспознающих (Fab) фрагментов, один из которых специфичен для целевых рецепторов клеток-мишеней, а другой связывает и активирует CD3ε-домен молекулы CD3, компонента Т-клеточного рецептора, получили название биспецифических энгейджеров Т-клеток (bispecific t-cell engager, BiTE).
В настоящее время наиболее перспективным и многочисленным семейством терапевтических БМА являются BiTE, взаимодействующие с клетками-эффекторами гуморального звена иммунитета. Их способность вызывать деплецию клеток-мишеней в периферической крови и тканях ранее убедительно продемонстрирована при лечении резистентных вариантов онкогематологических заболеваний, таких как острый лимфобластный лейкоз из предшественников B-лимфоцитов, некоторые лимфопролиферативные заболевания и плазмоклеточные дискразии. В последние годы с учетом острой потребности в разработке новых методов лечения резистентных, прогностически неблагоприятных вариантов системных аутоиммунных ревматических заболеваний (САРЗ), наличия убедительной теоретической и экспериментальной базы, а также опубликованных позитивных результатов применения сходного по механизму действия метода CAR-T клеточной терапии было предпринято несколько попыток использования существующих препаратов БМА для лечения ревматических заболеваний.
Помимо BiTE, технология БМА позволяет создавать и другие варианты ГИБП с уникальными свойствами: оптимизированной (продленной) фармакокинетикой, способностью одновременно нейтрализовать несколько цитокинов, достигая синергического эффекта, а также модулировать функциональную активность заданных популяций клеток посредством селективного воздействия на рецепторы, контролирующие процессы клеточной активации (checkpoints).
Легкость стандартизации препаратов, созданных на основе БМА, отсутствие необходимости de novo изготавливать препарат для каждого пациента, возможность немедленного их применения, предсказуемая фармакокинетика (известный и ограниченный период полувыведения), гибкость режимов дозирования, допускающих медленную эскалацию дозы, возможность индивидуализации длительности лечения и кратности курсов, доступность проведения повторных циклов лечения, возможность отмены препарата в случае возникновения осложнений, существенно более низкая по сравнению с CAR-T клеточной терапией стоимость коротких циклов низкодозовой терапии, – все это делает данную технологию приоритетной для создания на ее основе новых лекарственных препаратов для деплеционно-реституционной терапии САРЗ.
Ключевые слова
Об авторах
А. Л. МаслянскийРоссия
115522, Москва, Каширское шоссе, 34А
197341, Санкт-Петербург, ул. Аккуратова, 2
199034, Санкт-Петербург, Университетская наб., 7–9
Д. А. Дибров
Россия
Данил Алексеевич Дибров
115522, Москва, Каширское шоссе, 34А
А. М. Лила
Россия
115522, Москва, Каширское шоссе, 34А
125993, Москва, ул. Баррикадная, 2/1, стр. 1
А. В. Торгашина
Россия
115522, Москва, Каширское шоссе, 34А
Е. Г. Зоткин
Россия
115522, Москва, Каширское шоссе, 34А
М. Ю. Самсонов
Россия
119421, Москва, Ленинский просп., 111
Г. А. Тогизбаев
Казахстан
050012, Алматы, ул. Толе би, 94
Литература
1. Ramirez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov. 2024 Jul;23(7):501-524. doi: 10.1038/ s41573-024-00959-8. Epub 2024 Jun 5.
2. Shah K, Leandro M, Cragg M, et al. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy? Clin Exp Immunol. 2024 Jun 20;217(1):15-30. doi: 10.1093/cei/ uxae031.
3. Van der Neut Kolfschoten M, Schuurman J, Losen M, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007 Sep 14;3 17(5844):1554-7. doi: 10.1126/science.1144603.
4. Rispens T, Huijbers MG. The unique properties of IgG4 and its roles in health and disease. Nat Rev Immunol. 2023 Nov;23(11): 763-778. doi: 10.1038/s41577-023-00871-z. Epub 2023 Apr 24.
5. Heiss MM, Murawa P, Koralewski P, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. Int J Cancer. 2010 Nov 1;127(9):2209-21. doi: 10.1002/ijc.25423.
6. Seimetz D, Lindhofer H, Bokemeyer C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x antiCD3) as a targeted cancer immunotherapy. Cancer Treat Rev. 2010 Oct;36(6):458-67. doi: 10.1016/j.ctrv.2010.03.001. Epub 2010 Mar 27.
7. Borlak J, Langer F, Spanel R, et al. Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcgamma receptors. Oncotarget 2016;7(19):28059-74. doi: 10.18632/oncotarget.8574.
8. Labrijn AF, Janmaat ML, Reichert JM, Parren P. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019 Aug;18(8):585-608. doi: 10.1038/s41573-019-0028-1.
9. Offner S, Hofmeister R, Romaniuk A, et al. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006 Feb;43(6):763-71. doi: 10.1016/j.molimm.2005.03.007. Epub 2005 Apr 26.
10. Loffler A, Kufer P, Lutterbuse R, et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000 Mar 15; 95(6):2098-103.
11. Viardot A, Goebeler ME, Hess G, et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/ refractory diffuse large B-cell lymphoma. Blood. 2016 Mar 17;127(11):1410-6. doi: 10.1182/blood-2015-06-651380. Epub 2016 Jan 11.
12. Boissel N, Chiaretti S, Papayannidis C, et al. Real-world use of blinatumomab in adult patients with B-cell acute lymphoblastic leukemia in clinical practice: results from the NEUF study. Blood Cancer J. 2023 Jan 4; 13(1):2. doi: 10.1038/s41408-022-00766-7.
13. Thompson PA, Jiang X, Banerjee P, et al. A phase two study of high dose blinatumomab in Richter's syndrome. Leukemia. 2022 Sep; 36(9):2228-2232. doi: 10.1038/s41375-022-01649-3. Epub 2022 Aug 8.
14. Lantz J, Pham N, Jones C, et al. Blinatumomab in Practice. Curr Hematol Malig Rep. 2024 Feb;19(1):1-8. doi: 10.1007/s11899-023-00714-7. Epub 2023 Dec 7.
15. Blair HA. Odronextamab: First Approval. Drugs. 2024 Dec;84(12):1651-1658. doi: 10.1007/s40265-024-02112-6. Epub 2024 Nov 19.
16. Surowka M, Klein C. A pivotal decade for bispecific antibodies? MAbs. 2024 Jan-Dec; 16(1):2321635. doi: 10.1080/19420862.2024.2321635. Epub 2024 Mar 11.
17. Strohl WR. Structure and function of therapeutic antibodies approved by the US FDA in 2023. Antib Ther. 2024 Mar 19;7(2): 132-156. doi: 10.1093/abt/tbae007. eCollection 2024 Apr.
18. Caracciolo D, Mancuso A, Polera N, et al. The emerging scenario of immunotherapy for T-cell Acute Lymphoblastic Leukemia: advances, challenges and future perspectives. Exp Hematol Oncol. 2023 Jan 9;12(1):5. doi: 10.1186/s40164-022-00368-w.
19. Xia Y, Liu J, Pearlman A, et al. Bispecific Autoantigen-T Cell Engagers (BaiTE) to Selectively Target Autoreactive B Cells in Antiphospholipid Syndrome [abstract]. Arthritis Rheumatol. 2024;76(suppl 9):0837.
20. Tsumoto K, Takeuchi T. Next-Generation Anti-TNFalpha Agents: The Example of Ozoralizumab. BioDrugs. 2024 May;38(3): 341-351. doi: 10.1007/s40259-024-00648-3. Epub 2024 Apr 8.
21. Ishiwatari-Ogata C, Kyuuma M, Ogata H, et al. Ozoralizumab, a Humanized Anti-TNFalpha NANOBODY((R)) Compound, Exhibits Efficacy Not Only at the Onset of Arthritis in a Human TNF Transgenic Mouse but Also During Secondary Failure of Administration of an Anti-TNFalpha IgG. Front Immunol. 2022 Feb 22:13:853008. doi: 10.3389/fimmu.2022.853008. eCollection 2022.
22. Oyama S, Ebina K, Etani Y, et al. A novel anti-TNF-alpha drug ozoralizumab rapidly distributes to inflamed joint tissues in a mouse model of collagen induced arthritis. Sci Rep. 2022 Oct 27;12(1):18102. doi: 10.1038/s41598-022-23152-6.
23. Kyuuma M, Kaku A, Mishima-Tsumagari C, et al. Unique structure of ozoralizumab, a trivalent anti-TNFalpha NANOBODY((R)) compound, offers the potential advantage of mitigating the risk of immune complex-induced inflammation. Front Immunol. 2023 Apr 14:14:1149874. doi: 10.3389/fimmu.2023.1149874. eCollection 2023.
24. Tanaka Y, Miyazaki Y, Kawanishi M, et al. Long-term safety and efficacy of antiTNF multivalent VHH antibodies ozoralizumab in patients with rheumatoid arthritis. RMD Open. 2024 Aug 22;10(3):e004480. doi: 10.1136/rmdopen-2024-004480.
25. Takeuchi T, Nakanishi M, Kawanishi M, et al. Effect of the extended dosing interval of anti-TNF-alpha NANOBODY(R) compound ozoralizumab in patients with low disease activity rheumatoid arthritis. Mod Rheumatol. 2024 Jul 6;34(4):678-685. doi: 10.1093/mr/road097.
26. Zhang M, Lee F, Knize A, et al. Development of an ICOSL and BAFF bispecific inhibitor AMG 570 for systemic lupus erythematosus treatment. Clin Exp Rheumatol. 2019 Nov-Dec;37(6):906-914. Epub 2019 Feb 15.
27. Stefanski AL, Dorner T. Immune checkpoints and the multiple faces of B cells in systemic lupus erythematosus. Curr Opin Rheumatol. 2021 Nov 1;33(6):592-597. doi: 10.1097/BOR.0000000000000825.
28. Ferraccioli G, Gremese E. B cell activating factor (BAFF) and BAFF receptors: fakes and facts. Clin Exp Immunol. 2017 Dec;190(3): 291-292. doi: 10.1111/cei.13039. Epub 2017 Sep 28.
29. Abuqayyas L, Cheng LE, Teixeira Dos Santos M, et al. Safety and Biological Activity of Rozibafusp alfa, a Bispecific Inhibitor of Inducible Costimulator Ligand and B Cell Activating Factor, in Patients With Rheumatoid Arthritis: Results of a Phase 1b, Randomized, Double-Blind, Placebo-Controlled, Multiple Ascending Dose Study. ACR Open Rheumatol. 2022 Oct;4(10):903-911. doi: 10.1002/acr2.11487. Epub 2022 Jul 27.
30. Chu SY, Vostiar I, Karki S, et al. Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcgammaRIIb with Fc-engineered antibodies. Mol Immunol. 2008 Sep;45(15): 3926-33. doi: 10.1016/j.molimm.2008.06.027. Epub 2008 Aug 8.
31. Horton HM, Chu SY, Ortiz EC, et al. Antibody-mediated coengagement of FcgammaRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J Immunol. 2011 Apr 1;186(7): 4223-33. doi: 10.4049/jimmunol.1003412. Epub 2011 Feb 28.
32. Perugino CA, Wallace ZS, Zack DJ, et al. Evaluation of the safety, efficacy, and mechanism of action of obexelimab for the treatment of patients with IgG4-related disease: an open-label, single-arm, single centre, phase 2 pilot trial. Lancet Rheumatol. 2023 Aug; 5(8):e442-e450. doi: 10.1016/S2665-9913(23)00157-1. Epub 2023 Jul 24.
33. Jakubzick C, Choi ES, Joshi BH, et al. Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells. J Immunol. 2003 Sep 1;171(5):2684-93. doi: 10.4049/jimmunol.171.5.2684.
34. Rafii R, Juarez MM, Albertson TE, Chan AL. A review of current and novel therapies for idiopathic pulmonary fibrosis. J Thorac Dis. 2013 Feb;5(1):48-73. doi: 10.3978/j.issn.2072-1439.2012.12.07.
35. Izuhara K, Conway SJ, Moore BB, et al. Roles of Periostin in Respiratory Disorders. Am J Respir Crit Care Med. 2016 May 1; 193(9):949-56. doi: 10.1164/rccm.201510-2032PP.
36. Raghu G, Richeldi L, Crestani B, et al. SAR156597 in idiopathic pulmonary fibrosis: a phase 2 placebo-controlled study (DRI11772). Eur Respir J. 2018 Dec 13;52(6): 1801130. doi: 10.1183/13993003.01130-2018. Print 2018 Dec.
37. Allanore Y, Wung P, Soubrane C, et al. A randomised, double-blind, placebo-controlled, 24-week, phase II, proof-of-concept study of romilkimab (SAR156597) in early diffuse cutaneous systemic sclerosis. Ann Rheum Dis. 2020 Dec;79(12):1600-1607. doi: 10.1136/annrheumdis-2020-218447. Epub 2020 Sep 22.
38. Silacci M, Lembke W, Woods R, et al. Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases. MAbs. 2016;8(1):141-9. doi: 10.1080/19420862.2015.1093266. Epub 2015 Sep 22.
39. Khatri A, Othman AA. Population Pharmacokinetics of the TNF-alpha and IL-17A Dual-Variable Domain Antibody ABT-122 in Healthy Volunteers and Subjects With Psoriatic or Rheumatoid Arthritis: Analysis of Phase 1 and 2 Clinical Trials. J Clin Pharmacol. 2018 Jun;58(6):803-813. doi: 10.1002/jcph.1068. Epub 2018 Jan 24.
40. Khatri A, Klunder B, Peloso PM, Othman AA. Exposure-response analyses demonstrate no evidence of interleukin 17A contribution to efficacy of ABT-122 in rheumatoid or psoriatic arthritis. Rheumatology (Oxford). 2019 Feb 1;58(2):352-360. doi: 10.1093/rheumatology/key312.
41. Kroenke MA, Milton MN, Kumar S, et al. Immunogenicity Risk Assessment for Multi-specific Therapeutics. AAPS J. 2021 Nov 5;23(6):115. doi: 10.1208/s12248-021-00642-5.
42. Bucci L, Hagen M, Rothe T, et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat Med. 2024 Jun; 30(6):1593-1601. doi: 10.1038/s41591-024-02964-1. Epub 2024 Apr 26.
43. Subklewe M, Magno G, Gebhardt C, et al. Application of blinatumomab, a bispecific anti-CD3/CD19 T-cell engager, in treating severe systemic sclerosis: A case study. Eur J Cancer. 2024 Jun:204:114071. doi: 10.1016/j.ejca.2024.114071. Epub 2024 Apr 22.
44. Guo Y, Quijano Carde NA, Kang L, et al. Teclistamab: Mechanism of action, clinical, and translational science. Clin Transl Sci. 2024 Jan;17(1):e13717. doi: 10.1111/cts.13717.
45. Alexander T, Kronke J, Cheng Q, et al. Teclistamab-Induced Remission in Refractory Systemic Lupus Erythematosus. N Engl J Med. 2024 Sep 5;391(9):864-866. doi: 10.1056/NEJMc2407150.
46. Hagen M, Bucci L, Boltz S, et al. BCMA-Targeted T-Cell-Engager Therapy for Autoimmune Disease. N Engl J Med. 2024 Sep 5;391(9):867-869. doi: 10.1056/NEJMc2408786.
47. Kollert F, Regenass F, Hallet R, et al. AB1034 Characterization of RO7507062, A CD19-targeting T-cell bispecific antibody (CD19TCB), and design of a phase 1 trial in systemic lupus erythematosus. Ann Rheum Dis. 2024;83(Suppl 1):1837-1838. doi: 10.1136/annrheumdis-2024-eular.1802.
48. Van de Donk N, O'Neill C, de Ruijter MEM, Verkleij CPM, Zweegman S. T-cell redirecting bispecific and trispecific antibodies in multiple myeloma beyond BCMA. Curr Opin Oncol. 2023 Nov 1;35(6):601-611. doi: 10.1097/CCO.0000000000000983. Epub 2023 Jul 24.
49. Robinson WH, Fiorentino D, Chung L, et al. Cutting-edge approaches to B-cell depletion in autoimmune diseases. Front Immunol. 2024 Oct 9:15:1454747. doi: 10.3389/fimmu.2024.1454747. eCollection 2024.
50. Gurumurthi A, Westin J, Subklewe M. The race is on: bispecifics vs CAR T cells in B-cell lymphoma. Blood Adv. 2023 Oct 10; 7(19):5713-5716. doi: 10.1182/bloodadvances.2022009066.
51. Kim J, Cho J, Lee MH, et al. CAR T cells vs bispecific antibody as third- or later-line large B-cell lymphoma therapy: a meta-analysis. Blood. 2024 Aug 8;144(6):629-638. doi: 10.1182/blood.2023023419.
52. Trabolsi A, Arumov A, Schatz JH. Bispecific antibodies and CAR-T cells: dueling immunotherapies for large B-cell lymphomas. Blood Cancer J. 2024 Feb 8;14(1):27. doi: 10.1038/s41408-024-00997-w.
53. Насонов ЕЛ, Румянцев АГ, Самсонов МЮ. Фармакотерапия аутоиммунных ревматических заболеваний – от моноклональных антител к CAR-T-клеткам: 20 лет спустя. Научно-практическая ревматология. 2024;62(3):262-279.
54. Schett G, Muller F, Taubmann J, et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat Rev Rheumatol. 2024 Sep;20(9):531-544. doi: 10.1038/s41584-024-01139-z. Epub 2024 Aug 6.
55. Mog B, Shaw E, Hwang M, et al. Chimeric Autoantigen-T Cell Receptor (CATCR)-T Cell Therapies to Selectively Target Autoreactive B Cells [abstract]. Arthritis Rheumatol. 2022;74(suppl 9):1677.
56. Del Bufalo F, Becilli M, Rosignoli C, et al. Allogeneic, donor-derived, secondgeneration, CD19-directed CAR-T cells for the treatment of pediatric relapsed/refractory BCP-ALL. Blood. 2023 Jul 13;142(2): 146-157. doi: 10.1182/blood.2023020023.
57. Perico L, Casiraghi F, Sonego F, et al. Bi-specific autoantigen-T cell engagers as targeted immunotherapy for autoreactive B cell depletion in autoimmune diseases. Front Immunol. 2024 Feb 26:15:1335998. doi: 10.3389/fimmu.2024.1335998.eCollection 2024.
Рецензия
Для цитирования:
Маслянский АЛ, Дибров ДА, Лила АМ, Торгашина АВ, Зоткин ЕГ, Самсонов МЮ, Тогизбаев ГА. Деплеционно-реституционная терапия аутоиммунных ревматических заболеваний. Часть 2. Перспективы применения биспецифических антител. Современная ревматология. 2025;19(3):7-18. https://doi.org/10.14412/1996-7012-2025-3-7-18
For citation:
Maslyanskiy AL, Dibrov DA, Lila AM, Torgashina AV, Zotkin EG, Samsonov MY, Togizbayev GA. Depletion-restitution therapy of autoimmune rheumatic diseases. Part 2. Perspectives on bispecific antibodies. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(3):7-18. (In Russ.) https://doi.org/10.14412/1996-7012-2025-3-7-18