Preview

Современная ревматология

Расширенный поиск

Остеоартроз: старая болезнь, новые подходы

https://doi.org/10.14412/1996-7012-2013-2388

Полный текст:

Аннотация

Остеоартроз (ОА) — одно из самых распространенных заболеваний пожилого возраста, тем не менее его лечение требует дальнейшего изучения. Современные представления о патофизиологии ОА, роли субхондральной кости (СК), взаимодействии СК и суставного хряща в процессе развития заболевания меняются. Данные последних исследований позволяют говорить о новых терапевтических стратегиях, одной из которых является применение стронция ранелата с целью замедления прогрессирования разрушения хряща при ОА коленного и тазобедренного суставов.

Об авторе

А. И. Дубиков



Литература

1. <div><p>Loeser R.F., Goldring S.R., Scanzello C.R., Goldring M.B. Osteoarthritis, a disease of the joint as an organ. Arthr Rheum 2012;64(6):1697—707.</p><p>Meachim G. The effect of scarification on articular cartilage in the rabbit. J Bone Jt Surg Br 1963;45:150-61.</p><p>Radin E., Paul I., Tolkoff M. Subchondral bone damage in patients with early degenerative joint disease. Arthr Rheum 1970;13:400-5.</p><p>Carlson C.S., Loesser R.F., Purser C.B. et al. Osteoarthritis in cynomolgus macaques: A primate model of naturally occurring disease. J Orthop Res 1994;12:331-9.</p><p>Carlson C.S., Loeser R.F., Purser C.B. et al. Osteoarthritis in cynomolgus macaques. III: effects of age, gender, and subchondral bone thickness on the severity of disease. J Bone Min Res 1996;11:1209-17.</p><p>Henrotin Y., Labasse A., Zheng S.X. et al. Strontium ranelate increases cartilage matrix formation. J Bone Min Res 2001;16:299-308.</p><p>Benske J., Schunke M., Tillmann B. Subchondral bone formation in arthritis. Polychrome labeling studies in mice. Acta Orthop Scand 1988;59:536-41.</p><p>Wu D.D., Burr D.B., Boyd R.D., Radin E.L. Bone and cartilage changes following experimental varus or valgus tibial angulation. J Orthop Res 1990; 8: 572—85.</p><p>Intema F., Sniekers Y.H., Weinans H. et al. Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis. J Bone Miner Res 2010;25:1650-57.</p><p>Bellido M., Lugo L., Roman-Blas J.A. et al. Subchondral bone microstructural damage by increased remodeling aggravates experimental osteoarthritis preceded by osteoporosis. Arth Res Ther 2010;12:R152.</p><p>Sniekers Y.H., Intema F., Lafeber F.P. et al. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BME Musculoskel Dis 2008;9:20.</p><p>Bolbos R.I., Zuo J., Banerjee S. et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3T. Osteoarthr Cartil 2008;16:1150-59.</p><p>Cox L.G., van Donkelaar E., van Rietbergen C.C. et al. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis. Bone 2012;50:1152-61.</p><p>Bentolila V., Boyce T.M., Fyhrie D.P. et al. Intracortical remodeling in adult rat long bones after fatigue loading. Bone 1998;23:275-81.</p><p>Verborgt O., Gibson G.J., Schaffler M.B. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Min Res 2000;15:60-7.</p><p>Brown T.D., Radin E.L., Martin R.B., Burr D.B. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech 1984;17:11-24.</p><p>Kennedy O.D., Herman B.C., Laudier D.M. et al. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte cell populations. Bone 2012;50:1115-22.</p><p>Nakashima T., Hayashi M., Fukunaga T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 2011;17:2131-34.</p><p>Kwan T.S., Amiable N., Pelletier J-P. et al. Modulation of, OPG, RANK, and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford) 2009;48:1482-90.</p><p>Brown R.A., Tomlinson I.W., Hill C.R. et al. Relationship of angiogenesis factor in synovial fluid to various joint diseases. Ann Rheum Dis 1983;42:301-7.</p><p>Botter S.M., Glasson S.S., Hopkins B. et al. ADAMTS5Р/Р mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and sucbchondral bone changes. Osteoarthr Cartil 2009;17:636-45.</p><p>Brown R.A., Weiss J.B. Neovascularisation and its role in the osteoarthritic process. Ann Rheum Dis 1988;47:881-5.</p><p>Luyten F.R., Lories R.J., Verschueren U. et al. Contemporary concepts of inflammation, damage and repair in rheumatic diseases. Best Pract Res Clin Rheum 2006;5: 829-48.</p><p>Clark J.M., Huber J.D. The structure of the human subchondral plate. J Bone Jt Surg Br 1990;72:866-73.</p><p>Duncan H., Jundt J., Riddle J.M. et al. The tibial subchondral plate. A scanning electron microscopic study. J Bone Jt Surg Am 1987;69:1212-20.</p><p>Lyons T.J., McClure S.F., Stoddart R.W., McClure J. The normal human chondroosseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskel Dis 2006;7:52.</p><p>Hwang J., Bae W.C., Shieu W. et al. Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthr Rheum 2008;58:3831-42.</p><p>Pan J., Wang B., Li W. et al. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 2012;51:212-7.</p><p>Karsdal M.A., Leeming D.J., Dam E.B. et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthr Cartil 2008;16:638-46.</p><p>Coats A.M., Zioupos P., Aspden R.M. Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis. Calcif Tiss Int 2003;73:66-71.</p><p>Li B., Aspden R.M. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis and osteoarthritis. J Bone Min Res 1997;12:641-51.</p><p>Mansell J.P., Bailey A.J. Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest 1998;101:1596-603.</p><p>Chan T.F., Couchourel D., Abed Г. et al. Elevated Dickkopf-2 levels contribute to the abnormal phenotype of human osteoarthritic osteoblasts. J Bone Miner Res 2011;26:1399-410.</p><p>Li X., Liu P., Liu W. et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 2005;37:945-52.</p><p>Blom A.B., Brockbank S.M., van Lent P.L. et al. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arth Rheum 2009;60:501-12.</p><p>Luyten F.P., Tylzanowski P., Lories R.J. Wnt signaling and osteoarthritis. Bone 2009;44:522-7.</p><p>Johnson M.L., Gong G.D., Kimberling W. et al. Linkage of a gene causing high bone mass to human chromosome 11 (11q12—13). Am J Hum Genet 1997;60:1326-32.</p><p>Huebner J.L., Hanes M.A., Beckman B. et al. A comparative analysis of bone and cartilage metabolism in two strains of guinea-pig with varying degrees of naturally occurring osteoarthritis. Osteoarthr Cartil 2002; 10:758-67.</p><p>Kadri A., Ea H.K., Bazille C. et al. Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arth Rheum 2008;58:2379-86.</p><p>Bellido M., Lugo L., Roman-Blas J.A. et al. Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthr Cartil 2011;19:1228-36.</p><p>Burr D.B., Gallant M.A. Bone remodeling in osteoarthritis. Nat Rev Rheum 2012;8:665-73.</p><p>Bingham C.O., Buckland-Wright J.C., Garnero P. et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arth Rheum 2006;54:3494-507.</p><p>Saag K.G. Bisphosphonates for osteoarthritis prevention: «Holy Grail» or not? Ann Rheum Dis 2008;67:1358-9.</p><p>Cirillo D.J., Wallace R.B., Wu L., Yood R.A. Effect of hormone therapy on risk of hip and knee joint replacement in the Women’s Health Initiative. Arth Rheum 2006;54:3194-204.</p><p>Karsdal M.A., Byrjalsen I., Leeming D.J., Christiansen C. Tibolone inhibits bone resorption without secondary positive effects on cartilage degradation. BMC Musculoskel Dis 2008;9:153-60.</p><p>Nevitt M.C., Felson D.T., Williams E.N., Grady D. Heart and Estrogen/Progestin Replacement Study Research Group. The effect of estrogen plus progestin on knee symptoms and related disability in post-menopausal women: the Heart and Estrogen/Progestin Replacement Study, a randomized, double-blind, placebo-controlled trial. Arth Rheum 2001;44:811-8.</p><p>Alexandersen P., Karsdal M.A., Qvist P. et al. Strontium ranelate reduces the urinary level of cartilage degradation biomarker CTX-II in postmenopausal women. Bone 2007;40:218-22.</p><p>Bruyere O., Delferriere D., Roux C. et al. Effects of strontium ranelate on spinal osteoarthritis progression. Ann Rheum Dis 2008;67:335-9.</p><p>Kwan T.S., Pelletier J.P., Mineau F. et al. Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts. Bone 2011;49:559-67.</p><p>Fournier C., Perrier A., Thomas M. еt al. Reduction by strontium of the bone marrow adiposity in mice and repression of the adipogenic commitment of multipotent C3H10T1/2 cells. Bone 2012;50:499-509.</p><p>Saidak Z., Hay E., Marty C. et al. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell 2012;11:467-74.</p><p>Pelletier J.-P., Kapoor M., Fahmi H. et al. Strontium ranelate reduces the progression of experimental dog osteoarthritis by inhibiting the expression of key proteases in cartilage and of IL-1 β in the synovium. Ann Rheum Dis 2012; 00:1-8. doi: 10.1136/annrheumdis-2012—201710.</p><p>Yu D., Ding H., Mao Y. et al. Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model. Acta Pharmacologica Sinica 2013 (advance online publication, Jan); doi: 10.1038/aps.2012.167.</p><p>Reginster J.-Y., Badurski J., Bellamy N. et al. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial. Ann Rheum Dis 2013;72(2): 179-86.</p></div><br />


Для цитирования:


Дубиков А.И. Остеоартроз: старая болезнь, новые подходы. Современная ревматология. 2013;7(2):82-86. https://doi.org/10.14412/1996-7012-2013-2388

For citation:


Dubikov A.I. Osteoarthrosis: An old disease, novel approaches. Modern Rheumatology Journal. 2013;7(2):82-86. (In Russ.) https://doi.org/10.14412/1996-7012-2013-2388

Просмотров: 819


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)