Preview

Modern Rheumatology Journal

Advanced search

EICOSANOIDS AND INFLAMMATION

https://doi.org/10.14412/1996-7012-2016-4-73-86

Abstract

Inflammation is the most important element in the pathogenesis of major human diseases. It determines the fundamental value of anti-inflammatory therapy in the modern concept of targeted pathogenetic treatment. The rational choice of anti-inflammatory drugs and the design of new promising agents are inconceivable without clear knowledge of the characteristics of development of an inflammatory response. Eicosanoids, the metabolites of polyunsaturated fatty acids, play a key role in the process of inflammation. These substances have diverse and frequently antagonistic biological effects, which is determined by their chemical structure and specific features of receptors with which they interact. Some of them (prostaglandins, leukotrienes, auxins, and hepoxilins) are potential mediators of inflammation and pain; others (lipoxins, epoxyeicosatrienoic acid derivatives, resolvins, protectins, maresins, and endocannabinoids) have anti-inflammatory and cytoprotective activities, contributing to the resolution of the inflammatory response. This review describes considers the main classes of eicosanoids, their metabolism, effects, and clinical significance, as well as the possibilities of pharmacological interventions in their synthesis or interaction with receptors. 

About the Authors

A. E. Karateev
V.A. Nasonova Research Institute of Rheumatology
Russian Federation
Contact: Andrei Evgenyevich Karateev; V.A. Nasonova Research Institute of Rheumatology, 34A, Kashirskoe Shosse, Moscow 115522


T. L. Aleinikova
I.M. Sechenov First Moscow State Medical University
Russian Federation


References

1. Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science. 2013 Jan 11; 339(6116):166-72. doi:10.1126/science.1230720.

2. Scrivo R, Vasile M, Bartosiewicz I, Valesini G. Inflammation as «common soil» of the multifactorial diseases. Autoimmun Rev. 2011 May;10(7):369-74. doi:10.1016/j.autrev.2010.12.006. Epub 2010 Dec 30.

3. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015 Aug;173(2):370-8. doi:10.1111/bjd.13954. Epub 2015 Jul 14.

4. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011 Dec 8;365(23):2205-19. doi: 10.1056/NEJMra1004965.

5. Samadi AK, Bilsland A, Georgakilas AG, et al. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol. 2015 Dec;35 Suppl:S151-84. doi:10.1016/j.semcancer.2015.03.006. Epub 2015 May 5.

6. Robinson WH, Lepus CM, Wang Q, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016 Oct;12(10):580-92. doi:10.1038/nrrheum.2016.136. [Epub 2016 Aug 19]

7. Ridker PM, Lü scher TF. Anti-inflammatory therapies for cardiovascular disease. Eur Heart J. 2014 Jul 14;35(27):1782-91. doi:10.1093/eurheartj/ehu203. Epub 2014 May 26.

8. Minghetti L. Role of COX-2 in inflammatory and degenerative brain diseases. Subcell Biochem. 2007;42:127-41.

9. Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015 Feb 26;160(5):816-27.doi:10.1016/j.cell.2015.02.010.

10. Van Dyke TE, Kornman KS. Inflammation and factors that may regulate inflammatory response. J Periodontol. 2008 Aug;79(8 Suppl):1503-7. doi:10.1902/jop.2008.080239.

11. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010 Mar 19;140(6):871-82. doi: 10.1016/j.cell.2010.02.029.

12. Freire MO, Van Dyke TE. Natural resolution of inflammation. Periodontol 2000. 2013 Oct;63(1):149-64. doi:10.1111/prd.12034.

13. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011 Feb;30(1):16-34. doi:10.3109/08830185.2010.529976.

14. Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 2005 Aug;26(8):447-54.

15. Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol. 2007;25:101-37.

16. Braga TT, Agudelo JS, Camara NO. Macrophages During the Fibrotic Process: M2 as Friend and Foe. Front Immunol. 2015 Nov 25;6:602. doi:10.3389/fimmu.2015.00602. eCollection 2015.

17. Насонов ЕЛ, Александрова ЕН, Авдеева АС, Рубцов ЮП. Т-регуляторые клетки при ревматоидном артрите. Научно-практическая ревматология. 2014;52(4):430–7. [Nasonov EL, Aleksandrova EN, Avdeeva AS, Rubtsov YuP. T-regulatory cells in rheumatoid arthritis. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practice. 2014;52(4):430–7. (In Russ.)]. DOI:10.14412/1995-4484-2014-430-437

18. Crean D, Godson C. Specialised lipid mediators and their targets. Semin Immunol. 2015 May;27(3):169-76. doi: 10.1016/j.smim. 2015.05.002. Epub 2015 Jun 3.

19. Weylandt KH. Docosapentaenoic acid derived metabolites and mediators – The new world of lipid mediator medicine in a nutshell. Eur J Pharmacol. 2016 Aug 15;785: 108-15. doi:10.1016/j.ejphar.2015.11.002.Epub 2015 Nov 10.

20. Dennis EA, Cao J, Hsu YH, et al. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev. 2011 Oct 12;111(10): 6130-85. doi:10.1021/cr200085w. Epub 2011 Sep 12.

21. Dennis EA, Norris PC. Eicosanoid storm in infection and inflammation. Nat Rev Immunol. 2015 Aug;15(8):511-23. doi:10.1038/nri3859. Epub 2015 Jul 3.

22. Buczynski MW, Dumlao DS, Dennis EA. Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res. 2009 Jun;50(6):1015-38. doi:10.1194/jlr.R900004-JLR200. Epub 2009 Feb 24.

23. Newcomer ME, Gilbert NC. Location, location, location: compartmentalization of early events in leukotriene biosynthesis. J Biol Chem. 2010 Aug 13;285(33):25109-14. doi:10.1074/jbc.R110.125880. Epub 2010 May 27.

24. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Cyclooxygenase pathways. Acta Biochim Pol. 2014;61(4): 639-49. Epub 2014 Oct 23.

25. Ueno N, Takegoshi Y, Kamei D, et al. Coupling between cyclooxygenases and terminal prostanoid synthases. Biochem Biophys Res Commun. 2005 Dec 9;338(1):70-6. Epub 2005 Aug 29.

26. Ganesh T. Prostanoid receptor EP2 as a therapeutic target. J Med Chem. 2014 Jun 12;57(11):4454-65. doi:10.1021/jm401431x. Epub 2013 Dec 4.

27. Chen C. COX-2's new role in inflammation. Nat Chem Biol. 2010 Jun;6(6):401-2. doi:10.1038/nchembio.375.

28. Harizi H. Epigenetic regulations of inflammatory cyclooxygenase-derived prostanoids: molecular basis and pathophysiological consequences. Mediators Inflamm. 2015;2015:841097. doi:10.1155/2015/841097. Epub 2015 Apr 6.

29. Brzozowski T, Konturek PC, Konturek SJ, et al. Role of prostaglandins in gastroprotection and gastric adaptation. J Physiol Pharmacol. 2005 Sep;56 Suppl 5:33-55.

30. Ellinsworth DC, Shukla N, Fleming I, Jeremy JY. Interactions between thromboxane AВ, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. Cardiovasc Res. 2014 Apr 1;102(1):9-16. doi:10.1093/cvr/cvu015. Epub 2014 Jan 26.

31. Sellers MM, Stallone JN. Sympathy for the devil: the role of thromboxane in the regulation of vascular tone and blood pressure. Am J Physiol Heart Circ Physiol. 2008 May;294(5):H1978-86. doi:10.1152/ajpheart.01318.2007. Epub 2008 Feb 29.

32. Gryglewski RJ. Prostacyclin among prostanoids. Pharmacol Rep. 2008 Jan-Feb; 60(1):3-11.

33. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem. 1996 Dec 27;271(52):33157-60.

34. Chen L, Yang G, Grosser T. Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat. 2013 Jul-Aug;104-105:58-66. doi:10.1016/j.prostaglandins.2012.08.006. Epub 2012 Sep 3.

35. Rossitto M, Ujjan S, Poulat F, BoizetBonhoure B. Multiple roles of the prostaglandin D2 signaling pathway in reproduction. Reproduction. 2015 Jan;149(1):R49-58. doi: 10.1530/REP-14-0381. Epub 2014 Sep 30.

36. Le Loupp AG, Bach-Ngohou K, Bettan A, et al. Dual role for prostaglandin D2 in intestinal epithelial homeostasis. Med Sci (Paris). 2015 Jun-Jul;31(6-7):617-21. doi:10.1051/medsci/20153106014. Epub 2015 Jul 7.

37. Basu S. Bioactive eicosanoids: role of prostaglandin F(2α) and FВ-isoprostanes in inflammation and oxidative stress related pathology. Mol Cells. 2010 Nov;30(5):383-91. doi:10.1007/s10059-010-0157-1. Epub 2010 Nov 18.

38. Fan C, Katsuyama M, Wei H, et al. Molecular mechanisms underlying PGF2alpha-induced hypertrophy of vascular smooth muscle cells. Yakugaku Zasshi. 2010 Feb;130(2):211-4.

39. Kapadia R, Yi JH, Vemuganti R. Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci. 2008 Jan 1;13:1813-26.

40. Malmsten CL. Prostaglandins, thromboxanes, and leukotrienes in inflammation. Am J Med. 1986 Apr 28;80(4B):11-7.

41. Samuelsson B, Dahlen SE, Lindgren JA, et al. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171-6.

42. Mashima R, Okuyama T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol. 2015 Dec;6:297-310. doi:10.1016/j.redox.2015.08.006. Epub 2015 Aug 7.

43. Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res. 2014 Jul;6(4):288-95. doi:10.4168/aair.2014.6.4.288. Epub 2014 May 27.

44. Noguchi K, Okubo M. Leukotrienes in nociceptive pathway and neuropathic/inflammatory pain. Biol Pharm Bull. 2011;34(8): 1163-9.

45. Feltenmark S, Gautam N, Brunnström A, et al. Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):680-5. doi:10.1073/pnas.0710127105. Epub 2008 Jan 9.

46. Jin J, Zheng Y, Boeglin WE, Brash AR. Biosynthesis, isolation, and NMR analysis of leukotriene A epoxides: substrate chirality as a determinant of the cis or trans epoxide configuration. J Lipid Res. 2013 Mar;54(3):754-61. doi:10.1194/jlr.M033746. Epub 2012 Dec 13.

47. Claesson HE, Griffiths WJ, Brunnström A, et al. Hodgkin Reed-Sternberg cells express 15-lipoxygenase-1 and are putative producers of eoxins in vivo: novel insight into the inflammatory features of classical Hodgkin lymphoma. FEBS J. 2008 Aug;275(16):4222-34. doi:10.1111/j.1742-4658.2008.06570.x. Epub 2008 Jul 18.

48. Nigam S, Zafiriou MP, Deva R, et al. Structure, biochemistry and biology of hepoxilins: an update. FEBS J. 2007 Jul;274(14):3503-12. Epub 2007 Jul 2.

49. Pace-Asciak CR. Pathophysiology of the hepoxilins. Biochim Biophys Acta. 2015 Apr;1851(4):383-96. doi:10.1016/j.bbalip.2014.09.007. Epub 2014 Sep 19.

50. Douda D, Grasemann H, Pace-Asciak C, Palaniyar N. A lipid mediator hepoxilin A3 is a natural inducer of neutrophil extracellular traps in human neutrophils. Mediators Inflamm. 2015;2015:520871. doi:10.1155/2015/520871. Epub 2015 Feb 16.

51. Panigrahy D, Kaipainen A, Greene ER, Huang S. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Rev. 2010 Dec;29(4):723-35. doi:10.1007/s10555-010-9264-x.

52. Capdevila JH, Falck JR, Harris RC. Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res. 2000 Feb;41(2):163-81.

53. Makita K, Falck JR, Capdevila JH. Cytochrome P450, the arachidonic acid cascade, and hypertension: new vistas for an old enzyme system. FASEB J. 1996 Nov;10(13): 1456-63.

54. Oni-Orisan A, Alsaleh N, Lee CR, Seubert JM. Epoxyeicosatrienoic acids and cardioprotection: the road to translation. J Mol Cell Cardiol. 2014 Sep;74:199-208. doi:10.1016/j.yjmcc.2014.05.016. Epub 2014 Jun 2.

55. Deng Y, Theken KN, Lee CR. Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. J Mol Cell Cardiol. 2010 Feb;48(2):331-41. doi:10.1016/j.yjmcc.2009.10.022. Epub 2009 Nov 3.

56. Chandrasekharan JA, Sharma-Walia N. Lipoxins: nature's way to resolve inflammation. J Inflamm Res. 2015 Sep 30;8:181-92. doi:10.2147/JIR.S90380. eCollection 2015.

57. Trostel J, Garcia GE. Endogenous Inhibitors of Kidney Inflammation. J Nephrol Res. 2015 Oct;1(2):61-68.

58. Gilroy DW. The role of aspirin-triggered lipoxins in the mechanism of action of aspirin. Prostaglandins Leukot Essent Fatty Acids. 2005 Sep-Oct;73(3-4):203-10.

59. Brzozowski T, Konturek PC, Pajdo R, et al. Physiological mediators in nonsteroidal antiinflammatory drugs (NSAIDs)-induced impairment of gastric mucosal defense and adaptation. Focus on nitric oxide and lipoxins. J Physiol Pharmacol. 2008 Aug;59 Suppl 2:89-102.

60. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014 Jun 5;510(7503):92-101. doi:10.1038/nature13479.

61. Headland SE, Norling LV. The resolution of inflammation: Principles and challenges. Semin Immunol. 2015 May;27(3):149-60. doi:10.1016/j.smim.2015.03.014. Epub 2015 Apr 22.

62. Serhan CN, Dalli J, Colas RA, et al. Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta. 2015 Apr;1851(4):397-413. doi:10.1016/j.bbalip.2014.08.006. Epub 2014 Aug 17.

63. Serhan CN, Dalli J, Karamnov S, et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 2012 Apr;26(4):1755-65. doi:10.1096/fj.11-201442. Epub 2012 Jan 17.

64. Zurier RB, Burstein SH. Cannabinoids, inflammation, and fibrosis. FASEB J. 2016 Jul 19. pii: fj.201600646R. [Epub ahead of print]

65. Rouzer CA, Marnett LJ. Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem Rev. 2011 Oct 12;111(10):5899-921. doi:10.1021/cr2002799. Epub 2011 Sep 19.

66. Turcotte C, Chouinard F, Lefebvre JS , Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoylethanolamide, and their metabolites. J Leukoc Biol. 2015 Jun;97(6):1049-70. doi:10.1189/jlb.3RU0115-021R. Epub 2015 Apr 15.

67. Hermanson DJ, Gamble-George JC, Marnett LJ, Patel S. Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol Sci. 2014 Jul;35(7):358-67. doi:10.1016/j.tips.2014.04.006. Epub 2014 May 18.

68. Новиков АА, Александрова ЕН, Диатроптова МА, Насонов ЕЛ. Роль цитокинов в патогенеза ревматоидного артрита. Научно-практическая ревматология. 2010; 48(2):71-82. [Novikov AA, Aleksandrova EN, Diatroptova MA, Nasonov EL. Role of cytokines in the pathogenesis of rheumatoid arthritis. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practice. 2010;48(2):71-82. (In Russ.)]. DOI:10.14412/1995-4484-2010-1420

69. Sommerfelt RM, Feuerherm AJ, Skuland T, Johansen B. Cytosolic phospholipase A2 modulates TLR2 signaling in synoviocytes. PLoS One. 2015 Apr 20;10(4):e0119088. doi:10.1371/journal.pone.0119088. eCollection 2015.

70. Yousefi B, Jadidi-Niaragh F, Azizi G, et al. The role of leukotrienes in immunopathogenesis of rheumatoid arthritis. Mod Rheumatol. 2014 Mar;24(2):225-35. doi:10.3109/14397595.2013.854056.

71. Stanczyk J, Kowalski ML. The role of cyclooxygenase and prostaglandins in the pathogenesis of rheumatoid arthritis. Pol Merkur Lekarski. 2001 Nov;11(65):438-43.

72. Sakata D, Yao C, Narumiya S. Prostaglandin E2, an immunoactivator. J Pharmacol Sci. 2010;112(1):1-5. Epub 2010 Jan 6.

73. Akaogi J, Nozaki T, Satoh M, Yamada H. Role of PGE2 and EP receptors in the pathogenesis of rheumatoid arthritis and as a novel therapeutic strategy. Endocr Metab Immune Disord Drug Targets. 2006 Dec;6(4):383-94.

74. Hikiji H, Takato T, Shimizu T, Ishii S. The roles of prostanoids, leukotrienes, and platelet-activating factor in bone metabolism and disease. Prog Lipid Res. 2008 Mar;47(2):107-26. doi:10.1016/j.plipres.2007.12.003. Epub 2008 Jan 8.

75. Wang MJ, Huang Y, Huang RY, et al. Determination of role of thromboxane A2 in rheumatoid arthritis. Discov Med. 2015 Jan; 19(102):23-32.

76. Tuncer S, Banerjee S. Eicosanoid pathway in colorectal cancer: Recent updates. World J Gastroenterol. 2015 Nov 7;21(41):11748-66. doi:10.3748/wjg.v21.i41.11748.

77. Gui H, Tong Q, Qu W, et al. The endocannabinoid system and its therapeutic implications in rheumatoid arthritis. Int Immunopharmacol. 2015 May;26(1):86-91. doi:10.1016/j.intimp.2015.03.006. Epub 2015 Mar 16.

78. Hashimoto A, Hayashi I, Murakami Y, et al. Antiinflammatory mediator lipoxin A4 and its receptor in synovitis of patients with rheumatoid arthritis. J Rheumatol. 2007 Nov;34(11): 2144-53. Epub 2007 Oct 1.

79. Fukuda S, Kohsaka H, Takayasu A, et al. Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis. BMC Musculoskelet Disord. 2014 Aug 12;15:275. doi:10.1186/1471-2474-15-275.

80. Arnardottir HH, Dalli J, Norling LV, et al. Resolvin D3 Is Dysregulated in Arthritis and Reduces Arthritic Inflammation. J Immunol. 2016 Aug 17. pii: 1502268. [Epub ahead of print]

81. Zhang W, Ouyang H, Dass CR, Xu J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 2016 Mar 1;4:15040. doi:10.1038/boneres.2015.40. eCollection 2016.

82. He W, Pelletier JP, Martel-Pelletier J, et al. Synthesis of interleukin 1beta, tumor necrosis factor-alpha, and interstitial collagenase (MMP-1) is eicosanoid dependent in human osteoarthritis synovial membrane explants: interactions with antiinflammatory cytokines. J Rheumatol. 2002 Mar;29(3):546-53.

83. Wang P, Guan PP, Guo C, et al. Fluid shear stress-induced osteoarthritis: roles of cyclooxygenase-2 and its metabolic products in inducing the expression of proinflammatory cytokines and matrix metalloproteinases. FASEB J. 2013 Dec;27(12):4664-77. doi:10.1096/fj.13-234542.Epub 2013 Aug 20.

84. Gosset M, Berenbaum F, Levy A, et al. Mechanical stress and prostaglandin E2 synthesis in cartilage. Biorheology. 2008;45 (3-4):301-20.

85. Laufer S. Role of eicosanoids in structural degradation in osteoarthritis. Curr Opin Rheumatol. 2003 Sep;15(5):623-7.

86. Marcouiller P, Pelletier JP, Guevremont M, et al. Leukotriene and prostaglandin synthesis pathways in osteoarthritic synovial membranes: regulating factors for interleukin 1beta synthesis. J Rheumatol. 2005 Apr;32(4):704-12.

87. Martel-Pelletier J, Mineau F, Fahmi H, et al. Regulation of the expression of 5-lipoxygenase-activating protein/5-lipoxygenase and the synthesis of leukotriene B(4) in osteoarthritic chondrocytes: role of transforming growth factor beta and eicosanoids. Arthritis Rheum. 2004 Dec;50(12):3925-33.

88. Benabdoune H, Rondon EP, Shi Q, et al. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis. Inflamm Res. 2016 Aug;65(8): 635-45. doi:10.1007/s00011-016-0946-x. Epub 2016 Apr 7.

89. La Porta C, Bura SA, Negrete R, Maldonado R. Involvement of the endocannabinoid system in osteoarthritis pain. Eur J Neurosci. 2014 Feb;39(3):485-500. doi: 10.1111/ejn.12468.

90. Burston JJ, Sagar DR, Shao P, et al. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint. PLoS One. 2013 Nov 25;8(11):e80440. doi:10.1371/journal.pone.0080440. eCollection 2013.

91. Sheibanie AF, Tadmori I, Jing H, et al. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J. 2004 Aug;18(11):1318-20. Epub 2004 Jun 4.

92. Haroon N. Ankylosis in ankylosing spondylitis: current concepts. Clin Rheumatol. 2015 Jun;34(6):1003-7. doi:10.1007/s10067-015-2956-4.

93. Tan S, Wang R, Ward MM. Syndesmophyte growth in ankylosing spondylitis. Curr Opin Rheumatol. 2015 Jul;27(4):326-32. doi:10.1097/BOR.0000000000000179.

94. de Vlam K, Lories RJ, Luyten FP. Mechanisms of pathologic new bone formation. Curr Rheumatol Rep. 2006 Oct;8(5):332-7.

95. Каратеев АЕ, Эрдес ШФ. Применение нестероидных противовоспалительных препаратов при анкилозирующем спондилите: долго и упорно! Терапевтический архив. 2014;(11):123-7. [Karateev AE, Erdes ShF. The use of nonsteroidal antiinflammatory drugs in ankylosing spondylitis: long and hard! Terapevticheskii arkhiv. 2014;86(11):123-7. (In Russ.)] .

96. Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res. 2015 Feb 20;8:105-18. doi:10.2147/JPR.S75160. eCollection 2015.

97. Diaz-Gonzalez F, Sanchez-Madrid F. NSAIDs: learning new tricks from old drugs. Eur J Immunol. 2015 Mar;45(3):679-86. doi:10.1002/eji.201445222. Epub 2015 Jan 21.

98. Vecchio AJ, Malkowski MG. The structural basis of endocannabinoid oxygenation by cyclooxygenase-2. J Biol Chem. 2011 Jun 10;286(23):20736-45. doi:10.1074/jbc.M111.230367. Epub 2011 Apr 13.

99. Vecchio AJ, Simmons DM, Malkowski MG. Structural basis of fatty acid substrate binding to cyclooxygenase-2. J Biol Chem. 2010 Jul 16;285(29):22152-63. doi:10.1074/jbc.M110.119867. Epub 2010 May 12.

100. Xu S, Rouzer CA, Marnett LJ. Oxicams, a class of nonsteroidal anti-inflammatory drugs and beyond. IUBMB Life. 2014 Dec; 66(12):803-11. doi:10.1002/iub.1334. Epub 2014 Dec 23.

101. Gates BJ, Nguyen TT, Setter SM, Davies NM. Meloxicam: a reappraisal of pharmacokinetics, efficacy and safety. Expert Opin Pharmacother. 2005 Oct;6(12):2117-40.

102. Каратеев АЕ. Мелоксикам: «золотая середина» нестероидных противовоспалительных препаратов. Терапевтический архив. 2014;86(5):99-105. [Karateev AE. Meloxicam: «the Golden mean» nonsteroidal anti-inflammatory drugs. Terapevticheskii arkhiv. 2014;86(5):99-105. (In Russ.)].

103. Schoenfeld P. Gastrointestinal safety profile of meloxicam: a meta-analysis and systematic review of randomized controlled trials. Am J Med. 1999 Dec 13;107(6A): 48S-54S.

104. Asghar W, Jamali F. The effect of COX-2selective meloxicam on the myocardial, vascular and renal risks: a systematic review. Inflammopharmacology. 2015 Feb;23(1):1-16. doi:10.1007/s10787-014-0225-9. Epub 2014 Dec 17.

105. Iyer JP, Srivastava PK, Dev R, et al. Prostaglandin E(2) synthase inhibition as a therapeutic target. Expert Opin Ther Targets. 2009 Jul;13(7):849-65. doi:10.1517/14728220903018932.

106. Mbalaviele G, Pauley AM, Shaffer AF, et al. Distinction of microsomal prostaglandin E synthase-1 (mPGES-1) inhibition from cyclooxygenase-2 inhibition in cells using a novel, selective mPGES-1 inhibitor. Biochem Pharmacol. 2010 May 15;79(10):1445-54. doi:10.1016/j.bcp.2010.01.003. Epub 2010 Jan 11.

107. O'Byrne PM. Asthma treatment: antileukotriene drugs. Can Respir J. 1998 JulAug;5 Suppl A:64A-70A.

108. Cingi C, Muluk N, Ipci K, Sahin E. Antileukotrienes in upper airway inflammatory diseases. Curr Allergy Asthma Rep. 2015 Nov; 15(11):64. doi:10.1007/s11882-015-0564-7.

109. Kulkarni SK, Singh VP. Licofelone: the answer to unmet needs in osteoarthritis therapy? Curr Rheumatol Rep. 2008 Jan;10(1):43-8.

110. Bertolini A, Ottani A, Sandrini M. Dual acting anti-inflammatory drugs: a reappraisal. Pharmacol Res. 2001 Dec;44(6):437-50.

111. Raynauld JP, Martel-Pelletier J, Bias P, et al. Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI. Ann Rheum Dis. 2009 Jun;68(6):938-47. doi:10.1136/ard.2008.088732. Epub 2008 Jul 23.

112. Blake D, Robson P, Ho M, et al. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology (Oxford). 2006 Jan;45(1):50-2. Epub 2005 Nov 9.

113. Elati A, Weeks AD. The use of misoprostol in obstetrics and gynaecology. BJOG. 2009 Oct;116 Suppl 1:61-9. doi:10.1111/j.1471-0528.2009.02329.x.

114. Linet OI, Ogrine FG. Efficacy and safety of intracavernosal alprostadil in men with erectile dysfunction. The Alprostadil Study Group. N Engl J Med. 1996 Apr 4;334(14):873-7.

115. Woodward DF, Wang JW, Poloso NJ. Recent progress in prostaglandin F2α ethanolamide (prostamide F2α) research and therapeutics. Pharmacol Rev. 2013 Jul 26;65(4):1135-47. doi:10.1124/pr.112.007088. Print 2013.

116. LeVarge BL. Prostanoid therapies in the management of pulmonary arterial hypertension. Ther Clin Risk Manag. 2015 Mar 31;11:535-47.doi:10.2147/TCRM.S75122. eCollection 2015.

117. Cholkar K, Gilger BC, Mitra AK. Topical delivery of aqueous micellar resolvin E1 analog (RX-10045). Int J Pharm. 2016 Feb 10;498(1-2):326-34. doi:10.1016/j.ijpharm.2015.12.037. Epub 2015 Dec 17.


Review

For citations:


Karateev AE, Aleinikova TL. EICOSANOIDS AND INFLAMMATION. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2016;10(4):73-86. (In Russ.) https://doi.org/10.14412/1996-7012-2016-4-73-86

Views: 4568


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)