Preview

Современная ревматология

Расширенный поиск

Генетические аспекты патогенеза системной красной волчанки у детей

https://doi.org/10.14412/1996-7012-2020-1-101-107

Полный текст:

Аннотация

В статье приведены данные о патогенезе системной красной волчанки (СКВ), описаны различные молекулярные механизмы развития СКВ и волчаночноподобных синдромов. Описаны такие группы заболеваний, как дефекты апоптоза, нетоз, интерферонопатии, дефицит системы комплемента, нарушения системы аутотолерантности, связанные с мутациями в генах RAG1/RAG2, наследственные болезни обмена (дефицит пролидазы, дефицит аденозиндезаминазы 2-го типа, лизинурическая непереносимость белка, дефицит α-маннозидазы). В виде таблицы представлены обобщенные клинические данные о большинстве известных волчаночноподобных синдромов и их молекулярных механизмах.

Патогенез многих форм моногенных волчаночноподобных заболеваний находится в процессе изучения. Основным признаком, свидетельствующим в пользу возможного моногенного заболевания у больного СКВ, является его начало в раннем детском возрасте, особенно в сочетании с мужским полом. Также следует обращать внимание на отягощенный семейный анамнез, в том числе на факт близкородственного брака, устойчивость заболевания к стандартной терапии и нетипичную симптоматику. 

Об авторах

Е. М. Кучинская
ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России
Россия
197341, Санкт-Петербург, ул. Аккуратова, 2


Е. Н. Суспицын
ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России; ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова» Минздрава России
Россия

194100, Санкт-Петербург, ул. Литовская, 2;

197758, Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68



М. М. Костик
ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России; ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России
Россия

197341, Санкт-Петербург, ул. Аккуратова, 2;

194100, Санкт-Петербург, ул. Литовская, 2



Литература

1. Brunner HI, Gladman DD, Ibanez D, et al. Difference in disease features between childhood-onset and adult-onset systemic lupus erythematosus. Arthritis Rheum. 2008;58(2):556-62. doi: 10.1002/art.23204

2. Marlow AA, Peabody HD Jr, Nickel WR. Familial occurrence of systemic lupus erythematosus. JAMA. 1960;173:1641-3. doi: 10.1001/jama.1960.03020330009002

3. Omarjee O, Picard C, Frachette C, et al. Monogenic lupus: Dissecting heterogeneity. Autoimmun Rev. 2019;18(10):102361. doi: 10.1016/j.autrev.2019.102361

4. Walters H, Pan N, Lehman TJ. Patterns and influence of familial autoimmunity in pediatric systemic lupus erythematosus. Ped Rheumatol. 2012;10(1):22. doi: 10.1186/1546- 0096-10-22

5. Tsokos GC. Systemic lupus erythematosus. New Engl J Med. 2011;365:2110-21. doi: 10.1056/NEJMra1100359

6. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747-53. doi: 10.1038/nature08494

7. Pieterse E, van der Vlag J. Breaking immunological tolerance in systemic lupus erythematosus. Front Immunol. 2014;5:164. doi: 10.3389/fimmu.2014.00164

8. Gaipl US, Voll RE, Sheriff A, et al. Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmun Rev. 2005; 4(4):189-94. doi: 10.1016/j.autrev.2004.10.007

9. Munoz LE, Lauber K, Schiller M, et al. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 2010;6(5):280-9. doi: 10.1038/nrrheum.2010.46

10. Baumann I, Kolowos W, Voll RE, et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 2002;46(1):191-201. doi: 10.1002/1529-0131(200201)46: 13.0.CO;2-K

11. Lo MS. Monogenic Lupus. Curr Rheumatol Rep. 2016;18(12):71-8. doi: 10.1007/s11926-016-0621-9

12. Belot A, Kasher PR, Trotter EW, et al. Protein kinase c delta deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 2013;65(8):2161-71. doi: 10.1002/art.38008

13. Costa-Reis P, Sullivan KE. Monogenic lupus: it's all new! Curr Opin Immunol. 2017;49:87-95. doi: 10.1016/j.coi.2017.10.008

14. Hakkim A, Furnrohr BG, Amann K, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010; 107(21):9813-8. doi: 10.1073/pnas.0909927107

15. Lindau D, Mussard J, Rabsteyn A, et al. TLR9 independent interferon alpha production by neutrophils on NETosis in response to circulating chromatin, a key lupus autoantigen. Ann Rheum Dis. 2014;73(12):2199-207. doi: 10.1136/annrheumdis-2012-203041

16. Venereau E, Ceriotti C, Bianchi ME. DAMPs from death to new life. Front Immunol. 2015;6:422. doi: 10.3389/fimmu.2015.00422

17. Al-Mayouf SM, Sunker A, Abdwani R, et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet. 2011;43(12):1186-8. doi: 10.1038/ng.975

18. Yasutomo K, Horiuchi T, Kagami S, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet. 2001; 28(4):313-4. doi: 10.1038/91070

19. Lee-Kirsch MA, Chowdhury D, Harvey S, et al A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med. 2007;85(5):531-7. doi: 10.1007/s00109-007-0199-9

20. Torrelo A. CANDLE Syndrome as a paradigm of proteasome-related autoinflammation. Front Immunol. 2017;8:927. doi: 10.3389/fimmu.2017.00927

21. Massaad MJ, Zhou J, Tsuchimoto D, et al. The base excision repair enzyme NEIL3 protects against autoimmunity. J Clin Investigat. 2016;126(11):4219-36. doi: 10.1172/JCI85647

22. Rodero MP, Tesser A, Bartok E, et al. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat Commun. 2017;8(1):2176. doi: 10.1038/s41467-017-01932-3

23. Konig N, Fiehn C, Wolf C, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017; 76(2):468-72. doi: 10.1136/annrheumdis2016-209841

24. Briggs TA, Rice GI, Daly S. Tartrateresistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet. 2011;43(2):127-31. doi: 10.1038/ng.748

25. Hagberg N, Ronnblom L. Systemic lupus erythematosus – a disease with a dysregulated type I interferon system. Scand J Immuno. 2015;82:199-207. doi: 10.1111/sji.12330

26. Bryan AR, Wu EY. Complement deficiencies in systemic lupus erythematosus. Curr Allerg Asthma Rep. 2014;14(7):448-56. doi: 10.1007/s11882-014-0448-2

27. Yang Y, Chung EK, Wu YL, et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet. 2007;80:1037-54. doi: 10.1086/518257

28. Walter JE, Lo MS, Kis-Toth K, et al. Impaired receptor editing and heterozygous RAG2 mutation in a patient with systemic lupus erythematosus and erosive arthritis. J Allergy Clin Immunol. 2015;135:272-3. doi: 10.1016/j.jaci.2014.07.063

29. Bader-Meunier B, Cave H, Jeremiah N, et al. Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin Arthritis Rheum. 2013;43(9):217-9. doi: 10.1016/j.semarthrit.2013.04.009

30. Johnson DS, Chen YH. RAS family of small GTPases in immunity and inflammation. Curr Opin Pharmacol. 2012;12(4): 458-63. doi: 10.1016/j.coph.2012.02.003

31. Butbul A, Mandel H, Hersh EA, et al. Prolidase deficiency associated with systemic lupus erythematosus (SLE): single site experience and literature review. Ped Rheumatol. 2012;10:18. doi: 10.1186/1546-0096-10-18

32. Skrabl-Baumgartner A, Plecko B, Schmidt WM, et al. Autoimmune phenotype with type I interferon signature in two brothers with ADA2 deficiency carrying a novel CECR1 mutation. Pediatr Rheumatol Online J. 2017;15(1):67. doi: 10.1186/s12969-017-0193-x

33. Mauhin W, Habarou F, Gobin S, et al. Update on lysinuric protein intolerance, a multi-faceted disease retrospective cohort analysis from birth to adulthood. Orphanet J Rare Dis. 2017;12(1):3. doi: 10.1186/s13023-016-0550-8

34. Aoki M, Fukao T, Fujita Y, et al. Lysinuric protein intolerance in siblings: complication of systemic lupus erythematosus in the elder sister. Eur J Pediatr. 2001;160: 522-3. doi: 10.1007/PL00008455

35. Urushihara M, Kagami S, Yasutomo K, et al. Sisters with alpha-mannosidosis and systemic lupus erythematosus. Eur J Pediatr. 2004;163(4-5):192-5. doi: 10.1007/s00431-004-1404-2


Для цитирования:


Кучинская Е.М., Суспицын Е.Н., Костик М.М. Генетические аспекты патогенеза системной красной волчанки у детей. Современная ревматология. 2020;14(1):101-107. https://doi.org/10.14412/1996-7012-2020-1-101-107

For citation:


Kuchinskaya E.M., Suspitsyn E.N., Kostik M.M. Genetic aspects of the pathogenesis of systemic lupus erythematosus in children. Modern Rheumatology Journal. 2020;14(1):101-107. (In Russ.) https://doi.org/10.14412/1996-7012-2020-1-101-107

Просмотров: 127


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)