Стандартизированные формы хондроитина сульфата как патогенетическое средство лечения остеоартрита в контексте постгеномных исследований
https://doi.org/10.14412/1996-7012-2021-1-136-143
Аннотация
Систематический анализ 37 постгеномных исследований остеоартрита – ОА (геномика, транскриптомика, протеомика, метаболомика) позволил выделить 483 гена и соответствующих белка, нарушение уровней и активности которых участвует в патогенезе заболевания. Эти белки могут быть условно подразделены на три группы: 1) структурные белки соединительной ткани (СТ); 2) белки, поддерживающие активность ростовых факторов СТ; 3) белки, способствующие ремоделированию и деградации СТ, а также белки, связанные с регуляцией воспаления (клеточный ответ на фактор некроза опухоли α, интерлейкин 1, бактериальные липополисахариды, активация NF-κB и др.). Важно отметить эпигенетические эффекты (гипометилирование ДНК), связанные с патогенезом ОА, что указывает на необходимость использования витаминов группы В в его терапии. Хондропротекторы (симптоматические препараты замедленного действия) – хондроитина сульфат (ХС) и глюкозамина сульфат (ГС), – помимо уменьшения воспаления через ингибирование NF-κB и рецепторов липополисахаридов (толл-рецепторы), также способствуют повышению экспрессии генов структурных белков СТ, ростовых факторов СТ и модулируют активность белков ремоделирования и деградации СТ. Эти эффекты ХС/ГС позволили описать комплексные механизмы патогенетического действия ХС/ГС при терапии ОА.
Ключевые слова
Об авторах
О. А. ГромоваРоссия
Ольга Алексеевна Громова
119333, Москва, ул. Вавилова, 44, корп. 2,
119234, Москва, Ленинские горы, 1
И. Ю. Торшин
Россия
119333, Москва, ул. Вавилова, 44, корп. 2,
119234, Москва, Ленинские горы, 1
А. М. Лила
Россия
Кафедра ревматологии ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
115522, Москва, Каширское шоссе, 34А,
125993, Москва, ул. Баррикадная, 2/1, стр. 1
Л. И. Алексеева
Россия
Кафедра ревматологии ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
115522, Москва, Каширское шоссе, 34А,
125993, Москва, ул. Баррикадная, 2/1, стр. 1
Е. А. Таскина
Россия
115522, Москва, Каширское шоссе, 34А,
Литература
1. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020 Jan 18;395(10219):200-11. doi: 10.1016/S0140-6736(19)32989-7.
2. Torshin IYu. Bioinformatics in the postgenomic era: physiology and medicine. New York: Nova Biomedical Books; 2007.
3. Rockel JS, Kapoor M. The Metabolome and Osteoarthritis: Possible Contributions to Symptoms and Pathology. Metabolites. 2018 Dec 13;8(4):92. doi: 10.3390/metabo8040092.
4. Pan X, Huang L, Chen J, et al. Analysis of synovial fluid in knee joint of osteoarthritis: 5 proteome patterns of joint inflammation based on matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Int Orthop. 2012 Jan;36(1):57-64. doi: 10.1007/s00264-011-1258-y. Epub 2011 Apr 21.
5. Woetzel D, Huber R, Kupfer P, et al. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res Ther. 2014 Apr 1;16(2):R84. doi: 10.1186/ar4526.
6. Алексеева ЛИ. Обновление клинических рекомендаций по лечению больных остеоартритом 2019 года. Русский медицинский журнал. 2019;(4):2-6.
7. Лила АМ, Громова ОА, Торшин ИЮ и др. Молекулярные эффекты хондрогарда при остеоартрите и грыжах межпозвоночного диска. Неврология, нейропсихиатрия, психосоматика. 2017;9(3):88-97. doi: 10.14412/2074-2711-2017-3-88-97
8. Громова ОА, Торшин ИЮ, Лила АМ, Громов АН. Молекулярные механизмы глюкозамина сульфата при лечении дегенеративно-дистрофических заболеваний суставов и позвоночника: результаты протеомного анализа. Неврология, нейропсихиатрия, психосоматика. 2018;10(2):38-44. doi: 10.14412/2074-2711-2018-2-38-44.
9. Torshin IYu, Rudakov KV. On the theoretical basis of the metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2015;25(4):577-87.
10. Torshin IY, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: Factorization approach. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017;27:16-28.
11. Torshin IY, Rudakov KV. On the Procedures of Generation of Numerical Features Over Partitions of Sets of Objects in the Problem of Predicting Numerical Target Variables. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2019;29(4):654-67.
12. Karlsson C, Dehne T, Lindahl A, et al. Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarthritis Cartilage. 2010 Apr;18(4):581-92. doi: 10.1016/j.joca.2009.12.002. Epub 2010 Jan 4.
13. Chen FH, Thomas AO, Hecht JT, et al. Cartilage oligomeric matrix protein/thrombospondin 5 supports chondrocyte attachment through interaction with integrins. J Biol Chem. 2005 Sep 23;280(38):32655-61. doi: 10.1074/jbc.M504778200. Epub 2005 Jul 28.
14. Koelling S, Clauditz TS, Kaste M, Miosge N. Cartilage oligomeric matrix protein is involved in human limb development and in the pathogenesis of osteoarthritis. Arthritis Res Ther. 2006;8(3):R56. doi: 10.1186/ar1922. Epub 2006 Mar 15.
15. Styrkarsdottir U, Helgason H, Sigurdsson A, et al. Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nat Genet. 2017 May;49(5):801-5. doi: 10.1038/ng.3816. Epub 2017 Mar 20.
16. Zhou J, Li W, Kamei H, Duan C. Duplication of the IGFBP-2 gene in teleost fish: protein structure and functionality conservation and gene expression divergence. PLoS One. 2008;3(12):e3926. doi: 10.1371/journal.pone.0003926. Epub 2008 Dec 12.
17. Ingermann AR, Yang YF, Han J, et al. Identification of a novel cell death receptor mediating IGFBP-3-induced anti-tumor effects in breast and prostate cancer. J Biol Chem. 2010 Sep 24;285(39):30233-46. doi: 10.1074/jbc.M110.122226. Epub 2010 Mar 30.
18. Akaogi K, Okabe Y, Funahashi K, et al. Cell adhesion activity of a 30-kDa major secreted protein from human bladder carcinoma cells. Biochem Biophys Res Commun. 1994 Feb 15;198(3):1046-53. doi: 10.1006/bbrc.1994.1149.
19. Nakanishi T, Nishida T, Shimo T, et al. Effects of CTGF/Hcs24, a product of a hypertrophic chondrocyte-specific gene, on the proliferation and differentiation of chondrocytes in culture. Endocrinology. 2000 Jan; 141(1):264-73. doi: 10.1210/endo.141.1.7267.
20. Skonier J, Bennett K, Rothwell V, et al. Beta ig-h3: a transforming growth factorbeta-responsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. DNA Cell Biol. 1994 Jun;13(6): 571-84. doi: 10.1089/dna.1994.13.571.
21. Willis CM, Klü ppel M. Inhibition by chondroitin sulfate E can specify functional Wnt/β-catenin signaling thresholds in NIH3T3 fibroblasts. J Biol Chem. 2012 Oct 26;287(44):37042-56. doi: 10.1074/jbc.M112.391490. Epub 2012 Aug 22.
22. Chen C, Xu G, Sun Y, Cui Z. Transcriptome sequencing reveals dynamic changes in matrix metalloproteinases in facet joint osteoarthritis. Exp Ther Med. 2020 Apr; 19(4):2475-82. doi: 10.3892/etm.2020.8488. Epub 2020 Feb 4.
23. Springman EB, Angleton EL, BirkedalHansen H, van Wart HE. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 activesite zinc complex in latency and a «cysteine switch» mechanism for activation. Proc Natl Acad Sci U S A. 1990 Jan;87(1):364-8. doi: 10.1073/pnas.87.1.364.
24. Kennedy AM, Inada M, Krane SM, et al. MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type (SEMD(MO). J Clin Invest. 2005 Oct; 115(10):2832-42. doi: 10.1172/JCI22900.
25. Vazquez F, Hastings G, Ortega MA, et al. METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem. 1999 Aug 13;274(33):23349-57. doi: 10.1074/jbc.274.33.23349.
26. Zhang X, Bu Y, Zhu B, et al. Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Joint Res. 2018 May 5;7(4):298-307. doi: 10.1302/2046-3758.74.BJR-2017-0245.R1. eCollection 2018 Apr.
27. Lin X, Li L, Liu X, et al. Genome-wide analysis of aberrant methylation of enhancer DNA in human osteoarthritis. BMC Med Genomics. 2020 Jan 3;13(1):1. doi: 10.1186/s12920-019-0646-9.
28. Yang J, Wang N. Genome-wide expression and methylation profiles reveal candidate genes and biological processes underlying synovial inflammatory tissue of patients with osteoarthritis. Int J Rheum Dis. 2015 Sep; 18(7):783-90. doi: 10.1111/1756-185X.12643. Epub 2015 Jul 14.
29. Zhao L, Wang Q, Zhang C, Huang C. Genome-wide DNA methylation analysis of articular chondrocytes identifies TRAF1, CTGF, and CX3CL1 genes as hypomethylated in osteoarthritis. Clin Rheumatol. 2017 Oct;36(10):2335-42. doi: 10.1007/s10067-017-3667-9. Epub 2017 May 3.
30. Calamia V, Fernandez-Puente P, Mateos J, et al. Pharmacoproteomic study of three different chondroitin sulfate compounds on intracellular and extracellular human chondrocyte proteomes. Mol Cell Proteomics. 2012 Jun;11(6):M111.013417. doi: 10.1074/mcp.M111.013417. Epub 2011 Dec 27.
31. Calamia V, Mateos J, Fernandez-Puente P, et al. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine. Sci Rep. 2014 Jun 10; 4:5069. doi: 10.1038/srep05069.
32. Blanco FJ, Camacho-Encina M, Gonzalez-Rodriguez L, et al. Predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis. Ther Adv Chronic Dis. 2019 Aug 24;10:2040622319870013. doi: 10.1177/2040622319870013. eCollection 2019.
33. Calamia V, Lourido L, FernandezPuente P, et al. Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anticatabolic properties. Arthritis Res Ther. 2012 Oct 2;14(5):R202. doi: 10.1186/ar4040.
34. Торшин ИЮ, Лила АМ, Наумов АВ и др. Метаанализ клинических исследований эффективности лечения остеоартрита препаратом Хондрогард. Фармакоэкономика. Современная Фармакоэкономика и Фармакоэпидемиология. 2020;13(4):18-29.
Рецензия
Для цитирования:
Громова ОА, Торшин ИЮ, Лила АМ, Алексеева ЛИ, Таскина ЕА. Стандартизированные формы хондроитина сульфата как патогенетическое средство лечения остеоартрита в контексте постгеномных исследований. Современная ревматология. 2021;15(1):136-143. https://doi.org/10.14412/1996-7012-2021-1-136-143
For citation:
Gromova OA, Torshin IY, Lila AM, Alekseeva LI, Taskina EA. Standardised Forms of Chondroitin Sulfate as a Pathogenetic Treatment of Osteoarthritis in the Context of Post-Genomic Studies. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2021;15(1):136-143. (In Russ.) https://doi.org/10.14412/1996-7012-2021-1-136-143