Preview

Modern Rheumatology Journal

Advanced search

Progression of axial spondyloarthritis

https://doi.org/10.14412/1996-7012-2021-3-7-14

Abstract

The spectrum of bone lesions in axial spondyloarthritis is of great interest. With inflammation and mechanical influence concurrence in the background, both tissue gain and tissue loss in a particular bone area can occur simultaneously. Moreover, if vertebral bone mass loss, perhaps, can be easily explained by chronic systemic inflammation, the reason of its gain, observed in axial spondyloarthritis remains a mystery. It is unclear whether it is a consequence of enhanced recovery processes after injury, adaptation to altered mechanical stress, response to inflammatory cells activation or cytokines, produced by them, or changes in Wnt signaling pathways (for example). Whether these factors act individually or collectively is also unclear.

About the Authors

Sh. F. Erdes
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Shandor Fedorovich Erdes

34A, Kashirskoe Shosse, Moscow 115522, Russia



T. V. Korotaeva
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

34A, Kashirskoe Shosse, Moscow 115522, Russia



References

1. Clunie G, Horwood N. Loss and gain of bone in spondyloarthritis: what drives these opposing clinical features? Ther Adv Musculoskelet Dis. 2020 Oct 30;12: 1759720X20969260. doi: 10.1177/1759720X20969260.

2. Dubinina TV, Gaidukova IZ, Godzenko AA, et al. Recommendations for assessing the activity of the disease and the functional state of patients with ankylosing spondylitis in clinical practice. Nauchno-prakticheskaya revmatologiya. 2017;55(4):344-50. (In Russ.).

3. Erdes Sh. Ankiloziruyushchii spondilit [Ankylosing spondylitis]. Moscow: GEOTAR-Media; 2020. 184 p.

4. Creemers MC, Franssen MJ, van't Hof MA, et al. Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann Rheum Dis. 2005 Jan;64(1): 127-9. doi: 10.1136/ard.2004.020503. Epub 2004 Mar 29.

5. Baraliakos X, Listing J, Rudwaleit M, et al. Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann Rheum Dis. 2007 Jul;66(7):910-5. doi: 10.1136/ard.2006.066415. Epub 2007 Feb 28.

6. Bennett P, Burch T. Population studies of the rheumatic diseases. Amsterdam: Excerpta Medica Foundation; 1968. P. 456-7.

7. Dubinina TV, Erdes ShF. Causes of late diagnosis of ankylosing spondylitis in clinical practice. Nauchno-prakticheskaya revmatologiya. 2010;(2):43-8. (In Russ.).

8. Volnukhin EV, Galushko EA, Bochkova AG, et al. Clinical diversity of ankylosing spondylitis in the real practice of a rheumatologist in Russia (part 1). Nauchno-prakticheskaya revmatologiya. 2012;(2):44-9. (In Russ.).

9. Smirnov AV, Erdes ShF. Optimization of X-ray diagnostics of ankylosing spondylitis in clinical practice-the significance of a pelvic overview image. Nauchno-prakticheskaya revmatologiya. 2015;53(2):175-81. (In Russ.).

10. Rumyantseva DG, Dubinina TV, Erdes ShF. Effect of the frequency of nonsteroidal antiinflammatory drugs on the radiological progression of sacroiliitis in patients with early axial spondyloarthritis. Nauchno-prakticheskaya revmatologiya. 2018;56(3):346-50. (In Russ.).

11. Erdes ShF, Rumyantseva DG, Smirnov AV. Assessment of the progression of axial spondyloarthritis in the early stages of the disease in real clinical practice: the possibility of using the total account of radiological sacroiliitis. Nauchno-prakticheskaya revmatologiya. 2018;56(4):461-65. (In Russ.).

12. Ward MM, Tan S. Better Quantification of Syndesmophyte Growth in Axial Spondyloarthritis. Curr Rheumatol Rep. 2018 Jun 21; 20(8):46. doi: 10.1007/s11926-018-0759-8.

13. Tan S, Yao J, Flynn JA, et al. Dynamics of syndesmophyte growth in AS as measured by quantitative CT: heterogeneity within and among vertebral disc spaces. Rheumatology (Oxford). 2015 Jun;54(6):972-80. doi: 10.1093/rheumatology/keu423. Epub 2014 Nov 12.

14. Zhang P, Yu KH, Guo RM, et al. A novel diagnostic method (spectral computed tomography of sacroiliac joints) for axial spondyloarthritis. J Formos Med Assoc. 2016 Aug;115(8):658-64. doi: 10.1016/j.jfma.2015.07.003. Epub 2015 Sep 1.

15. Carotti M, Benfaremo D, Di Carlo M, et al. Dual-energy computed tomography for the detection of sacroiliac joints bone marrow oedema in patients with axial spondyloarthritis. Clin Exp Rheumatol. 2021 Jan 7. Online ahead of print.

16. Chen M, Bird P, Jans L. Emerging Imaging Techniques in Spondyloarthritis: Dual-Energy Computed Tomography and New MRI Sequences. Rheum Dis Clin North Am. 2020 May;46(2):287-96. doi: 10.1016/j.rdc.2020.01.010.

17. Ouichka R, Bouderraoui F, Raynal M, et al. Performance of 18F-sodium fluoride positron emission tomography with computed tomography to assess inflammatory and structural sacroiliitis on magnetic resonance imaging in axial spondyloarthritis. Clin Exp Rheumatol. 2019 Jan-Feb;37(1):19-25. Epub 2018 Dec 19.

18. Sieper J, Rudwaleit M, Baraliakos X, et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis. 2009 Jun;68 Suppl 2:ii1-44. doi: 10.1136/ard.2008.104018.

19. Erdes ShF, Bochkova AG, Dubinina TV, et al. Early diagnosis of ankylosing spondylitis. Nauchno-prakticheskaya revmatologiya. 2013;51(4):365-67. (In Russ.).

20. Maksymowych WP, Chiowchanwisawakit P, Clare T, et al. Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis evidence of a relationship betweeninflammation and new bone formation. Arthritis Rheum. 2009 Jan;60(1): 93-102. doi: 10.1002/art.24132.

21. Van Der Heijde D, Machado P, Braun J, et al. MRI inflammation at the vertebral unit only marginally predicts new syndesmophyte formation: a multilevel analysis in patients with ankylosing spondylitis. Ann Rheum Dis. 2012 Mar;71(3):369-73. doi: 10.1136/annrheumdis-2011-200208. Epub 2011 Oct 6.

22. Lories R. The balance of tissue repair and remodeling in chronic arthritis. Nat Rev Rheumatol. 2011 Oct 18;7(12):700-7. doi: 10.1038/nrrheum.2011.156.

23. Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet. 2017 Jul 1;390(10089): 73-84. doi: 10.1016/S0140-6736(16)31591-4. Epub 2017 Jan 20.

24. Maksymowych WP, Wichuk S, Chiowchanwisawakit P, et al. Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis. Arthritis Rheumatol. 2014 Nov;66(11):2958-67. doi: 10.1002/art.38792.

25. Maksymowych WP, Morency N, Conner- Spady B, et al. Suppression of inflammation and effects on new bone formation in ankylosing spondylitis: evidence for a window of opportunity in disease modification. Ann Rheum Dis. 2013 Jan;72(1):23-8. doi: 10.1136/annrheumdis-2011-200859. Epub 2012 May 5.

26. Gong Y, Zheng N, Chen SB, et al. Ten years' experience with needle biopsy in the early diagnosis of sacroiliitis. Arthritis Rheum. 2012 May;64(5):1399-406. doi: 10.1002/art.33453.

27. Wang QW, Zeng QY, Xiao ZY, et al. Needle biopsy of spondyloarthropathy: pathological features and clinical significance. Zhonghua Nei Ke Za Zhi. 2004 Nov; 43(11):832-6.

28. Francois RJ, Gardner DL, Degrave EJ, Bywaters EG. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis. Arthritis Rheum. 2000 Sep; 43(9):2011-24. doi: 10.1002/1529-0131(200009)43:9<2011::AID-ANR12>3.0.CO;2-Y.

29. Peng J, Gong Y, Zhang Y, et al. Immunohistological analysis of active sacroiliitis in patients with axial spondyloarthritis. Medicine (Baltimore). 2017 Apr; 96(16):e6605. doi: 10.1097/MD.0000000000006605.

30. Ramiro S, van der Heijde D, van Tubergen A, et al. Higher disease activity leads to more structural damage in the spine in ankylosing spondylitis: 12-year longitudinal data from the OASIS cohort. Ann Rheum Dis. 2014 Aug;73(8):1455-61. doi: 10.1136/annrheumdis-2014-205178. Epub 2014 May 7.

31. Tan S, Wang R, Ward MM. Syndesmophyte growth in ankylosing spondylitis. Curr Opin Rheumatol. 2015 Jul;27(4):326-32. doi: 10.1097/BOR.0000000000000179.

32. Deminger A, Klingberg E, Geijer M, et al. A five-year prospective study of spinal radiographic progression and its predictors in men and women with ankylosing spondylitis. Arthritis Res Ther. 2018 Aug 3;20(1):162. doi: 10.1186/s13075-018-1665-1.

33. Wanders A, van der Heijde D, Landewe R, et al. Nonsteroidal antiinяammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: A randomized clinical trial. Arthritis Rheum. 2005 Jun;52(6): 1756-65. doi: 10.1002/art.21054.

34. Kroon F, Landewe R, Dougados M, et al. Continuous NSAID use reverts the effects of inяammation on radiographic progression in patients with ankylosing spondylitis. Ann Rheum Dis. 2012 Oct;71(10):1623-9. doi: 10.1136/annrheumdis-2012-201370. Epub 2012 Apr 24.

35. Sieper J, Listing J, Poddubnyy D, et al. Effect of continuous versus on demand treatment of ankylosing spondylitis with diclofenac over 2 years on radiographic progression of the spine: Results from a randomised multicenter trial (ENRADAS). Ann Rheum Dis. 2016 Aug;75(8):1438-43. doi: 10.1136/annrheumdis-2015-207897. Epub 2015 Aug 4.

36. Poddubnyy D, Rudwaleit M, Haibel H, et al. Effect of non-steroidal antiinяammatory drugs on radiographic spinal progression in patients with axial spondyloarthritis: Results from the German Spondyloarthritis Inception Cohort. Ann Rheum Dis. 2012 Oct;71(10): 1616-22. doi: 10.1136/annrheumdis-2011-201252. Epub 2012 Mar 29.

37. Erdes Sh, Rumyantseva DG, Smirnov AV, Dubinina TV. Disease activity and two-year dynamics of changes in the sacroiliac joints according to instrumental research methods in patients with early axial spondyloarthritis of the CORSAIR cohort. Nauchno-prakticheskaya revmatologiya. 2019;57(2):186-90. (In Russ.).

38. Baraliakos X, Listing J, Rudwaleit M, et al. Radiographic progression in patients with ankylosing spondylitis after 2 years of treatment with the tumour necrosis factor alpha antibody infliximab. Ann Rheum Dis. 2005 Oct;64(10):1462-6. doi: 10.1136/ard.2004.033472. Epub 2005 Mar 18.

39. Baraliakos X, Listing J, Brandt J, et al. Radiographic progression in patients with ankylosing spondylitis after 4 yrs of treatment with the anti-TNF-alpha antibody infliximab. Rheumatology (Oxford). 2007 Sep;46(9): 1450-3. doi: 10.1093/rheumatology/kem166. Epub 2007 Jul 10.

40. Haroon N, Inman RD, Learch TJ, et al. The impact of tumor necrosis factor α inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2013 Oct;65(10):2645-54. doi: 10.1002/art.38070.

41. Baraliakos X, Haibel H, Listing J, et al. Continuous long-term anti-TNF therapy does not lead to an increase in the rate of new bone formation over 8 years in patients with ankylosing spondylitis. Ann Rheum Dis. 2014 Apr;73(4):710-5. doi: 10.1136/annrheumdis-2012-202698. Epub 2013 Mar 16.

42. Pedersen SJ, Weber U, Said-Nahal R, et al. Structural progression rate decreases over time on serial radiography and magnetic resonance imaging of sacroiliac joints and spine in a five-year follow-up study of patients with ankylosing spondylitis treated with tumour necrosis factor inhibitor. Scand J Rheumatol. 2019 May;48(3):185-97. doi: 10.1080/03009742.2018.1506822. Epub 2018 Nov 13.

43. Jeong H, Eun YH, Kim IY, et al. Effect of tumor necrosis factor α inhibitors on spinal radiographic progression in patients with ankylosing spondylitis. Int J Rheum Dis. 2018 May;21(5):1098-105. doi: 10.1111/1756-185X.13270. Epub 2018 Apr 2.

44. Park JW, Kwon HM, Park JK, et al. Impact of dose tapering of tumor necrosis factor inhibitor on radiographic progression in ankylosing spondylitis. PLoS One. 2016 Dec 29;11(12):e0168958. doi: 10.1371/journal.pone.0168958. eCollection 2016.

45. Molnar C, Scherer A, Baraliakos X, et al. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort. Ann Rheum Dis. 2018 Jan;77(1):63-9. doi: 10.1136/annrheumdis-2017-211544. Epub 2017 Sep 22.

46. Li L, Chen B, Zhao H, Wang G. Bone changes and curative effect of infliximab in patients with ankylosing spondylitis. J Musculoskelet Neuronal Interact. 2020 Sep 1;20(3):437-43.

47. Visvanathan S, van der Heijde D, Deodhar A, et al. Effects of infliximab on markers of inflammation and bone turnover and associations with bone mineral density in patients with ankylosing spondylitis. Ann Rheum Dis. 2009 Feb;68(2):175-82. doi: 10.1136/ard.2007.084426. Epub 2008 May 21.

48. Wang C, Li W. Effects of etanercept and inяiximab on bone metabolism indexes in patients with ankylosing spondylitis. Exp Ther Med. 2020 Jan;19(1):585-90. doi: 10.3892/etm.2019.8266. Epub 2019 Dec 2.

49. Rostami S, Hoff M, Brown MA, et al. Prediction of ankylosing spondylitis in the HUNT study by a genetic risk score combining 110 single nucleotide polymorphisms of genome-wide significance. J Rheumatol. 2020 Feb;47(2):204-10. doi: 10.3899/jrheum.181209. Epub 2019 Apr 1.

50. Neerinckx B, Kollnberger S, Shaw J, Lories R. No evidence for a direct role of HLA-B27 in pathological bone formation in axial SpA. RMD Open. 2017 Jun 29;3(1):e000451. doi: 10.1136/rmdopen-2017-000451.

51. Australo-Anglo-American Spondyloarthritis Consortium (TASC); Reveille JD, Sims AM, Danoy P, et al. Genome-wide association study of ankylosing spondylitis identifies non- MHC susceptibility loci. Nat Genet. 2010 Feb;42(2):123-7. doi: 10.1038/ng.513.Epub 2010 Jan 10.

52. Ellinghaus D, Jostins L, Spain SL, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016 May;48(5):510-8. doi: 10.1038/ng.3528. Epub 2016 Mar 14.

53. Hanson AL, Cuddihy T, Haynes K, et al. Genetic variants in ERAP1 and ERAP2 associated with immune-mediated diseases influence protein expression and the isoform profile. Arthritis Rheumatol. 2018 Feb;70(2):255-65. doi: 10.1002/art.40369. Epub 2017 Dec 29.

54. Baum R, Gravallese EM. Bone as a target organ in rheumatic disease: impact on osteoclasts and osteoblasts. Clin Rev Allergy Immunol. 2016 Aug;51(1):1-15. doi: 10.1007/s12016-015-8515-6.

55. Heiland GR, Appel H, Poddubnyy D, et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis. 2012 Apr;71(4):572-4. doi: 10.1136/annrheumdis-2011-200216. Epub 2011 Dec 20.

56. Klingberg E, Nurkkala M, Carlsten H, Forsblad-d'Elia H. Biomarkers of bone metabolism in ankylosing spondylitis in relation to osteoproliferation and osteoporosis. J Rheumatol. 2014 Jul;41(7):1349-56. doi: 10.3899/jrheum.131199.

57. Daoussis D, Liossis SN, Solomou EE, et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum. 2010 Jan;62(1):150-8. doi: 10.1002/art.27231.

58. Sakellariou GT, Iliopoulos A, Konsta M, et al. Serum levels of Dkk-1, sclerostin and VEGF in patients with ankylosing spondylitis and their association with smoking, and clinical, inflammatory and radiographic parameters. Joint Bone Spine. 2017 May;84(3): 309-15. doi: 10.1016/j.jbspin.2016.05.008. Epub 2016 Jun 28.

59. Haynes KR, Tseng HW, Kneissel M, et al. Treatment of a mouse model of ankylosing spondylitis with exogenous sclerostin has no effect on disease progression. BMC Musculoskelet Disord. 2015 Nov 26;16:368. doi: 10.1186/s12891-015-0823-8.

60. Li X, Wang J, Zhan Z, et al. Inflammation intensity-dependent expression of osteoinductive Wnt proteins is critical for ectopic new bone formation in ankylosing spondylitis. Arthritis Rheumatol. 2018 Jul; 70(7):1056-70. doi: 10.1002/art.40468. Epub 2018 May 7.

61. Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells. 2020 Apr 2; 9(4):857. doi: 10.3390/cells9040857.

62. Joo YB, Bang SY, Kim TH, et al. Bone morphogenetic protein 6 polymorphisms are associated with radiographic progression in ankylosing spondylitis. PLoS One. 2014 Aug 14; 9(8):e104966. doi: 10.1371/journal.pone.0104966. eCollection 2014.

63. Dumic-Cule I, Peric M, Kucko L, et al. Bone morphogenetic proteins in fracture repair. Int Orthop. 2018 Nov;42(11):2619-26. doi: 10.1007/s00264-018-4153-y. Epub 2018 Sep 15.

64. Yang J, Xu S, Chen M, et al. Serum sclerostin and bone morphogenetic protein-2 levels in patients with ankylosing spondylitis: a metaanalysis. Calcif Tissue Int. 2019 Jul; 105(1):37-50. doi: 10.1007/s00223-019-00542-z. Epub 2019 Mar 25.

65. Liao HT, Lin YF, Tsai CY, et al. Bone morphogenetic proteins and Dickkopf-1 in ankylosing spondylitis. Scand J Rheumatol. 2018 Jan;47(1):56-61. doi: 10.1080/03009742.2017.1287305. Epub 2017 Mar 17.

66. Syrbe U, Callhoff J, Conrad K, et al. Serum adipokine levels in patients with ankylosing spondylitis and their relationship to clinical parameters and radiographic spinal progression. Arthritis Rheumatol. 2015 Mar; 67(3):678-85. doi: 10.1002/art.38968.

67. Hartl A, Sieper J, Syrbe U, et al. Serum levels of leptin and high molecular weight adiponectin are inversely associated with radiographic spinal progression in patients with ankylosing spondylitis: results from the ENRADAS trial. Arthritis Res Ther. 2017 Jun 15;19(1):140. doi: 10.1186/s13075-017-1350-9.

68. Park JH, Lee SG, Jeon YK, et al. Relationship between serum adipokine levels and radiographic progression in patients with ankylosing spondylitis: A preliminary 2-year longitudinal study. Medicine (Baltimore). 2017 Aug;96(33):e7854. doi: 10.1097/MD.0000000000007854.

69. Poddubnyy D, Haibel H, Listing J, et al. Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondylarthritis. Arthritis Rheum. 2012 May;64(5):1388-98. doi: 10.1002/art.33465.

70. Maksymowych WP, Landewe R, Conner- Spady B, et al. Serum matrix metalloproteinase 3 is an independent predictor of structural damage progression in patients with ankylosing spondylitis. Arthritis Rheum. 2007 Jun;56(6):1846-53. doi: 10.1002/art.22589.

71. Poddubnyy D, Conrad K, Haibel H, et al. Elevated serum level of the vascular endothelial growth factor predicts radiographic spinal progression in patients with axial spondyloarthritis. Ann Rheum Dis. 2014 Dec;73(12): 2137-43. doi: 10.1136/annrheumdis-2013-203824. Epub 2013 Aug 16.

72. Turina MC, Sieper J, Yeremenko N, et al. Calprotectin serum level is an independent marker for radiographic spinal progression in axial spondyloarthritis. Ann Rheum Dis. 2014 Sep;73(9):1746-8. doi: 10.1136/annrheumdis-2014-205506. Epub 2014 May 20.

73. Syrbe U, Callhoff J, Conrad K, et al. Serum adipokine levels in patients with ankylosing spondylitis and their relationship to clinical parameters and radiographic spinal progression. Arthritis Rheumatol. 2015 Mar; 67(3):678-85. doi: 10.1002/art.38968.

74. Poddubnyy D, Rudwaleit M, Haibel H, et al. Rates and predictors of radiographic sacroiliitis progression over 2 years in patients with axial spondyloarthritis. Ann Rheum Dis. 2011 Aug;70(8):1369-74. doi: 10.1136/ard.2010.145995. Epub 2011 May 27.

75. Braun J, Baraliakos X, Hermann KGA, et al. Serum C-reactive protein levels demonstrate predictive value for radiographic and magnetic resonance imaging outcomes in patients with active ankylosing spondylitis treated with Golimumab. J Rheumatol. 2016 Sep;43(9):1704-12. doi: 10.3899/jrheum.160003. Epub 2016 Jul 15.

76. Rios Rodriguez V, Hermann KG, WeiІ A, et al. Progression of the structural damage in the sacroiliac joints in patients with early axial spondyloarthritis during a long-term anti-TNF treatment: six-year results of the ESTHER trial. Arthritis Rheumatol. 2019 May;71(5):722-8. doi: 10.1002/art.40786. Epub 2019 Mar 7.

77. Al-Mossawi MH, Chen L, Fang H, et al. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat Commun. 2017 Nov 15; 8(1):1510. doi: 10.1038/s41467-017-01771-2.

78. Regan-Komito D, Swann JW, Demetriou P, et al. GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis. Nat Commun. 2020 Jan 9;11(1):155. doi: 10.1038/s41467-019-13853-4.

79. Maksymowych WP. Biomarkers for Diagnosis of Axial Spondyloarthritis, Disease Activity, Prognosis, and Prediction of Response to Therapy. Front Immunol. 2019 Mar 7;10:305. doi: 10.3389/fimmu.2019.00305.

80. Delgado-Calle J, Sato AY and Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017 Mar;96:29-37. doi: 10.1016/ j.bone.2016.10.007. Epub 2016 Oct 12.

81. Jacques P, Lambrecht S, Verheugen E, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis. 2014 Feb;73(2):437-45. doi: 10.1136/annrheumdis-2013-203643. Epub 2013 Aug 6.

82. Appel H, Ruiz-Heiland G, Listing J, et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2009 Nov; 60(11):3257-62. doi: 10.1002/art.24888.

83. Jo S, Kang S, Han J, et al. Accelerated osteogenic differentiation of human bone derived cells in ankylosing spondylitis. J Bone Miner Metab. 2018 May;36(3):307-13. doi: 10.1007/s00774-017-0846-3. Epub 2017 Jun 6.

84. Clunie G, Horwood N. Loss and gain of bone in spondyloarthritis: what drives these opposing clinical features? Ther Adv Musculoskelet Dis. 2020 Oct 30;12:1759720X20969260. doi: 10.1177/1759720X20969260.

85. Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999 May; 103(9):1345-52. doi: 10.1172/JCI5703.

86. Kim HJ, Seo SJ, Kim JY, et al. IL-17 promotes osteoblast differentiation, bone regeneration, and remodeling in mice. Biochem Biophys Res Commun. 2020 Apr 16;524(4): 1044-50. doi: 10.1016/j.bbrc.2020.02.054. Epub 2020 Feb 14.

87. Liao C, Zhang C, Jin L, et al. IL-17 alters the mesenchymal stem cell niche towards osteogenesis in cooperation with osteocytes. J Cell Physiol. 2020 May;235(5):4466-80. doi: 10.1002/jcp.29323. Epub 2019 Oct 23.

88. Jo S, Wang SE, Lee YL, et al. IL-17A induces osteoblast differentiation by activating JAK2/STAT3 in ankylosing spondylitis. Arthritis Res Ther. 2018 Jun 7;20(1):115. doi: 10.1186/s13075-018-1582-3.

89. Van Tok MN, van Duivenvoorde LM, Kramer I, et al. Interleukin-17A inhibition diminishes inflammation and new bone formation in experimental spondyloarthritis. Arthritis Rheumatol. 2019 Apr;71(4):612-625. doi: 10.1002/art.40770. Epub 2019 Feb 18.

90. Bridgewood C, Sharif K, Sherlock J, et al. Interleukin-23 pathway at the enthesis: the emerging story of enthesitis in spondyloarthropathy. Immunol Rev. 2020 Mar;294(1):27-47. doi: 10.1 111/imr.12840. Epub 2020 Jan 19.


Review

For citations:


Erdes SF, Korotaeva TV. Progression of axial spondyloarthritis. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2021;15(3):7-14. https://doi.org/10.14412/1996-7012-2021-3-7-14

Views: 757


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)