Effect of colchicine, methotrexate, and hydroxychloroquine therapy on cardiovascular outcomes in patients with calcium pyrophosphate crystal deposition disease
https://doi.org/10.14412/1996-7012-2021-6-76-83
Abstract
Anti-inflammatory therapy, such as colchicine (COL), has been suggested to affect the incidence of cardiovascular events in patients with calcium pyrophosphate crystal deposition disease (CPPD).
Objective: to study the effect of anti-inflammatory therapy with COL, hydroxychloroquine (HC), and methotrexate (MT) on cardiovascular outcomes in patients with CPPD.
Patients and methods. The study included 305 patients with CPPD, the majority (62.30%) were women. The average follow-up period was 3.9±2.7 years. Among factors influencing cardiovascular outcome were considered: gender; age; smoking; alcohol intake >20 conventional doses per week; arterial hypertension; a history of cardiovascular diseases (CVD), in particular ischemic heart disease, acute myocardial infarction, acute cerebrovascular accident, chronic heart failure >III stage according to NYHA, as well as type 2 diabetes mellitus (DM); body mass index >25 kg/m2 and >30 kg/m2; cholesterol level (CHOL) >5.1 mmol/l; glomerular filtration rate (GFR) < 60 ml/min/1.73 m2; serum uric acid level >360 μmol/l; hypercalcemia (serum calcium level >2.62 mmol/L); CRP level >2 mg/l; the presence of hyperparathyroidism (parathyroid hormone level >65 pg/ml); CPPD phenotypes (asymptomatic, osteoarthritis with calcium pyrophosphate crystals, chronic arthritis, acute arthritis); intake of COL, HC, MT, glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs).
Results and discussion. 264 patients were under dynamic observation. Any of the studied cardiovascular events were registered in 79 (29.9%) patients. During the observation period, 46 (17.4%) patients died, in 76.1% of cases the cause of death was CVD. Death from other causes was diagnosed in 11 (23.9%) patients. Non-fatal cardiovascular events were reported in 44 (16.7%) cases. The risk of cardiovascular events was higher in patients over 65 years of age (odds ratio, OR 5.97; 95% confidence interval, CI 3.33–10.71), with serum cholesterol levels ≥5.1 mmol/L (OR 1,95; 95% CI 1.04–3.65), GFR <60 ml/min/1.73 m2 (OR 2.78; 95% CI 1.32–5.56), history of CVD (OR 2,32; 95% CI 1.22–4.44). COL therapy reduced the risk of cardiovascular events (OR 0.20; 95% CI 0.11–0.39).
Conclusion. Poor CVD outcomes in CPPD are associated with age, hypercholesterolemia, chronic kidney disease, and a history of CVD. The use of COL, in contrast to MT and HC, was accompanied by a decrease in cardiovascular risk.
Keywords
About the Authors
M. S. EliseevRussian Federation
34A, Kashirskoe shosse, Moscow 115522
E. V. Cheremushkina
Russian Federation
34A, Kashirskoe shosse, Moscow 115522
O. V. Zhelyabina
Russian Federation
34A, Kashirskoe shosse, Moscow 115522
M. N. Chikina
Russian Federation
34A, Kashirskoe shosse, Moscow 115522
A. A. Kapitonova
Russian Federation
34A, Kashirskoe shosse, Moscow 115522
A. A. Novikova
Russian Federation
111, 1st Uspenskoe shosse, Lapino village, Odintsovo district, Moscow region 143081
E. I. Markelova
Russian Federation
61/2, Schepkina street, 129110 Moscow
A. M. Lila
Russian Federation
34A, Kashirskoe shosse, Moscow 115522;
2/1, Barrikadnaya street, building 1, 125993 Moscow
References
1. Kudaeva FM, Vladimirov SA, Eliseev MS, et al. The clinical manifestations of calcium pyrophosphate crystal deposition disease. Nauchno-prakticheskaya revmatologiya. 2014;52(4):405-409. (In Russ.).
2. Ramonda R, Musacchio E, Perissinotto E, et al. Prevalence of chondrocalcinosis in Italian subjects from northeastern Italy. The Pro.V.A. (PROgetto Veneto Anziani) study. Clin Exp Rheumatol. 2009 Nov-Dec;27(6):981-4.
3. Richette P, Bardin T, Doherty M. An update on the epidemiology of calcium pyrophosphate dihydrate crystal deposition disease. Rheumatology (Oxford). 2009 Jul; 48(7):711-5. doi: 10.1093/rheumatology/kep081. Epub 2009 Apr 27.
4. Zhang W, Doherty M, Bardin T, et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis. Ann Rheum Dis. 2011 Apr;70(4):563-70. doi: 10.1136/ard.2010.139105. Epub 2011 Jan 7.
5. Petit H, Marcellin L, Chatelus E. Lumbar spine chondrocalcinosis. J Rheumatol. 2017 Aug;44(8):1288-9. doi: 10.3899/jrheum.161452.
6. Abhishek A, Doherty S, Maciewicz R, et al. Association between low cortical bone mineral density, soft-tissue calcification, vascular calcification and chondrocalcinosis: a case-control study. Ann Rheum Dis. 2014 Nov; 73(11):1997-2002. doi: 10.1136/annrheumdis2013-203400. Epub 2013 Aug 2.
7. Eliseev MS, Novikova DS, Novikova AM, et al. Calcification of coronary arteries in patients with calcium pyrophosphate crystal deposition disease and knee osteoarthritis. Nauchcno-Prakticheskaya Revmatologia. 2021;59(4):411-7. (In Russ.).
8. Novikova AM. Calcium pyrophosphate crystal deposition disease as a risk factor for cardiovascular diseases. Nauchno-Prakticheskaya Revmatologiya. 2020;58(1):80-6. (In Russ.).
9. Nasonov EL, Popkova TV. Role of interleukin 1 in the development of atherosclerosis. Nauchno-Prakticheskaya Revmatologiya. 2018;56(Suppl. 4):28-34. (In Russ.).
10. Tausche AK, Reuss-Borst M. Kristallarthritiden [Crystal arthropathies]. Dtsch Med Wochenschr. 2019 Aug;144(15): 1055-60. doi: 10.1055/a-0857-0916.
11. Vladimirov SA, Eliseev MS. Current strategy in the treatment of calcium pyrophosphate crystal deposition disease. NauchnoPrakticheskaya Revmatologiya. 2018;56(6):746-52. (In Russ.).
12. Eliseev MS, Vladimirov SA, Nasonov EL. Use of methotrexate in patients with calcium pyrophosphate crystal deposition disease. Nauchno-Prakticheskaya Revmatologiya. 2018;56(2):196-201. (In Russ.).
13. Zhang W, Doherty M, Pascual E, et al. EULAR recommendations for calcium pyrophosphate deposition. Part II: management. Ann Rheum Dis. 2011 Apr;70(4):571-5. doi: 10.1136/ard.2010.139360
14. Lawler PR, Bhatt DL, Godoy LC, et al. Targeting cardiovascular inflammation: next steps in clinical translation. Eur Heart J. 2021 Jan 1;42(1):113-31. doi: 10.1093/eurheartj/ehaa099
15. Olsen NJ, Schleich MA, Karp DR. Multifaceted effects of hydroxychloroquine in human disease. Semin Arthritis Rheum. 2013 Oct;43(2):264-72. doi: 10.1016/j.semarthrit. 2013.01.001.
16. Solomon DH, Liu CC, Kuo IH, et al. Effects of colchicine on risk of cardiovascular events and mortality among patients with gout: a cohort study using electronic medical records linked with Medicare claims. Ann Rheum Dis. 2016 Sep;75(9):1674-9. doi: 10.1136/annrheumdis-2015-207984. Epub 2015 Nov 18.
17. Nasonov EL. Methotrexate in rheumatoid arthritis – 2015: New facts and ideas. Nauchno-prakticheskaya revmatologiya. 2015;53(4):421-33. (In Russ.).
18. Rainsford KD, Parke AL, CliffordRashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology. 2015 Oct;23(5):231-69. doi: 10.1007/s10787-015-0239-y.
19. Robertson S, Martinez GJ, Payet CA, et al. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci (Lond). 2016 Jul 1;130(14): 1237-46. doi: 10.1042/CS20160090. Epub 2016 Apr 21.
20. Hollander JL, Jessar RA, McCarty DJ. Synovianalysis: an aid in arthritis diagnosis. Bull Rheum Dis. 1961;(12):263-4.
21. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. Geneva: World Health Organistion; 1999. 252 p.
22. Eliseev MS, Novikova AM, Zhelyabina OV, et al. Assessment of cardiovascular risk in patients with microcrystalline arthritis and rheumatoid arthritis using the ATP III and Reynolds Risk Score scales. Nauchno-prakticheskaya revmatologiya. 2020;58(5):512-9. (In Russ.).
23. Eliseev MS, Zhelyabina OV, Chikina MN, Novikova AM. Cardiovascular risk factors in patients with calcium pyrophosphate crystal deposition disease. Nauchno-Prakticheskaya Revmatologiya. 2019;57(5):545-52. (In Russ.).
24. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014 Mar 15; 383(9921):999-1008. doi: 10.1016/S0140-6736(13)61752-3. Epub 2013 Sep 29.
25. Go AS, Mozaffiarian D, Roger VL, et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation. 2013 Jan 1;127(1):e6-e245. doi: 10.1161/CIR.0b013e31828124ad. Epub 2012 Dec 12.
26. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016 Aug 1;37(29):2315-81. doi: 10.1093/eurheartj/ehw106. Epub 2016 May 23.
27. Ridker PM, Everett BM, Pradhan A, et al; CIRT Investigators. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N Engl J Med. 2019 Feb 21;380(8):752-62. doi: 10.1056/NEJMoa1809798. Epub 2018 Nov 10.
28. Finckh A, Mc Carthy GM, Madigan A, et al. Methotrexate in chronic-recurrent calcium pyrophosphate deposition disease: no significant effect in a randomized crossover trial. Arthritis Res Ther. 2014 Oct 15;16(5): 458. doi: 10.1186/s13075-014-0458-4.
29. Kostopoulou M, Nikolopoulos D, Parodis I, Bertsias G. Cardiovascular Disease in Systemic Lupus Erythematosus: Recent Data on Epidemiology, Risk Factors and Prevention. Curr Vasc Pharmacol. 2020; 18(6):549-65. doi: 10.2174/1570161118666191227101636.
30. Yang DH, Wang YH, Pan LF, Wei JC. Cardiovascular Protection of Hydroxychloroquine in Patients with Sjö gren's Syndrome. J Clin Med. 2020 Oct 28;9(11):3469. doi: 10.3390/jcm9113469
31. Liu D, Li X, Zhang Y, et al. Chloroquine and hydroxychloroquine are associated with reduced cardiovascular risk: a systematic review and meta-analysis. Drug Des Devel Ther. 2018 Jun 11;12:1685-95. doi: 10.2147/DDDT.S166893
32. Libby PJ. A interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J Am Coll Cardiol. 2017 Oct 31;70(18):2278-89. doi: 10.1016/j.jacc.2017.09.028.
33. Yang M, Lv H, Liu Q, et al. Colchicine Alleviates Cholesterol Crystal-Induced Endothelial Cell Pyroptosis through Activating AMPK/SIRT1 Pathway. Oxid Med Cell Longev. 2020 Jul 15;2020:9173530. doi: 10.1155/2020/9173530.
34. Alekberova ZS, Nasonov EL. Prospects for using colchicine in medicine: new evidence. NauchnoPrakticheskaya Revmatologiya. 2020; 58(2):183-90. (In Russ.).
35. Tardif JC, Kouz S, Waters DD, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med. 2019 Dec 26;381(26):2497-505. doi: 10.1056/NEJMoa1912388. Epub 2019 Nov 16.
36. Crittenden DB, Lehmann RA, Schneck L, et al. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. J Rheumatol. 2012 Jul; 39(7):1458-64. doi: 10.3899/jrheum.111533. Epub 2012 Jun 1.
37. Nidorf SM, Fiolet ATL, Mosterd A, et al; LoDoCo2 Trial Investigators. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020 Nov 5;383(19):1838-47. doi: 10.1056/NEJMoa2021372.
38. Reuss-Borst M, Tausche AK. Update on Gout and Calcium pyrophosphate deposition (CPPD). Dtsch Med Wochenschr. 2018 Aug; 143(16):1157-66. doi: 10.1055/a-0504-5684.
Review
For citations:
Eliseev MS, Cheremushkina EV, Zhelyabina OV, Chikina MN, Kapitonova AA, Novikova AA, Markelova EI, Lila AM. Effect of colchicine, methotrexate, and hydroxychloroquine therapy on cardiovascular outcomes in patients with calcium pyrophosphate crystal deposition disease. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2021;15(6):76-83. (In Russ.) https://doi.org/10.14412/1996-7012-2021-6-76-83