Preview

Modern Rheumatology Journal

Advanced search

Role of fatty acids in inflammation, atherosclerosis, metabolic disorders and gout

https://doi.org/10.14412/1996-7012-2021-6-124-129

Abstract

Fatty acids (FA) are present in all types of organisms and play an important role in energy metabolism. The length and number of double bonds in the FA of membrane phospholipids determine the viscosity, the activity of transport systems and enzymes, and also the susceptibility to lipid peroxidation. The review discusses the influence of free unsaturated FAs with short and long chains on various inflammatory mechanisms, including atherosclerosis. It has been shown that FAs can reduce endothelial activation and affect the metabolism of eicosanoids. A new model of fundamental factors determining the variability of the timing, degree and duration of acute inflammatory reactions in the deposition of urate crystals in tissues, in which FAs play an important role is considered, using gout as an example. In the future, the study of FAs will expand the understanding of the pathophysiology of chronic inflammation in various diseases, metabolic disorders and atherosclerosis and enable the development of new treatment strategies. 

About the Authors

M. A. Gromova
Pirogov Russian National Research Medical University
Russian Federation

Department of faculty therapy, Medical faculty, 

1, Ostrovitianov street, Moscow 117997



V. V. Tsurko
Pirogov Russian National Research Medical University; I.M. Sechenov First Moscow State Medical University
Russian Federation

Department of faculty therapy, Medical faculty, 1, Ostrovitianov street, Moscow 117997;

Department of General Medical Practice of the Institute of Postgraduate Education, 8, Trubetskaya street, building 2, Moscow 119991



O. A. Kislyak
Pirogov Russian National Research Medical University
Russian Federation

Department of faculty therapy, Medical faculty, 

1, Ostrovitianov street, Moscow 117997



E. V. Kiseleva
N.N. Semenov Federal Research Center for chemical physics
Russian Federation

Laboratory of Functional Polymer Systems and Composites, 

4, Kosygina street, Moscow 119334



References

1. Ahmad MU. Fatty Acids. Chemistry, Synthesis, and Applications. 1st edition. Academic Press and AOCS Press; 2017. 600 p.

2. Hall JE. Meditsinskaya fiziologiya po Gaitonu i Khollu [Guyton and Hall Medical Physiology]. 2nd edition. Moscow: Logosfera; 2018. 1328 p.

3. Severin ES, Aleinikova TL, Osipov EV, Silaeva SA. Biologicheskaya khimiya [Biological chemistry]. Moscow: MIA; 2008. 364 p.

4. Abedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr. 2014 Sep;2(5):443-63. doi: 10.1002/fsn3.121. Epub 2014 Jun 29.

5. Sonnenburg JL, Bä ckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature, 2016; 535: 56-64. Nature. 2016 Jul 7;535(7610):56-64. doi: 10.1038/nature18846.

6. Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987 Oct;28(10):1221-7. doi: 10.1136/gut.28.10.1221.

7. Koh A, De Vadder F, KovatchevaDatchary P, Bä ckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016 Jun 2; 165(6):1332-45. doi: 10.1016/j.cell.2016.05.041.

8. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012 Jun 8;336(6086):1262-7. doi: 10.1126/science.1223813. Epub 2012 Jun 6.

9. Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003 Jul 11;278(28):25481-9. doi: 10.1074/jbc.M301403200. Epub 2003 Apr 23.

10. Fleischer J, Bumbalo R, Bautze V, et al. Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon. Cell Tissue Res. 2015 Sep;361(3):697-710. doi: 10.1007/s00441-015-2165-0. Epub 2015 Mar 28.

11. Maier E, Kurz K, Jenny M, et al. Food preservatives sodium benzoate and propionic acid and colorant curcumin suppress Th1- type immune response in vitro. Food Chem Toxicol. 2010 Jul;48(7):1950-6. doi: 10.1016/j.fct.2010.04.042. Epub 2010 May 11.

12. Bailon E, Cueto-Sola M, Utrilla P, et al. Butyrate in vitro immune-modulatory effects might be mediated through a proliferationrelated induction of apoptosis. Immunobiology. 2010 Nov;215(11):863-73. doi: 10.1016/j.imbio.2010.01.001. Epub 2010 Jan 13.

13. Felice C, Lewis A, Armuzzi A, et al. Review article: selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases. Aliment Pharmacol Ther. 2015 Jan;41(1):26-38. doi: 10.1111/apt.13008. Epub 2014 Nov 4.

14. Li MO, Rudensky AY. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat Rev Immunol. 2016 Apr;16(4):220-33. doi: 10.1038/nri.2016.26.

15. Correa-Oliveira R, Fachi JL, Vieira A, et al. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology. 2016 Apr 22;5(4):e73. doi: 10.1038/cti.2016.17. eCollection 2016 Apr.

16. Cox MA, Jackson J, Stanton M, et al. Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E(2) and cytokines. World J Gastroenterol. 2009 Nov 28;15(44):5549-57. doi: 10.3748/wjg.15.5549.

17. Ohira H, Tsutsui W, Fujioka Y. Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis? J Atheroscler Thromb. 2017 Jul 1;24(7):660-72. doi: 10.5551/jat.RV17006. Epub 2017 May 27.

18. Li XS, Obeid S, Klingenberg R, et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017 Mar 14;38(11):814-24. doi: 10.1093/eurheartj/ehw582.

19. Kasahara K, Tanoue T, Yamashita T, et al. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflamemation in Atherosclerosis. J Lipid Res. 2017 Mar;58(3):519-28. doi: 10.1194/jlr.M072165. Epub 2017 Jan 27.

20. Ryan PM, London LE, Bjorndahl TC, et al. Microbiome and metabolome modifying effects of several cardiovascular disease interventions in apo-E-/-mice. Microbiome. 2017 Mar 13;5(1):30. doi: 10.1186/s40168-017-0246-x.

21. Emoto T, Yamashita T, Kobayashi T, et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels. 2017 Jan;32(1): 39-46. doi: 10.1007/s00380-016-0841-y. Epub 2016 Apr 28.

22. Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015 Nov;64(11):1744-54. doi: 10.1136/gutjnl-2014-307913. Epub 2014 Dec 10.

23. Weitkunat K, Schumann S, Nickel D, et al. Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in high-fat dietinduced obesity. Mol Nutr Food Res. 2016 Dec;60(12):2611-21. doi: 10.1002/mnfr.201600305. Epub 2016 Aug 30.

24. Tarini J, Wolever TM. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reducesfree-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab. 2010 Feb;35(1):9-16. doi: 10.1139/H09-119.

25. Dessi M, Noce A, Bertucci P, et al. Atherosclerosis, dyslipidemia, and inflammation: the significant role of polyunsaturated Fatty acids. ISRN Inflamm. 2013 May 12;2013: 191823. doi: 10.1155/2013/191823.

26. Novgorodtseva TP, Kantur TA, Karaman YuK, et al. Changes in the composition of fatty acids in erythrocyte lipids in arterial hypertension associated with dyslipidemia. Lipidy v zdorov'e i boleznyakh. 2011;(10):18. (In Russ.).

27. De Roos B, Mavrommatis Y, Brouwer IA. Long-chain n-3 polyunsaturated fatty acids: new insights into mechanisms relating to inflammation and coronary heart disease. Br J Pharmacol. 2009 Sep;158(2):413-28. doi: 10.1111/j.1476-5381.2009.00189.x. Epub 2009 May 5.

28. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011 Nov 8;58(20): 2047-67. doi: 10.1016/j.jacc.2011.06.063.

29. Terkeltaub R. What makes gouty inflammation so variable? BMC Med. 2017 Aug 18; 15(1):158. doi: 10.1186/s12916-017-0922-5.

30. Schett G, Schauer C, Hoffmann M, Herrmann M. Why does the gout attack stop? A roadmap for the immune pathogenesis of gout. RMD Open. 2015 Aug 15;1(Suppl 1): e000046. doi: 10.1136/rmdopen-2015-000046. eCollection 2015.

31. Cleophas MC, Crisan TO, Joosten LA. Factors modulating the inflammatory response in acute gouty arthritis. Curr Opin Rheumatol. 2017 Mar;29(2):163-70. doi: 10.1097/BOR.0000000000000366.

32. Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science. 2010 Jan 15;327(5963):296-300. doi: 10.1126/science.1184003.

33. Joosten LA, Netea MG, Mylona E, et al. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 2010 Nov;62(11): 3237-48. doi:10.1002/art.27667.

34. Dessein PH, Shipton EA, Stanwix AE, et al. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann Rheum Dis. 2000 Jul;59(7):539-43. doi: 10.1136/ard.59.7.539.

35. Abhishek A, Valdes AM, Doherty M. Low omega-3 fatty acid levels associate with frequent gout attacks: a case control study. Ann Rheum Dis. 2016 Apr;75(4):784-5. doi: 10.1136/annrheumdis-2015-208767. Epub 2015 Dec 29.

36. Goldberg EL, Asher JL, Molony RD, et al. β-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares. Cell Rep. 2017 Feb 28;18(9):2077- 2087. doi: 10.1016/j.celrep.2017.02.004.

37. Cleophas MC, Crisan TO, Lemmers H, et al. Suppression of monosodium urate crystal-induced cytokine production by butyrate is mediated by the inhibition of class I histone deacetylases. Ann Rheum Dis. 2016 Mar;75(3): 593-600. doi: 10.1136/annrheumdis-2014-206258. Epub 2015 Jan 14.

38. Shao T, Shao L, Li H, et al. Combined signature of the fecal microbiome and metabolome in patients with gout. Front Microbiol. 2017 Feb 21;8:268. doi: 10.3389/fmicb.2017.00268. eCollection 2017.

39. Vieira AT, Galvao I, Macia LM, et al. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. J Leukoc Biol. 2017 Jan;101(1):275-84. doi: 10.1189/jlb.3A1015-453RRR. Epub 2016 Aug 5.

40. Markelova EI, Barskova VG, Il'ina AE, Nasonov EL. The importance of daily monitoring of blood pressure in the diagnosis of arterial hypertension in patients with gout. Nauchno-prakticheskaya revmatologiya. 2010; 48(1):61-6. (In Russ.).

41. Tsvetkova MV, Khirmanov VN, Zybina NN. The role of nonesterified fatty acids in pathogenesis of cardiovascular diseases. Arterial'- naya gipertenziya. 2010;16(1):93-103. (In Russ.).

42. Kushnarenko NN, Govorin AV. Clinical implication of fatty acid changes in patients with primary gout associated with arterial hypertension. Ratsional'naya Farmakoterapiya v Kardiologii. 2012;8(2):190-5. (In Russ.).


Review

For citations:


Gromova MA, Tsurko VV, Kislyak OA, Kiseleva EV. Role of fatty acids in inflammation, atherosclerosis, metabolic disorders and gout. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2021;15(6):124-129. (In Russ.) https://doi.org/10.14412/1996-7012-2021-6-124-129

Views: 622


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)