Preview

Современная ревматология

Расширенный поиск

Общность патогенетических аспектов, аутоиммунитета и фармакотерапии при коронавирусной инфекции (COVID-19) и иммуновоспалительных ревматических заболеваниях

https://doi.org/10.14412/1996-7012-2022-5-82-87

Аннотация

 Обзор посвящен взаимосвязи патогенетических механизмов коронавирусной инфекции (COVID-19) и иммуновоспалительных ревматических заболеваний (ИВРЗ). Обобщены современные знания о патогенезе COVID-19, в том числе общие с ИВРЗ механизмы коагулопатии, гиперпродукции провоспалительных цитокинов, антифосфолиипидных антител. Проанализированы наличие и клиническая значимость выявления различных аутоантител при COVID-19, которые, вероятно, играют патогенетическую роль в нарушении регуляции иммунитета. На основании данных последних исследований рассматриваются факторы риска и особенности тяжелого течения инфекции у пациентов с ИВРЗ.

Об авторах

К. С. Руцкая-Морошан
НАО «Медицинский университет Астана»
Россия

Кристина Станиславовна Руцкая-Морошан

Казахстан, 010000, Нур-Султан, ул. Бейбитшилик, 49А



С. Т. Абишева
НАО «Медицинский университет Астана»
Россия

Казахстан, 010000, Нур-Султан, ул. Бейбитшилик, 49А



А. М. Лила
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; Кафедра ревматологии ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

115522, Москва, Каширское шоссе, 34А;

125993, Москва, ул. Баррикадная, 2/1, стр. 1



Литература

1. Tentolouris A, Ntanasis-Stathopoulos I, Vlachakis PK, et al. COVID-19: time to flatten the infodemic curve. Clin Exp Med. 2021 May;21(2):161-5. doi: 10.1007/s10238-020-00680-x. Epub 2021 Jan 8.

2. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) и аутоиммунитет. Научно-практическая ревматология. 2021; 59(1):5-30.

3. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): вклад ревматологии. Терапевтический архив. 2021;(5):537–50.

4. Hamming I, Timens W, Bulthuis M, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004 Jun;203(2):631-7. doi: 10.1002/path.1570.

5. Parasher A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J. 2021 May; 97(1147):312-20. doi: 10.1136/postgradmedj-2020-138577.

6. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020 Jun;8(6):e46-e47. doi: 10.1016/S2213-2600(20)30216-2. Epub 2020 Apr 27.

7. Weatherhead JE, Clark E, Vogel TP, et al. Inflammatory syndromes associated with SARS-CoV-2 infection: dysregulation of the immune response across the age spectrum. J Clin Invest. 2020 Dec 1;130(12):6194-7. doi: 10.1172/JCI145301.

8. Triggle CR, Bansal D, Ding H, et al. A ComprehensiveReview of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Managementof SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Front Immunol. 2021 Feb 26;12: 631139. doi: 10.3389/fimmu.2021.631139. eCollection 2021.

9. Насонов ЕЛ, Бекетова ТВ, Решетняк ТМ и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология 2020;58(4):353-67.

10. Merrill JT, Erkan D, Winakur J, et al. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020 Oct;16(10):581-9. doi: 10.1038/s41584-020-0474-5. Epub 2020 Jul 30.

11. Gu SX, Tyagi T, Jain K, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol. 2021 Mar;18(3):194-209. doi: 10.1038/s41569-020-00469-1. Epub 2020 Nov 19.

12. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020 Apr 23;382(17):e38. doi: 10.1056/NEJMc2007575. Epub 2020 Apr 8.

13. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020 Jun 1;217(6):e20200652. doi: 10.1084/jem.20200652.

14. Apel F, Zychlinsky A, Kenny EF. The role of neutrophil extracellulartraps in rheumatic diseases. Nat Rev Rheumatol. 2018 Aug;14(8): 467-75. doi: 10.1038/s41584-018-0039-z.

15. Zuo Y, Yalavarthi S, Shi H, et al. Neutrophilextracellular traps in COVID-19. JCI Insight. 2020 Jun 4;5(11):e138999. doi: 10.1172/jci.insight.138999.

16. Zuo Y, Zuo M, Yalavarthi S, et al. Neutrophil extracellular traps and thrombosis in COVID-19. Neutrophil extracellular traps in COVID-19. MedRxiv. 2020 May 5;2020.04.30. 20086736. doi: 10.1101/2020.04.30.20086736. Preprint

17. Meroni PL, Borghi MO, Raschi E, et al. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol. 2011 Jun;7(6):330-9. doi: 10.1038/nrrheum.2011.52. Epub 2011 May 10.

18. Bertin D, Brodovitch A, Beziane A, et al. Anticardiolipin IgG Autoantibody Level Is an Independent Risk Factor for COVID-19 Severity. Arthritis Rheumatol. 2020 Nov;72(11): 1953-5. doi: 10.1002/art.41409. Epub 2020 Sep 22.

19. Zuo Y, Estes K, Ali R, et al. Prothrombotic antiphospholipid antibodies in COVID-19. МedRxiv. 2020 Sep 15; 2020.06.15.20131607 doi: 10.1101/2020.06.15.20131607. Preprint

20. Trahtemberg U, Rottapel R, Dos Santos CC, et al. Anticardiolipin and other antiphospholipid antibodiesin critically ill COVID-19 positive and negative patients. Ann Rheum Dis. 2021 Sep;80(9):1236-40. doi: 10.1136/annrheumdis-2021-220206. Epub 2021 Apr 26.

21. Taha M, Samavati L. Antiphospholipid antibodies in COVID-19: a meta-analysis and systematic review. RMD Open. 2021 May;7(2): e001580. doi: 10.1136/rmdopen-2021-001580.

22. Abdel-Wahab N, Talathi S, LopezOlivo MA, et al. Risk of developing antiphospholipid antibodies followingviral infection: a systematic review and meta-analysis. Lupus. 2018 Apr;27(4):572-83. doi: 10.1177/0961203317731532. Epub 2017 Sep 24.

23. Didier K, Bolko L, Giusti D, et al. Autoantibodies associated with connective tissue diseases:What meaning for clinicians? Front Immunol. 2018 Mar 26;9:541. doi: 10.3389/fimmu.2018.00541. eCollection 2018.

24. Sener AG, Afsar I, Demirci M. Evaluation of antinuclear antibodies by indirect immunofluorescence and line immunoassay methods': four years' data from Turkey. APMIS. 2014 Dec;122(12):1167-70. doi: 10.1111/apm.12275. Epub 2014 Apr 16.

25. Damoiseaux J, von Mühlen CA, GarciaDe La Torre I, et al. International consensus on ANA patterns (ICAP): the bumpy road towards a consensus on reporting ANA results. Auto Immun Highlights. 2016 Dec;7(1):1. doi: 10.1007/s13317-016-0075-0. Epub 2016 Jan 30.

26. Gao ZW, Zhang HZ, Liu C, Dong K. Autoantibodies in COVID-19: frequency and function. Autoimmun Rev. 2021 Mar;20(3): 102754. doi: 10.1016/j.autrev.2021.102754.

27. Vlachoyiannopoulos PG, Magira E, Alexopoulos H, et al. Autoantibodies related to systemic autoimmune rheumatic diseases in severely ill patients with COVID-19. Ann Rheum Dis. 2020 Dec;79(12):1661-3. doi: 10.1136/annrheumdis-2020-218009. Epub 2020 Jun 24.

28. Pascolini S, Vannini A, Deleonardi G, et al. COVID-19 and immunological dysregulation: can autoantibodies be useful? Clin Transl Sci. 2021 Mar;14(2):502-8. doi: 10.1111/cts.12908. Epub 2021 Jan 20.

29. Lerma LA, Chaudhary A, Bryan A, et al. Prevalence of autoantibody responses in acute coronavirus disease 2019 (COVID-19). J Transl Autoimmun. 2020;3:100073. doi: 10.1016/j.jtauto.2020.100073. Epub 2020 Nov 27.

30. Buvry C, Cassagnes L, Tekath M, et al. Anti-Ro52 antibodies are a risk factor for interstitial lung diseasein primary Sjogren syndrome. Respir Med. 2020 Mar;163:105895. doi: 10.1016/j.rmed.2020.105895. Epub 2020 Feb 7.

31. Sabbagh S, Pinal-Fernandez I, Kishi T, et al. Childhood Myositis Heterogeneity Collaborative Study Group. Anti-Ro52 autoantibodies are associated with interstitial lung disease and more severe disease in patients with juvenile myositis. Ann Rheum Dis. 2019 Jul; 78(7):988-95. doi: 10.1136/annrheumdis2018-215004. Epub 2019 Apr 24.

32. Cappelli S, Bellando Randone S, Camiciottoli G, et al. Interstitial lung disease in systemic sclerosis: where do we stand? Eur Respir Rev. 2015 Sep;24(137):411-9. doi: 10.1183/16000617.00002915.

33. Varga J. Clinical manifestations, evaluation, and diagnosis of interstitial lung disease in systemic sclerosis (scleroderma). https://www.uptodate.com/contents/clinicalmanifestations-evaluation-and-diagnosisofinterstitial-lung-disease-in-systemic-sclerosis-scleroderma.

34. Sepriano A, Kerschbaumer A, Smolen JS, et al. Safety of synthetic and biological DMARDs: A systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis. 2020 Jun; 79(6):760-70. doi: 10.1136/annrheumdis2019-216653. Epub 2020 Feb 7.

35. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020 Aug;584(7821):430-6. doi: 10.1038/s41586-020-2521-4. Epub 2020 Jul 8.

36. Zhong J, Shen G, Yang H, et al. COVID-19 in patients with rheumatic disease in Hubei province, China: a multicentre retrospective observational study. Lancet Rheumatol. 2020 Sep;2(9):e557-e564. doi: 10.1016/S2665-9913(20)30227-7. Epub 2020 Jul 3.

37. Gu T, Mack JA, Salvatore M, et al. COVID-19 outcomes, risk factors and associations by race: a comprehensive analysis using electronic health records data in Michigan Medicine. medRxiv. 2020 Jun 18;2020.06.16.20133140. doi: 10.1101/2020.06.16.20133140. Preprint

38. Salvarani C, Bajocchi G, Mancuso P, et al. Susceptibility and severity of COVID-19 in patients treated with bDMARDS and tsDMARDs: a population-based study. Ann Rheum Dis. 2020 Jul;79(7):986-8. doi: 10.1136/annrheumdis-2020-217903. Epub 2020 May 28.

39. Pablos JL, Abasolo-Alcazar L, AlvaroGracia JM, et al. Prevalence of hospital PCRconfirmed COVID-19 cases in patients with chronic inflammatory and autoimmune rheumatic diseases. Ann Rheum Dis. 2020 Sep; 79(9):1170-3. doi: 10.1136/annrheumdis2020-217763. Epub 2020 Jun 12.

40. Shin YH, Shin JI, Moon SY, et al. Autoimmune inflammatory rheumatic diseases and COVID-19 outcomes in South Korea: a nationwide cohort study. Lancet Rheumatol. 2021 Oct;3(10):e698-e706. doi: 10.1016/S2665-9913(21)00151-X.

41. Gupta R, Misra A. COVID19 in South Asians/Asian Indians: Heterogeneity of data and implications for pathophysiology and research. Diabetes Res Clin Pract. 2020 Jul;165: 108267.

42. Sagnella GA, Rothwell MJ, Onipinla AK, et al. A population study of ethnic variations in the angiotensin-converting enzyme I/D polymorphism: relationships with gender, hypertension and impaired glucose metabolism. J Hypertens. 1999 May;17(5):657-64. doi: 10.1097/00004872-199917050-00009.

43. Francesconi P, Cantini F, Profili F, et al. COVID-19 epidemiology in rheumatic diseases in Tuscany: a case- control study. Joint Bone Spine. 2021 May;88(3):105131. doi: 10.1016/j.jbspin.2021.105131. Epub 2021 Jan 21.

44. Topless RK, Phipps-Green А, Leask М, et al. Gout, rheumatoid arthritis, and the risk of death related to coronavirus disease 2019: an analysis of the UK Biobank. ACR Open Rheumatol. 2021 May; 3(5):333-40. doi: 10.1002/acr2.11252. Epub 2021 Apr 15.

45. England BR, Roul P, Yang Y, et al. Risk of COVID-19 in rheumatoid arthritis: a National Veterans Affairs matched cohort study in atrisk individuals. Arthritis Rheumatol. 2021 Dec;73(12):2179-88. doi: 10.1002/art.41800. Epub 2021 Oct 19.

46. Peters MC, Sajuthi S, Deford P, et al. COVID-19-related genes in sputum cells in asthma. relationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020 Jul 1;202(1):83-90. doi: 10.1164/rccm.202003-0821OC.

47. Finney LJ, Glanville N, Farne H, et al. Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon. J Allergy Clin Immunol. 2021 Feb;147(2):510-9.e5. doi: 10.1016/j.jaci.2020.09.034. Epub 2020 Oct 15.

48. Reilev M, Kristensen KB, Pottegеrd A, et al. Characteristics and predictors of hospitalization and death in the first 11 122 cases with a positive RT-PCR test for SARS-CoV-2 in Denmark: a nationwide cohort. Int J Epidemiol. 2020 Oct 1;49(5):1468-81. doi: 10.1093/ije/dyaa140.

49. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020 Aug;584(7821):430-6. doi: 10.1038/s41586-020-2521-4. Epub 2020 Jul 8.

50. Harrison SL, Fazio-Eynullayeva E, Lane DA, et al. Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: a federated electronic medical record analysis. PLoS Med. 2020 Sep 10; 17(9):e1003321. doi: 10.1371/journal.pmed.1003321. eCollection 2020 Sep.

51. D’Silva KM, Jorge A, Cohen A, et al. COVID-19 outcomes in patients with systemic autoimmune rheumatic diseases compared to the general population: a US multicenter, comparative cohort study. Arthritis Rheumatol. 2021 Jun;73(6):914-20. doi: 10.1002/art.41619. Epub 2021 May 1.

52. Conway R, Grimshaw AA, Konig MF, et al. COVID-19 Global Rheumatology Alliance. SARS-CoV-2 Infection and COVID-19 Outcomes in Rheumatic Disease: A Systematic Literature Review And Meta-Analysis. Arthritis Rheumatol. 2021 Nov 22; doi: 10.1002/art.42030.

53. Liew JW, Bhana S, Costello W, et al. The COVID-19 Global Rheumatology Alliance: evaluating the rapid design and implementation of an international registry against best practice. Rheumatology (Oxford). 2021 Jan 5; 60(1):353-8. doi: 10.1093/rheumatology/keaa483.

54. Wallace ZS, Bhana S , Hausmann JS, et al. The Rheumatology Community responds to the COVID-19 pandemic: the establishment of the COVID-19 global rheumatology alliance. Rheumatology (Oxford). 2020 Jun 1;59(6): 1204-6. doi: 10.1093/rheumatology/keaa191.

55. Robinson PC, Yazdany J. The COVID-19 Global Rheumatology Alliance: collecting data in a pandemic. Nat Rev Rheumatol. 2020 Jun;16(6):293-4. doi: 10.1038/s41584-020-0418-0.

56. Strangfeld A, Schefer M, Gianfrancesco MA, et al. Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance physician- reported registry. Ann Rheum Dis. 2021 Jul;80(7): 930-42. doi: 10.1136/annrheumdis-2020-219498. Epub 2021 Jan 27.

57. Machado PM, Schefer M, Gossec L, et al. Response to: “Correspondence on ‘Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance physicianreported registry’” . Ann Rheum Dis. 2021 Mar 1;annrheumdis-2021-220134. doi: 10.1136/annrheumdis-2021-220134. Online ahead of print.

58. Robinson PC, Morand E. Divergent effects of acute versus chronic glucocorticoids in COVID-19. Lancet Rheumatol. 2021 Mar; 3(3):e168-e170. doi: 10.1016/S2665-9913(21)00005-9. Epub 2021 Jan 18.

59. Brightling C, Ustianowski A, Elmahi E, et al; RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021 Feb 25;384(8): 693-704. doi: 10.1056/NEJMoa2021436. Epub 2020 Jul 17.

60. Izadi Z, Brenner EJ, Mahil SK, et al. Association between tumor necrosis factor inhibitors and the risk of hospitalization or death among patients with immune-mediated inflammatory disease and COVID-19. JAMA Netw Open. 2021 Oct 1;4(10):e2129639. doi: 10.1001/jamanetworkopen.2021.29639.


Рецензия

Для цитирования:


Руцкая-Морошан КС, Абишева СТ, Лила АМ. Общность патогенетических аспектов, аутоиммунитета и фармакотерапии при коронавирусной инфекции (COVID-19) и иммуновоспалительных ревматических заболеваниях. Современная ревматология. 2022;16(5):82-87. https://doi.org/10.14412/1996-7012-2022-5-82-87

For citation:


Rutskaya-Moroshan KS, Abisheva ST, Lila AM. Shared features of pathogenetic aspects, autoimmunity and pharmacotherapy in coronavirus infection (COVID-19) and immunoinflammatory rheumatic diseases. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2022;16(5):82-87. (In Russ.) https://doi.org/10.14412/1996-7012-2022-5-82-87

Просмотров: 606


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)