Preview

Modern Rheumatology Journal

Advanced search

Evaluation of the influence of polymorphisms of the transporter genes (RFC1, MDR1) and GGH on the efficacy of methotrexate in rheumatoid arthritis

https://doi.org/10.14412/1996-7012-2023-4-28-34

Abstract

The efficacy of methotrexate (MT) in patients with rheumatoid arthritis (RA) may be determined by genetic factors.

Objective: to evaluate the isolated and combined effects of single nucleotide polymorphisms (SNPs) of membrane transporter proteins (RFC1 80G>A and MDR1 3435C>T) and the GGH -401C>T gamma-glutamyl hydrolase enzyme genes on the efficacy of MT in patients with RA.

Material and methods. The study group consisted of 85 patients with a confirmed diagnosis of RA, who received therapy with MT starting at 10 mg/week and increasing in dose to a maximum of 25 mg/week. Efficacy was assessed after six months of treatment using the dynamics of the DAS28 index, identifying patients who responded and those who did not respond to MT therapy.

Genotyping of RFC1, MDR1 and GGH gene polymorphisms was performed by real-time polymerase chain reaction. Three different approaches were used to analyze the results: 1) analysis for each of the genes; 2) logistic regression; and 3) multifactor dimensionality reduction (MDR).

Results and discussion. Single gene analysis was used to determine the most likely predictors of non-response to therapy: 1) for GGH-401C>T, TT genotype (odds ratio, OR 5.09; 95% confidence interval, C11.11—23.3); 2) forMDR13435C>T, the TT genotype (OR 2.38; 95% CI0.89-6.37); 3) for RFC180G>A, not - AA genotype (OR 1.87; 95% CI 0.93-3.76).

The logistic regression model showed a significant effect of homozygous genotype GGH -401TT on the efficacy of MT with low sensitivity of the method. The multifactorial dimensionality reduction results show a significant synergistic effect of the MT transport genes (MDR1, RFC1) and the GGH enzyme encoding the conversion of MT to the elimination form.

Conclusion. Using various statistical methods, the following results were obtained: Single gene analysis revealed the most likely predictors of nonresponse to MT therapy: GGH -401C>T - TT genotype, MDR1 3435C>T - TT genotype, RFC1 80G>A - not-AA genotype; the method of multiple logistic regression allowed to determine the significant effect of GGH -401ТТ genotype on the effect of the drug with a low sensitivity of the method; the isolated effect of polymorphisms is probably less pronounced than their combined effect on the effectiveness of MT. SNP synergism is a major contributor to the development of treatment resistance. MDR is a promising method that can be used in the future to assess the impact of SNPs.

About the Authors

I. V. Devald
South Ural State Medical University, Ministry of Health of the Russia; Chelyabinsk State University
Russian Federation

Inessa V. Devald.

64, Vorovskogo Street, Chelyabinsk 454092; 129, Bratiev Kashirinikh Street, Chelyabinsk 454001



E. A. Hodus
Chelyabinsk State University
Russian Federation

129, Bratiev Kashirinikh Street, Chelyabinsk 454001



D. Yu. Nokhrin
Chelyabinsk State University
Russian Federation

129, Bratiev Kashirinikh Street, Chelyabinsk 454001



E. B. Khromova
Chelyabinsk State University
Russian Federation

129, Bratiev Kashirinikh Street, Chelyabinsk 454001



G. L. Ignatova
South Ural State Medical University, Ministry of Health of the Russia
Russian Federation

64, Vorovskogo Street, Chelyabinsk 454092



D. S. Stashkevich
Chelyabinsk State University
Russian Federation

129, Bratiev Kashirinikh Street, Chelyabinsk 454001



A. M. Lila
V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
Russian Federation

Department of Rheumatology Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia.

34A, Kashirskoe Shosse, Moscow 115522; 2/1, Barrikadnaya Street, Build. 1, Moscow 125993



A. L. Burmistrova
Chelyabinsk State University
Russian Federation

129, Bratiev Kashirinikh Street, Chelyabinsk 454001



References

1. Nasonov EL. Problems of immunopathology of rheumatoid arthritis: the evolution of the disease. Nauchno-prakticheskaya revmatologiya. 2017;55(3):277-294. (In Russ.).

2. Folomeeva OM, Nasonov EL, Andrianova IA, et al. Rheumatoid arthritis in rheumatology practice in Russia: the severity of the disease in the Russian patient population. Single-stage (cross-sectional) epidemiological study (RAISER). Nauchno-prakticheskaya revmatologiya. 2010;48(1):50-60. (In Russ.).

3. Smolen JS, Landewe R, Bijlsma J, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017 Jun;76(6):960-977. doi: 10.1136/annrheumdis-2016-210715. Epub 2017 Mar 6.

4. Sychev DA, Muslimova OV, Gavrisyuk EV, et al. Pharmacogenetic technologies of personalized medicine: optimization of the use of medicines. Terra medica. 2011;(1):4-9. (In Russ.).

5. Friedman B, Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine. 2019 May;86(3):301-307. doi: 10.1016/j.jbspin.2018.07.004. Epub 2018 Aug 3

6. Dervieux T, Wessels JAM, van der Straaten T, et al. Gene-gene interactions in folate and adenosine biosynthesis pathways affect methotrexate efficacy and tolerability in rheumatoid arthritis. Pharmacogenet (enomics. 2009 Dec;19(12):935-44. doi: 10.1097/FPC.0b013e32833315d1

7. Brown LD, Cai TT, Das Gupta A. Interval Estimation for a proportion. Statistical Science. 2001;16(2):101-133.

8. Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research. New York: Freeman & Co; 1995. 850 p.

9. Sergeant ESG. Epitools epidemiological calculators. http://epitools.ausvet.com.au/content.php?page=CIProportion

10. Hammer О, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001;(1):1-9.

11. Grigor'ev SG, Lobzin YuV, Skripchenko NV. The role and place of logistic regression and ROC analysis in solving medical diagnostic problems. Zhurnal infektologii. 2016;8(4): 36-45. (In Russ.).

12. Ponomarenko IV. The use of the Multifactor Dimensionality Reduction (MDR) method and its modifications for the analysis of gene-gene and gene-environment interactions in genetic and epidemiological studies (review). Nauchnye rezul'taty biomeditsinskikh issledovanii. 2019;5(1):4-21. (In Russ.).

13. Samara S, Irshaid Y, Mustafa K. Association of MDR1 3435C>T and RFC1 G80A polymorphisms with methotrexate toxicity and response in Jordanian rheumatoid arthritis patients. Int J Clin Pharmacol Ther. 2014 Sep; 52(9):746-55. doi: 10.5414/CP202098.

14. Muralidharan N, Mariaselvam CM, Mit-hun CB, Negi VS. Reduced folate carrier-1 80G>A gene polymorphism is not associated with methotrexate treatment response in So-uth Indian Tamils with rheumatoid arthritis. Clin Rheumatol. 2016 Apr;35(4):879-85. doi: 10.1007/s10067-015-2917-y. Epub 2015 Mar 15.

15. Muralidharan N, Antony PT, Jain VK, et al. Multidrug resistance 1 (MDR1) 3435C>T gene polymorphism influences the clinical phenotype and methotrexate-induced adverse events in South Indian Tamil rheumatoid arthritis. Eur J Clin Pharmacol. 2015 Aug;71(8): 959-65. doi: 10.1007/s00228-015-1885-0. Epub 2015 Jun 14.

16. Boughrara W, Benzaoui A, Aberkane M, et al. No correlation between MTHFR c.677 C>T, MTHFR c.1298 A>C, and ABCB1 c.3435 C>T polymorphisms and methotrexate therapeutic outcome of rheumatoid arthritis in West Algerian population. Inflamm Res. 2017 Jun;66(6):505-513. doi: 10.1007/s00011-017-1034-6. Epub 2017 Mar 15.

17. Swierkot J, Slezak R, Karpinski P, et al. Associations between single-nucleotide poly-morphisms of RFC-1, GGH, MTHFR, TYMS, and TCII genes and the efficacy and toxicity of methotrexate treatment in patients with rheumatoid arthritis. Pol Arch Med Wewn. 2015;125(3):152-61. doi: 10.20452/pamw.2707. Epub 2015 Jan 19.

18. Drozdzik M, Rudas T, Pawlik A, et al. Reduced folate carrier-1 80G>A polymorphism affects methotrexate treatment outcome in rheumatoid arthritis. Pharmacogenomics J. 2007 Dec;7(6):404-7. doi: 10.1038/sj.tpj.6500438. Epub 2007 Feb 27.

19. Pawlik A, Wrzesniewska J, Fiedorowicz-Fabrycy I, et al. The MDR1 3435 polymorphism in patients with rheumatoid arthritis. Int J Clin Pharmacol Ther. 2004 Sep;42(9): 496-503. doi: 10.5414/cpp42496.

20. Takatori R, Takahashi KA, Tokunaga D, et al. ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin Exp Rheumatol. 2006 Sep-Oct;24(5):546-54.

21. El Fedawy SF, Shehab A, Rania A, et al. The Influence of the MDR1 3435C>T Poly-morphism on Methotrexate Responsiveness in Rheumatoid Arthritis Patients. Egypt J Hosp Med. 2020;80(2):857-864. doi: 10.12816/EJHM.2020.98917.

22. Dervieux T, Kremer J, Lein DO, et al. Contribution of common polymorphisms in reduced folate carrier and gamma-glutamyl-hydrolase to methotrexate polyglutamate le-vels in patients with rheumatoid arthritis. Pharmacogenetics. 2004 Nov;14(11):733-9. doi: 10.1097/00008571-200411000-00004.

23. Rangannathan P, McLeod H. Methotre-xate pharmacogenetics. The first step toward individualized therapy in rheumatoid arthritis. Arthritis Rheum. 2006 May;54(5):1366-77. doi: 10.1002/art.21762.

24. Lima A, Bernardes M, Azevedo R, et al. Moving toward personalized medicine in rheumatoid arthritis: SNPs in methotrexate intracellular pathways are associated with methotrexate therapeutic outcome. Pharmacogenomics. 2016 Oct;17(15):1649-1674. doi: 10.2217/pgs-2016-0067. Epub 2016 Sep 27.


Review

For citations:


Devald IV, Hodus EA, Nokhrin DY, Khromova EB, Ignatova GL, Stashkevich DS, Lila AM, Burmistrova AL. Evaluation of the influence of polymorphisms of the transporter genes (RFC1, MDR1) and GGH on the efficacy of methotrexate in rheumatoid arthritis. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2023;17(4):28-34. (In Russ.) https://doi.org/10.14412/1996-7012-2023-4-28-34

Views: 496


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)