Новые молекулярные аспекты патогенеза остеопороза – перспективы ранней диагностики и лечения
https://doi.org/10.14412/19967012-2024-2-103-110
Аннотация
Остеопороз (ОП) – широко распространенное заболевание, приводящее к низкотравматическим переломам и являющееся серьезной медицинской и социальной проблемой. Зачастую именно перелом бывает первым клиническим проявлением ОП, длительно протекавшего бессимптомно, что диктует необходимость разработки методов раннего выявления и оценки риска развития этого заболевания. ОП – многофакторное заболевание с выраженным наследственным компонентом, однако, как показывают данные изучения генетических факторов, можно объяснить лишь 15% наследуемости данного признака. В связи с этим фокус исследований смещается в область эпигенетической регуляции, которая контролирует активность генов без изменения первичной структуры ДНК. Одним из наиболее перспективных механизмов эпигенетического управления является метилирование, которому подвергаются как ДНК, так и РНК и гистоны. Особенности этих механизмов и возможности их использования для диагностики и лечения ОП представлены в данном обзоре.
Об авторах
А. В. ТюринРоссия
450008, Уфа, ул. Ленина, 3
К. Э. Ахиярова
Россия
Карина Эриковна Ахиярова
450008, Уфа, ул. Ленина, 3
Б. И. Ялаев
Россия
117292, Москва, ул. Дмитрия Ульянова, 11
Т. С. Загидуллин
Россия
450008, Уфа, ул. Ленина, 3
Р. И. Хусаинова
Россия
450008, Уфа, ул. Ленина, 3
117292, Москва, ул. Дмитрия Ульянова, 11
Литература
1. Harvey N, Dennison E, Cooper C. Osteoporosis: a lifecourse approach. J Bone Miner Res. 2014 Sep;29(9):1917-25. doi: 10.1002/jbmr.2286.
2. Liu J, Curtis EM, Cooper C, Harvey NC. State of the art in osteoporosis risk assessment and treatment. J Endocrinol Invest. 2019 Oct;42(10): 1149-1164. doi: 10.1007/s40618-019-01041-6.
3. Intemann J, De Gorter DJJ, Naylor AJ, et al.Importance of osteocyte-mediated regulation of bone remodelling in inflammatory bone disease. Swiss Med Wkly. 2020 Feb 7;150:w20187. doi: 10.4414/smw.2020.20187.
4. Kenkre JS, Bassett J. The bone remodellingcycle. Ann Clin Biochem. 2018 May;55(3):308327. doi: 10.1177/0004563218759371.
5. Zhou Y, Yang L, Wang H, et al. Alterations inDNA methylation profiles in cancellous bone of postmenopausal women with osteoporosis. FEBS Open Bio. 2020 Aug;10(8):1516-1531. doi: 10.1002/2211-5463.12907.
6. Akhiiarova K, Khusainova R, Minniakhmetov I,et al. Peak Bone Mass Formation: Modern View of the Problem. Biomedicines. 2023 Nov 6;11(11): 2982. doi: 10.3390/biomedicines11112982.
7. Fischer V, Haffner-Luntzer M. Interactionbetween bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022 Mar;123:14-21. doi: 10.1016/j.semcdb.2021.05.014.
8. Nguyen VH. Making a Move on the Mark of Osteoporosis in Men. Gerontol Geriatr Med. 2023 Oct 5;9:23337214231204729. doi: 10.1177/23337214231204729.
9. Awasthi H, Mani D, Singh D, Gupta A. The underlying pathophysiology and therapeutic approaches for osteoporosis. Med Res Rev. 2018 Sep;38(6):2024-2057. doi: 10.1002/med.21504.
10. Gennari L, Merlotti D, Falchetti A, et al. Emerging therapeutic targets for osteoporosis. Expert Opin Ther Targets. 2020 Feb;24(2):115130. doi: 10.1080/14728222.2020.1726889.
11. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature. 1994 Jan 20;367(6460):284-7. doi: 10.1038/367284a0.
12. Ralston SH. Genetics of osteoporosis.Rev Endocr Metab Disord. 2001 Jan;2(1):13-21. doi: 10.1023/a:1010098706338.
13. Ioannidis JPA, Soranzo N, van Duijn CM, et al. Genetic Factors for Osteoporosis Consortium. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med. 2009 Oct 20; 151(8):528-37. doi: 10.7326/0003-4819-151-8200910200-00006.
14. Ioannidis JPA, Ng MY, Sham PC, et al.Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J Bone Miner Res. 2007 Feb;22(2): 173-183. doi: 10.1359/jbmr.060806.
15. Arden NK, Baker J, Hogg C, et al. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res. 1996 Apr;11(4): 530-4. doi: 10.1002/jbmr.5650110414.
16. Demissie S, Dupuis J, Cupples LA, et al.Proximal hip geometry is linked to several chromosomal regions: genome-wide linkage results from the Framingham Osteoporosis Study. Bone. 2007 Mar;40(3):743-50. doi: 10.1016/j.bone.2006.09.020.
17. Karasik D, Demissie S, Zhou Y, et al. Heritability and Genetic Correlations for Bone Microarchitecture: The Framingham Study Families. J Bone Miner Res. 2017 Jan;32(1):106-114. doi: 10.1002/jbmr.2915.
18. Kiel DP, Demissie S, Dupuis J, et al. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet. 2007 Sep 19;8 Suppl 1(Suppl 1):S14. doi: 10.1186/1471-2350-8-S1-S14.
19. Visscher PM, Wray NR, Zhang Q, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017 Jul 6; 101(1):5-22. doi: 10.1016/j.ajhg.2017.06.005.
20. Yalaev B, Tyurin A, Prokopenko I, et al. Using a Polygenic Score to Predict the Risk of Developing Primary Osteoporosis. Int J Mol Sci. 2022 Sep 2;23(17):10021. doi: 10.3390/ijms231710021.
21. Richards JB, Rivadeneira F, Inouye M, et al.Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008 May 3;371(9623):1505-12. doi: 10.1016/S0140-6736(08)60599-1.
22. Van Meurs JBJ, Trikalinos TA, Ralston SH,et al. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA. 2008 Mar 19;299(11):1277-90. doi: 10.1001/jama.299.11.1277.
23. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008 May 29;358(22):2355-65. doi: 10.1056/NEJMoa0801197.
24. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, et al. New sequence variants associated with bone mineral density. Nat Genet. 2009 Jan; 41(1):15-7. doi: 10.1038/ng.284.
25. Morris JA, Kemp JP, Youlten SE, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019 Feb;51(2): 258-266. doi: 10.1038/s41588-018-0302-x.
26. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009 Oct 8;461(7265):747-53. doi: 10.1038/nature08494.
27. Styrkarsdottir U, Thorleifsson G, Sulem P, et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature. 2013 May 23;497(7450):517-20. doi: 10.1038/nature12124.
28. Styrkarsdottir U, Thorleifsson G, Eiriksdottir B,et al. Two Rare Mutations in the COL1A2 Gene Associate With Low Bone Mineral Density and Fractures in Iceland. J Bone Miner Res. 2016 Jan; 31(1):173-9. doi: 10.1002/jbmr.2604.
29. Rasmussen KD, Jia G, Johansen JV, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 2015 May 1;29(9):910-22. doi: 10.1101/gad.260174.115.
30. Marini F, Cianferotti L, Brandi ML. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices? Int J Mol Sci. 2016 Aug 12;17(8):1329. doi: 10.3390/ijms17081329.
31. Van Meurs JB, Boer CG, Lopez-Delgado L, Riancho JA. Role of Epigenomics in Bone and Cartilage Disease. J Bone Miner Res. 2019 Feb;34(2):215-230. doi: 10.1002/jbmr.3662.
32. Reppe S, Noer A, Grimholt RM, et al. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J Bone Miner Res. 2015 Feb;30(2):249-56. doi: 10.1002/jbmr.2342.
33. Reppe S, Lien TG, Hsu YH, et al. DistinctDNA methylation profiles in bone and blood of osteoporotic and healthy postmenopausal women. Epigenetics. 2017 Aug;12(8):674-687. doi: 10.1080/15592294.2017.1345832.
34. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/nature11247.
35. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.
36. Xu F, Li W, Yang X, et al. The Roles of Epigenetics Regulation in Bone Metabolism and Osteoporosis. Front Cell Dev Biol. 2021 Jan 25;8: 619301. doi: 10.3389/fcell.2020.619301.
37. Cao Y, Wang B, Wang D, et al. Expression of Sclerostin in Osteoporotic Fracture Patients Is Associated with DNA Methylation in the CpG Island of the SOST Gene. Int J Genomics. 2019 Jan 8;2019:7076513. doi: 10.1155/2019/7076513.
38. Shan Y, Wang L, Li G, et al. Methylation of bone SOST impairs SP7, RUNX2, and ER transactivation in patients with postmenopausal osteoporosis. Biochem Cell Biol. 2019 Aug;97(4): 369-374. doi: 10.1139/bcb-2018-0170.
39. Wang P, Cao Y, Zhan D, et al. Influence of DNA methylation on the expression of OPG/RANKL in primary osteoporosis. Int J Med Sci. 2018 Oct 3;15(13):1480-1485. doi: 10.7150/ijms.27333.
40. Cheishvili D, Parashar S, Mahmood N, et al. Identification of an Epigenetic Signature of Osteoporosis in Blood DNA of Postmenopausal Women. J Bone Miner Res. 2018 Nov;33(11): 1980-1989. doi: 10.1002/jbmr.3527.
41. Raje MM, Ashma R. Epigenetic regulation ofBMP2 gene in osteoporosis: a DNA methylation study. Mol Biol Rep. 2019 Apr;46(2):1667-1674. doi: 10.1007/s11033-019-04615-y.
42. Fernandez-Rebollo E, Eipel M, Seefried L,et al. Primary Osteoporosis Is Not Reflected by Disease-Specific DNA Methylation or Accelerated Epigenetic Age in Blood. J Bone Miner Res. 2018 Feb;33(2):356-361. doi: 10.1002/jbmr.3298.
43. Delgado-Calle J, Fernandez AF, Sainz J, et al. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013 Jan;65(1): 197-205. doi: 10.1002/art.37753.
44. Del Real A, Perez-Campo FM, Fernandez AF,et al. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics. 2017 Feb;12(2):113-122. doi: 10.1080/15592294.2016.1271854.
45. Morris JA, Tsai PC, Joehanes R, et al. Epigenome-wide Association of DNA Methylation in Whole Blood With Bone Mineral Density. J Bone Miner Res. 2017 Aug;32(8):1644-1650. doi: 10.1002/jbmr.3148.
46. Ebrahimi P, Luthman H, McGuigan FE, Akesson KE. Epigenome-wide cross-tissue correlation of human bone and blood DNA methylation - can blood be used as a surrogate for bone? Epigenetics. 2021 Jan;16(1):92-105. doi: 10.1080/15592294.2020.1788325.
47. Yang C, Dong Z, Ling Z, Chen Y. The crucialmechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev. 2022 Aug;79:101641. doi: 10.1016/j.arr.2022.101641.
48. Huang M, Xu S, Liu L, et al. m6A Methylation Regulates Osteoblastic Differentiation and Bone Remodeling. Front Cell Dev Biol. 2021 Dec 21;9:783322. doi: 10.3389/fcell.2021.783322.
49. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3971-5. doi: 10.1073/pnas.71.10.3971.
50. Wu Y, Xie L, Wang M, et al. Mettl3-mediatedm6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 2018 Nov 14;9(1):4772. doi: 10.1038/s41467-018-06898-4.
51. Liu Q, Li M, Jiang L, et al. METTL3 promotes experimental osteoarthritis development by regulating inflammatory response and apoptosis in chondrocyte. Biochem Biophys Res Commun. 2019 Aug 13;516(1):22-27. doi: 10.1016/j.bbrc.2019.05.168.
52. Shi H, Wei J, He C. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Mol Cell. 2019 May 16;74(4):640-650. doi: 10.1016/j.molcel.2019.04.025.
53. Wang X, Zou C, Li M, et al. METTL14 upregulates TCF1 through m6A mRNA methylation to stimulate osteogenic activity in osteoporosis. Hum Cell. 2023 Jan;36(1):178-194. doi: 10.1007/s13577-022-00825-y.
54. Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 2018 Mar 1;32(56):415-429. doi: 10.1101/gad.309146.117.
55. Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 2018 May 25;14(5): e1007412. doi: 10.1371/journal.pgen.1007412.
56. Qing Y, Dong L, Gao L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Mol Cell. 2021 Mar 4;81(5):922-939.e9. doi: 10.1016/j.molcel.2020.12.026.
57. Yan G, Yuan Y, He M, et al. m6A Methylation of Precursor-miR-320/RUNX2 Controls Osteogenic Potential of Bone Marrow-Derived Mesenchymal Stem Cells. Mol Ther Nucleic Acids. 2020 Mar 6;19:421-436. doi: 10.1016/j.omtn.2019.12.001.
58. Li H, Fan J, Fan L, et al. MiRNA-10b Reciprocally Stimulates Osteogenesis and Inhibits Adipogenesis Partly through the TGF- /SMAD2 Signaling Pathway. Aging Dis. 2018 Dec 4;9(6): 1058-1073. doi: 10.14336/AD.2018.0214.
59. Chamberlain G, Fox J, Ashton B, Middleton J.Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007 Nov;25(11):2739-49. doi: 10.1634/stemcells.2007-0197.
60. Moerman EJ, Teng K, Lipschitz DA, LeckaCzernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPARgamma2 transcription factor and TGF-beta/ BMP signaling pathways. Aging Cell. 2004 Dec;3(6):379-89. doi: 10.1111/j.1474-9728.2004.00127.x.
61. Sun Z, Wang H, Wang Y, et al. MiR-103-3p targets the m6 A methyltransferase METTL14 to inhibit osteoblastic bone formation. Aging Cell. 2021 Feb;20(2):e13298. doi: 10.1111/acel.13298.
62. Farooq Z, Banday S, Pandita TK, Altaf M. The many faces of histone H3K79 methylation. Mutat Res Rev Mutat Res. 2016 Apr-Jun;768: 46-52. doi: 10.1016/j.mrrev.2016.03.005.
63. Wang L, Niu N, Li L, et al. PLoS Biol. 2018 Nov 13;16(11):e2006522. doi: 10.1371/journal.pbio.2006522.
64. Galvan ML, Paradise CR, Kubrova E, et al. Multiple pharmacological inhibitors targeting the epigenetic suppressor enhancer of zeste homolog 2 (Ezh2) accelerate osteoblast differentiation. Bone. 2021 Sep;150:115993. doi: 10.1016/j.bone.2021.115993.
65. Dudakovic A, Samsonraj RM, Paradise CR,et al. Inhibition of the epigenetic suppressor EZH2 primes osteogenic differentiation mediated by BMP2. J Biol Chem. 2020 Jun 5;295(23): 7877-7893. doi: 10.1074/jbc.RA119.011685.
66. Das P, Veazey KJ, Van HT, et al. Histone methylation regulator PTIP is required to maintain normal and leukemic bone marrow niches. Proc Natl Acad Sci U S A. 2018 Oct 23;115(43): E10137-E10146. doi: 10.1073/pnas.1806019115.
67. Gao Y, Ge W. The histone methyltransferaseDOT1L inhibits osteoclastogenesis and protects against osteoporosis. Cell Death Dis. 2018 Jan 18;9(2):33. doi: 10.1038/s41419-017-0040-5.
68. Chen Y, Sun Y, Xue X, Ma H. Comprehensive analysis of epigenetics mechanisms in osteoporosis. Front Genet. 2023 Mar 28;14:1153585. doi: 10.3389/fgene.2023.1153585.
69. Tyurin A, Shapovalova D, Gantseva H, et al. Association between miRNA Target Sites and Incidence of Primary Osteoarthritis in Women from Volga-Ural Region of Russia: A Case-Control Study. Diagnostics (Basel). 2021 Jul 6;11(7):1222. doi: 10.3390/diagnostics11071222.
70. Gao F, Wang W. MicroRNA-96 promotes theproliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a. Mol Med Rep. 2015 Feb;11(2):1200-6. doi: 10.3892/mmr.2014.2854.
71. Khan C, Pathe N, Fazal S, et al. Azacitidinein the management of patients with myelodysplastic syndromes. Ther Adv Hematol. 2012 Dec; 3(6):355-73. doi: 10.1177/2040620712464882.
72. Khan H, Vale C, Bhagat T, Verma A. Role ofDNA methylation in the pathogenesis and treatment of myelodysplastic syndromes. Semin Hematol. 2013 Jan;50(1):16-37. doi: 10.1053/j.seminhematol.2013.01.001.
73. Yu L, Xia K, Cen X, et al. DNA methylationof noncoding RNAs: new insights into osteogenesis and common bone diseases. Stem Cell Res Ther. 2020 Mar 6;11(1):109. doi: 10.1186/s13287-020-01625-7.
Рецензия
Для цитирования:
Тюрин АВ, Ахиярова КЭ, Ялаев БИ, Загидуллин ТС, Хусаинова РИ. Новые молекулярные аспекты патогенеза остеопороза – перспективы ранней диагностики и лечения. Современная ревматология. 2024;18(2):103-110. https://doi.org/10.14412/19967012-2024-2-103-110
For citation:
Tyurin AV, Akhiyarova KE, Yalaev BI, Zagidullin TS, Khusainova RI. New molecular aspects of the pathogenesis of osteoporosis – perspectives for early diagnosis and treatment. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2024;18(2):103-110. (In Russ.) https://doi.org/10.14412/19967012-2024-2-103-110