Preview

Современная ревматология

Расширенный поиск

Новые молекулярные аспекты патогенеза остеопороза – перспективы ранней диагностики и лечения

https://doi.org/10.14412/19967012-2024-2-103-110

Аннотация

Остеопороз (ОП) – широко распространенное заболевание, приводящее к низкотравматическим переломам и являющееся серьезной медицинской и социальной проблемой. Зачастую именно перелом бывает первым клиническим проявлением ОП, длительно протекавшего бессимптомно, что диктует необходимость разработки методов раннего выявления и оценки риска развития этого заболевания. ОП – многофакторное заболевание с выраженным наследственным компонентом, однако, как показывают данные изучения генетических факторов, можно объяснить лишь 15% наследуемости данного признака. В связи с этим фокус исследований смещается в область эпигенетической регуляции, которая контролирует активность генов без изменения первичной структуры ДНК. Одним из наиболее перспективных механизмов эпигенетического управления является метилирование, которому подвергаются как ДНК, так и РНК и гистоны. Особенности этих механизмов и возможности их использования для диагностики и лечения ОП представлены в данном обзоре.

Об авторах

А. В. Тюрин
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

450008, Уфа, ул. Ленина, 3



К. Э. Ахиярова
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

Карина Эриковна Ахиярова

450008, Уфа, ул. Ленина, 3



Б. И. Ялаев
ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России
Россия

117292, Москва, ул. Дмитрия Ульянова, 11



Т. С. Загидуллин
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

450008, Уфа, ул. Ленина, 3



Р. И. Хусаинова
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России; ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России
Россия

450008, Уфа, ул. Ленина, 3

117292, Москва, ул. Дмитрия Ульянова, 11

   


Литература

1. Harvey N, Dennison E, Cooper C. Osteoporosis: a lifecourse approach. J Bone Miner Res. 2014 Sep;29(9):1917-25. doi: 10.1002/jbmr.2286.

2. Liu J, Curtis EM, Cooper C, Harvey NC. State of the art in osteoporosis risk assessment and treatment. J Endocrinol Invest. 2019 Oct;42(10): 1149-1164. doi: 10.1007/s40618-019-01041-6.

3. Intemann J, De Gorter DJJ, Naylor AJ, et al.Importance of osteocyte-mediated regulation of bone remodelling in inflammatory bone disease. Swiss Med Wkly. 2020 Feb 7;150:w20187. doi: 10.4414/smw.2020.20187.

4. Kenkre JS, Bassett J. The bone remodellingcycle. Ann Clin Biochem. 2018 May;55(3):308327. doi: 10.1177/0004563218759371.

5. Zhou Y, Yang L, Wang H, et al. Alterations inDNA methylation profiles in cancellous bone of postmenopausal women with osteoporosis. FEBS Open Bio. 2020 Aug;10(8):1516-1531. doi: 10.1002/2211-5463.12907.

6. Akhiiarova K, Khusainova R, Minniakhmetov I,et al. Peak Bone Mass Formation: Modern View of the Problem. Biomedicines. 2023 Nov 6;11(11): 2982. doi: 10.3390/biomedicines11112982.

7. Fischer V, Haffner-Luntzer M. Interactionbetween bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022 Mar;123:14-21. doi: 10.1016/j.semcdb.2021.05.014.

8. Nguyen VH. Making a Move on the Mark of Osteoporosis in Men. Gerontol Geriatr Med. 2023 Oct 5;9:23337214231204729. doi: 10.1177/23337214231204729.

9. Awasthi H, Mani D, Singh D, Gupta A. The underlying pathophysiology and therapeutic approaches for osteoporosis. Med Res Rev. 2018 Sep;38(6):2024-2057. doi: 10.1002/med.21504.

10. Gennari L, Merlotti D, Falchetti A, et al. Emerging therapeutic targets for osteoporosis. Expert Opin Ther Targets. 2020 Feb;24(2):115130. doi: 10.1080/14728222.2020.1726889.

11. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature. 1994 Jan 20;367(6460):284-7. doi: 10.1038/367284a0.

12. Ralston SH. Genetics of osteoporosis.Rev Endocr Metab Disord. 2001 Jan;2(1):13-21. doi: 10.1023/a:1010098706338.

13. Ioannidis JPA, Soranzo N, van Duijn CM, et al. Genetic Factors for Osteoporosis Consortium. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med. 2009 Oct 20; 151(8):528-37. doi: 10.7326/0003-4819-151-8200910200-00006.

14. Ioannidis JPA, Ng MY, Sham PC, et al.Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J Bone Miner Res. 2007 Feb;22(2): 173-183. doi: 10.1359/jbmr.060806.

15. Arden NK, Baker J, Hogg C, et al. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res. 1996 Apr;11(4): 530-4. doi: 10.1002/jbmr.5650110414.

16. Demissie S, Dupuis J, Cupples LA, et al.Proximal hip geometry is linked to several chromosomal regions: genome-wide linkage results from the Framingham Osteoporosis Study. Bone. 2007 Mar;40(3):743-50. doi: 10.1016/j.bone.2006.09.020.

17. Karasik D, Demissie S, Zhou Y, et al. Heritability and Genetic Correlations for Bone Microarchitecture: The Framingham Study Families. J Bone Miner Res. 2017 Jan;32(1):106-114. doi: 10.1002/jbmr.2915.

18. Kiel DP, Demissie S, Dupuis J, et al. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet. 2007 Sep 19;8 Suppl 1(Suppl 1):S14. doi: 10.1186/1471-2350-8-S1-S14.

19. Visscher PM, Wray NR, Zhang Q, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017 Jul 6; 101(1):5-22. doi: 10.1016/j.ajhg.2017.06.005.

20. Yalaev B, Tyurin A, Prokopenko I, et al. Using a Polygenic Score to Predict the Risk of Developing Primary Osteoporosis. Int J Mol Sci. 2022 Sep 2;23(17):10021. doi: 10.3390/ijms231710021.

21. Richards JB, Rivadeneira F, Inouye M, et al.Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008 May 3;371(9623):1505-12. doi: 10.1016/S0140-6736(08)60599-1.

22. Van Meurs JBJ, Trikalinos TA, Ralston SH,et al. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA. 2008 Mar 19;299(11):1277-90. doi: 10.1001/jama.299.11.1277.

23. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008 May 29;358(22):2355-65. doi: 10.1056/NEJMoa0801197.

24. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, et al. New sequence variants associated with bone mineral density. Nat Genet. 2009 Jan; 41(1):15-7. doi: 10.1038/ng.284.

25. Morris JA, Kemp JP, Youlten SE, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019 Feb;51(2): 258-266. doi: 10.1038/s41588-018-0302-x.

26. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009 Oct 8;461(7265):747-53. doi: 10.1038/nature08494.

27. Styrkarsdottir U, Thorleifsson G, Sulem P, et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature. 2013 May 23;497(7450):517-20. doi: 10.1038/nature12124.

28. Styrkarsdottir U, Thorleifsson G, Eiriksdottir B,et al. Two Rare Mutations in the COL1A2 Gene Associate With Low Bone Mineral Density and Fractures in Iceland. J Bone Miner Res. 2016 Jan; 31(1):173-9. doi: 10.1002/jbmr.2604.

29. Rasmussen KD, Jia G, Johansen JV, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 2015 May 1;29(9):910-22. doi: 10.1101/gad.260174.115.

30. Marini F, Cianferotti L, Brandi ML. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices? Int J Mol Sci. 2016 Aug 12;17(8):1329. doi: 10.3390/ijms17081329.

31. Van Meurs JB, Boer CG, Lopez-Delgado L, Riancho JA. Role of Epigenomics in Bone and Cartilage Disease. J Bone Miner Res. 2019 Feb;34(2):215-230. doi: 10.1002/jbmr.3662.

32. Reppe S, Noer A, Grimholt RM, et al. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J Bone Miner Res. 2015 Feb;30(2):249-56. doi: 10.1002/jbmr.2342.

33. Reppe S, Lien TG, Hsu YH, et al. DistinctDNA methylation profiles in bone and blood of osteoporotic and healthy postmenopausal women. Epigenetics. 2017 Aug;12(8):674-687. doi: 10.1080/15592294.2017.1345832.

34. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/nature11247.

35. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.

36. Xu F, Li W, Yang X, et al. The Roles of Epigenetics Regulation in Bone Metabolism and Osteoporosis. Front Cell Dev Biol. 2021 Jan 25;8: 619301. doi: 10.3389/fcell.2020.619301.

37. Cao Y, Wang B, Wang D, et al. Expression of Sclerostin in Osteoporotic Fracture Patients Is Associated with DNA Methylation in the CpG Island of the SOST Gene. Int J Genomics. 2019 Jan 8;2019:7076513. doi: 10.1155/2019/7076513.

38. Shan Y, Wang L, Li G, et al. Methylation of bone SOST impairs SP7, RUNX2, and ER transactivation in patients with postmenopausal osteoporosis. Biochem Cell Biol. 2019 Aug;97(4): 369-374. doi: 10.1139/bcb-2018-0170.

39. Wang P, Cao Y, Zhan D, et al. Influence of DNA methylation on the expression of OPG/RANKL in primary osteoporosis. Int J Med Sci. 2018 Oct 3;15(13):1480-1485. doi: 10.7150/ijms.27333.

40. Cheishvili D, Parashar S, Mahmood N, et al. Identification of an Epigenetic Signature of Osteoporosis in Blood DNA of Postmenopausal Women. J Bone Miner Res. 2018 Nov;33(11): 1980-1989. doi: 10.1002/jbmr.3527.

41. Raje MM, Ashma R. Epigenetic regulation ofBMP2 gene in osteoporosis: a DNA methylation study. Mol Biol Rep. 2019 Apr;46(2):1667-1674. doi: 10.1007/s11033-019-04615-y.

42. Fernandez-Rebollo E, Eipel M, Seefried L,et al. Primary Osteoporosis Is Not Reflected by Disease-Specific DNA Methylation or Accelerated Epigenetic Age in Blood. J Bone Miner Res. 2018 Feb;33(2):356-361. doi: 10.1002/jbmr.3298.

43. Delgado-Calle J, Fernandez AF, Sainz J, et al. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013 Jan;65(1): 197-205. doi: 10.1002/art.37753.

44. Del Real A, Perez-Campo FM, Fernandez AF,et al. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics. 2017 Feb;12(2):113-122. doi: 10.1080/15592294.2016.1271854.

45. Morris JA, Tsai PC, Joehanes R, et al. Epigenome-wide Association of DNA Methylation in Whole Blood With Bone Mineral Density. J Bone Miner Res. 2017 Aug;32(8):1644-1650. doi: 10.1002/jbmr.3148.

46. Ebrahimi P, Luthman H, McGuigan FE, Akesson KE. Epigenome-wide cross-tissue correlation of human bone and blood DNA methylation - can blood be used as a surrogate for bone? Epigenetics. 2021 Jan;16(1):92-105. doi: 10.1080/15592294.2020.1788325.

47. Yang C, Dong Z, Ling Z, Chen Y. The crucialmechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev. 2022 Aug;79:101641. doi: 10.1016/j.arr.2022.101641.

48. Huang M, Xu S, Liu L, et al. m6A Methylation Regulates Osteoblastic Differentiation and Bone Remodeling. Front Cell Dev Biol. 2021 Dec 21;9:783322. doi: 10.3389/fcell.2021.783322.

49. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3971-5. doi: 10.1073/pnas.71.10.3971.

50. Wu Y, Xie L, Wang M, et al. Mettl3-mediatedm6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 2018 Nov 14;9(1):4772. doi: 10.1038/s41467-018-06898-4.

51. Liu Q, Li M, Jiang L, et al. METTL3 promotes experimental osteoarthritis development by regulating inflammatory response and apoptosis in chondrocyte. Biochem Biophys Res Commun. 2019 Aug 13;516(1):22-27. doi: 10.1016/j.bbrc.2019.05.168.

52. Shi H, Wei J, He C. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Mol Cell. 2019 May 16;74(4):640-650. doi: 10.1016/j.molcel.2019.04.025.

53. Wang X, Zou C, Li M, et al. METTL14 upregulates TCF1 through m6A mRNA methylation to stimulate osteogenic activity in osteoporosis. Hum Cell. 2023 Jan;36(1):178-194. doi: 10.1007/s13577-022-00825-y.

54. Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 2018 Mar 1;32(56):415-429. doi: 10.1101/gad.309146.117.

55. Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 2018 May 25;14(5): e1007412. doi: 10.1371/journal.pgen.1007412.

56. Qing Y, Dong L, Gao L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Mol Cell. 2021 Mar 4;81(5):922-939.e9. doi: 10.1016/j.molcel.2020.12.026.

57. Yan G, Yuan Y, He M, et al. m6A Methylation of Precursor-miR-320/RUNX2 Controls Osteogenic Potential of Bone Marrow-Derived Mesenchymal Stem Cells. Mol Ther Nucleic Acids. 2020 Mar 6;19:421-436. doi: 10.1016/j.omtn.2019.12.001.

58. Li H, Fan J, Fan L, et al. MiRNA-10b Reciprocally Stimulates Osteogenesis and Inhibits Adipogenesis Partly through the TGF- /SMAD2 Signaling Pathway. Aging Dis. 2018 Dec 4;9(6): 1058-1073. doi: 10.14336/AD.2018.0214.

59. Chamberlain G, Fox J, Ashton B, Middleton J.Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007 Nov;25(11):2739-49. doi: 10.1634/stemcells.2007-0197.

60. Moerman EJ, Teng K, Lipschitz DA, LeckaCzernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPARgamma2 transcription factor and TGF-beta/ BMP signaling pathways. Aging Cell. 2004 Dec;3(6):379-89. doi: 10.1111/j.1474-9728.2004.00127.x.

61. Sun Z, Wang H, Wang Y, et al. MiR-103-3p targets the m6 A methyltransferase METTL14 to inhibit osteoblastic bone formation. Aging Cell. 2021 Feb;20(2):e13298. doi: 10.1111/acel.13298.

62. Farooq Z, Banday S, Pandita TK, Altaf M. The many faces of histone H3K79 methylation. Mutat Res Rev Mutat Res. 2016 Apr-Jun;768: 46-52. doi: 10.1016/j.mrrev.2016.03.005.

63. Wang L, Niu N, Li L, et al. PLoS Biol. 2018 Nov 13;16(11):e2006522. doi: 10.1371/journal.pbio.2006522.

64. Galvan ML, Paradise CR, Kubrova E, et al. Multiple pharmacological inhibitors targeting the epigenetic suppressor enhancer of zeste homolog 2 (Ezh2) accelerate osteoblast differentiation. Bone. 2021 Sep;150:115993. doi: 10.1016/j.bone.2021.115993.

65. Dudakovic A, Samsonraj RM, Paradise CR,et al. Inhibition of the epigenetic suppressor EZH2 primes osteogenic differentiation mediated by BMP2. J Biol Chem. 2020 Jun 5;295(23): 7877-7893. doi: 10.1074/jbc.RA119.011685.

66. Das P, Veazey KJ, Van HT, et al. Histone methylation regulator PTIP is required to maintain normal and leukemic bone marrow niches. Proc Natl Acad Sci U S A. 2018 Oct 23;115(43): E10137-E10146. doi: 10.1073/pnas.1806019115.

67. Gao Y, Ge W. The histone methyltransferaseDOT1L inhibits osteoclastogenesis and protects against osteoporosis. Cell Death Dis. 2018 Jan 18;9(2):33. doi: 10.1038/s41419-017-0040-5.

68. Chen Y, Sun Y, Xue X, Ma H. Comprehensive analysis of epigenetics mechanisms in osteoporosis. Front Genet. 2023 Mar 28;14:1153585. doi: 10.3389/fgene.2023.1153585.

69. Tyurin A, Shapovalova D, Gantseva H, et al. Association between miRNA Target Sites and Incidence of Primary Osteoarthritis in Women from Volga-Ural Region of Russia: A Case-Control Study. Diagnostics (Basel). 2021 Jul 6;11(7):1222. doi: 10.3390/diagnostics11071222.

70. Gao F, Wang W. MicroRNA-96 promotes theproliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a. Mol Med Rep. 2015 Feb;11(2):1200-6. doi: 10.3892/mmr.2014.2854.

71. Khan C, Pathe N, Fazal S, et al. Azacitidinein the management of patients with myelodysplastic syndromes. Ther Adv Hematol. 2012 Dec; 3(6):355-73. doi: 10.1177/2040620712464882.

72. Khan H, Vale C, Bhagat T, Verma A. Role ofDNA methylation in the pathogenesis and treatment of myelodysplastic syndromes. Semin Hematol. 2013 Jan;50(1):16-37. doi: 10.1053/j.seminhematol.2013.01.001.

73. Yu L, Xia K, Cen X, et al. DNA methylationof noncoding RNAs: new insights into osteogenesis and common bone diseases. Stem Cell Res Ther. 2020 Mar 6;11(1):109. doi: 10.1186/s13287-020-01625-7.


Рецензия

Для цитирования:


Тюрин АВ, Ахиярова КЭ, Ялаев БИ, Загидуллин ТС, Хусаинова РИ. Новые молекулярные аспекты патогенеза остеопороза – перспективы ранней диагностики и лечения. Современная ревматология. 2024;18(2):103-110. https://doi.org/10.14412/19967012-2024-2-103-110

For citation:


Tyurin AV, Akhiyarova KE, Yalaev BI, Zagidullin TS, Khusainova RI. New molecular aspects of the pathogenesis of osteoporosis – perspectives for early diagnosis and treatment. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2024;18(2):103-110. (In Russ.) https://doi.org/10.14412/19967012-2024-2-103-110

Просмотров: 486


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)