Osteoarthritis: modern aspects of pathogenesis, focus on low-intensity inflammation
https://doi.org/10.14412/1996-7012-2025-2-119-126
Abstract
Osteoarthritis (OA) is the most common disease of the musculoskeletal system. Protein complex, the NLRP3 inflammasome plays the key role in the pathogenesis of OA. It consists of three components: the sensor – NLRP3, the adaptor – ASC and the effector – caspase. Activation of the NLRP3 inflammasome promotes the synthesis of pro-inflammatory cytokines, interleukin (IL) 1 β and IL18, and the formation of gasdermin pores, which – combined – leads to cell death, pyroptosis. Despite successes in understanding the processes of OA development, there are no therapeutic methods that can completely stop or slow the progression of the disease. In addition, the use of some medications, particularly nonsteroidal anti-inflammatory drugs (NSAIDs), is associated with a clinically significant increase in the risk of NSAID-induced pathology by 50– 100%.
Due to increased life expectancy and the frequency of concomitant diseases, the treatment strategy for OA had to be changed, leading to the emergence of phenotypes of the disease characterized by low-intensity systemic inflammation.
We present a review of modern data reflecting the involvement of components of innate immunity in the development and progression of OA, as well as possible ways to correct disturbances taking these aspects into consideration.
Keywords
About the Authors
I. S. SvintsitskayaRussian Federation
Irina Sergeevna Svintsitskaya
6Ж, Akademika Lebedeva Street, St. Petersburg 194044
D. S. Aganov
Russian Federation
6Ж, Akademika Lebedeva Street, St. Petersburg 194044
K. V. Raimuev
Russian Federation
41, Kirochnaya Street, St. Petersburg 191015
A. S. Merlushkina
Russian Federation
6Ж, Akademika Lebedeva Street, St. Petersburg 194044
M. M. Toporkov
Russian Federation
6Ж, Akademika Lebedeva Street, St. Petersburg 194044
A. I. Zhigulina
Russian Federation
6Ж, Akademika Lebedeva Street, St. Petersburg 194044
References
1. Abramoff B. Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am. 2020 Mar;104(2):293-311. doi: 10.1016/j.mcna.2019.10.007. Epub 2019 Dec 18.
2. McAlindon ТЕ, Bannuru RR, Sullivan MC, Arden NK. OARSI guidelines for the nonsurgical management of knee osteoarthritis. Osteoarthritis Cartilage. 2014 Mar;22(3):363-88. doi: 10.1016/j.joca.2014.01.003. Epub 2014 Jan 24.
3. Weng Q, Goh SL, Wu J, et al. Comparative efficacy of exercise therapy and oral nonsteroidal anti-inflammatory drugs and para cetamol for knee or hip osteoarthritis: a network meta-analysis of randomised controlled trials. Br J Sports Med. 2023 Aug;57(15):990-996. doi: 10.1136/bjsports-2022-105898. Epub 2023 Jan 2.
4. Long H, Liu Q, Yin H, et al. Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol. 2022 Jul;74(7):1172-1183. doi: 10.1002/art.42089. Epub 2022 Jun 2.
5. Lila AM, Alekseeva LI, Taskina EA, et al. Clinical guidelines (project) for the diagnostics and treatment of primary osteoarthritis for primary care specialists (general practitioners, therapists). Terapiya. 2023;9(1):7-22. (In Russ.).
6. Bhala N, Emberson J, Merhi A, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: metaanalyses of individual participant data from randomised trials. Lancet. 2013 Aug 31; 382(9894):769-79. doi: 10.1016/S0140-6736(13)60900-9. Epub 2013 May 30.
7. Swanson КV, Deng M, Ting JPY. The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nat Rev Immunol. 2019 Aug;19(8):477-489. doi: 10.1038/s41577-019-0165-0.
8. Takahashi M. NLRP3 Inflammasome as a Key Driver of Vascular Disease. Cardiovasc Res. 2022 Jan 29;118(2):372-385. doi: 10.1093/cvr/cvab010.
9. Zeng Х, Liu D, Huo X, et al. Pyroptosis in NLRP3 Inflammasome-Related Atherosclerosis. Cell Stress. 2022 Oct 10;6(10):79-88. doi: 10.15698/cst2022.10.272. eCollection 2022 Oct.
10. Kelley N, Jeltema D, Duan Y, et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019 Jul 6;20(13):3328. doi: 10.3390/ijms20133328.
11. Mazurov VI, Lila AM, Alekseeva LI, Baimukhamedov ChT. Multimorbidity in osteoarthritis and pleiotropic effects of slow-acting symptomatic drugs. Resolution of the multi-disciplinary International Expert Council. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2023;17(5):123-131. (In Russ.). doi: 10.14412/1996-7012-2023-5-123-131.
12. Mathieu S, Couderc M, Tournadre A, et al. Cardiovascular profile in osteoarthritis: a meta-analysis of cardiovascular events and risk factors. Joint Bone Spine. 2019 Nov;86(6): 679-684. doi: 10.1016/j.jbspin.2019.06.013. Epub 2019 Jul 16.
13. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010 Apr 29;464(7293): 1357-61. doi: 10.1038/nature08938.
14. Svintsitskaya IS, Volkov KYu. Smart addition is multiplication: a review concerning combined use of hyaluronic acid and polynucleotides for intra-articular administration in osteoarthritis. Russkii meditsinskii zhurnal. Meditsinskoe obozrenie. 2022;6(4):182-186. (In Russ.).
15. Legrand-Poels S, Esser N, L'homme L, et al. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol. 2014 Nov 1;92(1): 131-41. doi: 10.1016/j.bcp.2014.08.013. Epub 2014 Aug 28.
16. Thomas AC, Hubbard-Turner T, Wikstrom EA, et al. Epidemiology of posttraumatic osteoarthritis. J Athl Train. 2017 Jun 2;52(6):491-496. doi: 10.4085/1062-6050-51.5.08. Epub 2016 May 4.
17. Jiang N, An J, Yang K, et al. NLRP3 inflammasome: A new target for prevention and control of osteoporosis? Front Endocrinol (Lausanne). 2021 Sep 27:12:752546. doi: 10.3389/fendo.2021.752546. eCollection 2021.
18. Bellido M. Lugo L, Roman-Blas JA, et al. Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthritis Cartilage. 2011 Oct;19(10): 1228-36. doi: 10.1016/j.joca.2011.07.003. Epub 2011 Jul 23.
19. Cheung HS. Role of calcium-containing crystals in osteoarthritis. Front Biosci. 2005 May 1:10:1336-40. doi: 10.2741/1623.
20. Abhishek A, Doherty M. Update on calcium pyrophosphate deposition. Clin Exp Rheu matol. 2016 Jul-Aug;34(4 Suppl 98):32-8. Epub 2016 Jul 22.
21. Pazar B. Ea HK, Narayan S, et al. Basic calcium phosphate crystals induce monocyte/ macrophage IL-1 secretion through the NLRP3 inflammasome in vitro. J Immunol. 2011 Feb 15;186(4):2495-502. doi: 10.4049/jimmunol.1001284. Epub 2011 Jan 14.
22. Barnabei I, So A, Busso N, et al. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol. 2023 Jan;19(1):10-27. doi: 10.1038/s41584-022-00875-4. Epub 2022 Dec 12.
23. Zhang X, Wang Z, Zheng Y, et al. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review). Int J Mol Med. 2023;Apr;51(4):35. doi: 10.3892/ijmm.2023.5238.
24. Perregaux DG, McNiff P, Laliberte R, et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J Pharmacol Exp Ther. 2001 Oct;299(1):187-97.
25. Zhang Y, Lin Z, Chen D, et al. CY-09 attenuates the progression of osteoarthritis via inhibiting NLRP3 inflammasome-mediated pyroptosis. Biochem Biophys Res Commun. 2021 May 14:553:119-125. doi: 10.1016/j.bbrc.2021.03.055. Epub 2021 Mar 22.
26. Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018 Apr;15(4):203-214. doi: 10.1038/nrcardio.2017.161. Epub 2017 Nov 16.
27. Guo С, Fu R, Wang S, et al. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin Exp Immunol. 2018 Nov;194(2):231-243. doi: 10.1111/cei.13167. Epub 2018 Sep 16.
28. Mangan MSJ, Olhava EJ, Roush WR, et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018 Aug;17(8):588-606. doi: 10.1038/nrd.2018.97. Epub 2018 Jul 20.
29. Paik S, Kim J, Silwal P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021 May;18(5):1141-1160. doi: 10.1038/s41423-021-00670-3. Epub 2021 Apr 13.
30. Huang Y, Jiang H, Chen Y, et al. Tranilast directly targets NLRP3 to treat inflammasome driven diseases. EMBO Mol Med. 2018 Apr;10(4):e8689. doi: 10.15252/emmm.201708689.
31. He H, Jiang Н, Chen Y, et al. Oridonin is a covalent NLRP3 inhibitor with strong antiinflammasome activity. Nat Commun. 2018 Jun 29;9(1):2550. doi: 10.1038/s41467-018-04947-6.
32. Chen WA, Tang P, Fan S, et al. Novel Inhibitor INF 39 Promotes Osteogenesis via Blocking the NLRP3/IL 1 Axis. Biomed Res Int. 2022 Jul 13:2022:7250578. doi: 10.1155/2022/7250578. eCollection 2022.
33. Kokulnathan T, Wang TJ, Ahmed F. Construction of two-dimensional molybdenum carbide based electrocatalyst for real-time monitoring of parathion-ethyl. Journal of Environmental Chemical Engineering. 2021;9(9): 106537. doi: 10.1016/j.jece.2021.106537.
34. Dhani SA, Zhao Y, Zhivotovsky B. Long way to go: caspase inhibitors in clinical use. Cell Death Dis. 2021 Oct 15;12(10):949. doi: 10.1038/s41419-021-04240-3.
35. Matsunaga N, Tsuchimori N, Matsumoto T, et al. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol. 2011 Jan;79(1): 34-41. doi: 10.1124/mol.110.068064. Epub 2010 Sep 29.
36. Samarpita S. Kim JY, Rasool MК. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug. Arthritis Res Ther. 2020 Jan 23; 22(1):16. doi: 10.1186/s13075-020-2097-2.
37. Karateev AE, Barysheva YuV, Belokon YaV, et al. Evaluation of the efficacy and safety of a combination of chondroitin sulfate and glucosamine sulfate for knee and hip osteoarthritis in real clinical practice. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2020;14(4):82-90. (In Russ.). doi: 10.14412/1996-7012-2020-4-82-90.
38. Lila AM, Tkacheva ON, Yakhno NN, et al. Comprehensive approach to the choice of therapy in patients with osteoarthritis at the first visit to the doctor. Expert consensus (literature review and resolution). Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2021;15(3):111–116. (In Russ.). doi: 10.14412/1996-7012-2021-3-111-116.
39. Lila AM, Alekseeva LI, Taskina EA. Modern approaches to osteoarthritis therapy taking into account updated international guidelines. Russkii meditsinskii zhurnal. Meditsinskoe obozrenie. 2019;11(2):48-52. (In Russ.).
40. Fouad AA. Abdel-Aziz АМ, Hamouda ААН. Diacerein downregulates NLRP3/Caspase-1/ IL-1 and IL-6/STAT3 pathways of inflammation and apoptosis in a rat model of cadmium testicular toxicity. Biol Trace Elem Res. 2020 Jun;195(2):499-505. doi: 10.1007/s12011-019-01865-6. Epub 2019 Aug 10.
41. Martel-Pelletier J, Pelletier JP. Effects of diacerein at the molecular level in the osteo arthritis disease process. Ther Adv Musculo skelet Dis. 2010 Apr;2(2):95-104. doi: 10.1177/1759720X09359104.
42. Ibrahim YF, Alorabi M, Abdelzaher WY, et al. Diacerein ameliorates letrozole-induced polycystic ovarian syndrome in rats. Biomed Pharmacother. 2022 May:149:112870. doi: 10.1016/j.biopha.2022.112870. Epub 2022 Apr 1.
43. Belyaeva IB, Mazurov VI. Pleiotropic effects of diacerein in comorbid patients with osteoarthritis. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2022;16(4): 98–104. (In Russ.). doi: 10.14412/1996-7012-2022-4-98-104
44. Boileau C, Tat SK, Pelletier JP, et al. Diacerein inhibits the synthesis of resorptive enzymes and reduces osteoclastic differentiation/survival in osteoarthritic subchondral bone: a possible mechanism for a protective effect against subchondral bone remodeling. Arthritis Res Ther. 2008;10(3):R71. doi: 10.1186/ar2444. Epub 2008 Jun 25.
45. Liu J. Chen Z, Zhang Y, et al. Rhein protects pancreatic -cells from dynamin-related protein-1-mediated mitochondrial fission and cell apoptosis under hyperglycemia. Diabetes. 2013 Nov;62(11):3927-35. doi: 10.2337/db13-0251. Epub 2013 Aug 6.
46. Pavelka K, Bruyere O, Cooper C, et al. Diacerein: Benefits, Risks and Place in the Management of Osteoarthritis. An Opinion-Based Report from the ESCEO. Drugs Aging. 2016 Feb;33(2):75-85. doi: 10.1007/s40266-016-0347-4.
47. Alekseeva LI, Taskina EA, Kashevarova NG, et al. Knee osteoarthritis and metabolic syndrome: new approaches to therapy. Nauchno-Prakticheskaya Revmatologiya. 2018;56(2): 157-163 (In Russ.).
48. Zhang W, Nuki G, Moskowitz RW, et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage. 2010 Apr; 18(4):476-99. doi: 10.1016/j.joca.2010.01.013. Epub 2010 Feb 11.
49. Pelletier JP, Raynauld JP, Dorais M, et al. An international, multicentre, double-blind, randomized study (DISSCO): effect of diacerein vs celecoxib on symptoms in knee osteoarthritis. Rheumatology (Oxford). 2020 Dec 1; 59(12):3858-3868. doi: 10.1093/rheumatology/keaa072.
50. Jangsiripornpakorn J, Srisuk S, Chailur kit L, et al. The glucose-lowering effect of low-dose diacerein and its responsiveness metabolic markers in uncontrolled diabetes. BMC Res Notes. 2022 Mar 4;15(1):91. doi: 10.1186/s13104-022-05974-9.
51. Cardoso CRL, Leite NC, Carlos FO, et al. Efficacy and safety of diacerein in patients with inadequately controlled type 2 diabetes: a randomized controlled trial. Diabetes Care. 2017 Oct;40(10):1356-1363. doi: 10.2337/dc17-0374. Epub 2017 Aug 17.
52. Nowrouzi-Sohrabi P, Tabrizi R, Jalali M, et al. Effects of diacerein intake on cardiometabolic profiles in type 2 diabetics: a systematic review and meta-analysis of clinical trials. Curr Med Chem. 2021;28(4):840-852. doi: 10.2174/0929867327666200728134755.
53. Cai G, Jones G, Cicuttini FM, et al. Study protocol for a randomised controlled trial of diacerein versus placebo to treat knee osteo arthritis with effusion-synovitis (DICKENS). Trials. 2022 Sep 11;23(1):768. doi: 10.1186/s13063-022-06715-w.
Review
For citations:
Svintsitskaya IS, Aganov DS, Raimuev KV, Merlushkina AS, Toporkov MM, Zhigulina AI. Osteoarthritis: modern aspects of pathogenesis, focus on low-intensity inflammation. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2025;19(2):119-126. (In Russ.) https://doi.org/10.14412/1996-7012-2025-2-119-126