Role of vitamin D receptor (VDR) gene polymorphism in the pathogenesis of juvenile idiopathic arthritis: Theoretical and practical aspects
https://doi.org/10.14412/1996-7012-2014-3-28-33
Abstract
Juvenile idiopathic arthritis (JIA) is a chronic inflammatory joint disease associated with impaired immune system performance. The specific features of JIA may be genetically determined.
Objective: to assess JIA activity in children with vitamin D receptor (VDR) gene ApaI and BsmI polymorphism genotypes.
Subjects and methods. The investigation enrolled 71 patients with JIA. When included in the investigation, all the patients were in an active state of disease. JIA activity was assessed using the most commonly used clinical and laboratory indicators, including the Ritchie articular index (RAI), JADAS10, JADAS27, JADAS71, CDAI, DAS, and DAS28. Molecular genetic studies determined VDR gene ApaI and BsmI polymorphisms by polymerase chain reaction, followed by restriction analysis.
Results. The boys who were carriers of a bb BsmI polymorphic marker in the VDR gene had a significantly higher activity of JIA measured by RAI (p=0.03), DAS (p<0.05), JADAS10 (p=0.04), JADAS27 (p=0.04), and JADAS71 (p=0.04) than those who were carriers of B allele (BB + Bb genotypes).
Conclusion. The carriage of the VDR gene bb BsmI genotype of the polymorphic marker is associated with high JIA activity, which may be regarded as a marker of poor prognosis in boys with JIA.
About the Authors
M. M. KostikRussian Federation
L. A. Sheplyagina
Russian Federation
V. I. Larionova
Russian Federation
References
1. Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet. 2007;369(9563):767–78. DOI: http://dx.doi.org/10.1016/S0140-6736(07)60363-8.
2. Malerba G, Pignatti PF. A review of asthma enetics: gene expression studies and recent candidates. J Appl Genet. 2005;46(1):93–104.
3. Cutolo M. Vitamin D and autoimmune rheumatic diseases. Rheumatology (Oxford). 2009;48(3):210–2. DOI: http://dx.doi.org/10.1093/rheumatology/ken394
4. Van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 2005;97(1–2):93–101. DOI: http://dx.doi.org/10.1016/j.jsbmb.2005.06.002.
5. Baeke F, van Etten E, Gysemans C, et al. Vitamin D signaling in immune-mediated disorders: evolving insights and therapeutic opportunities. Mol Aspects Med. 2008;29(6):376–387. DOI: http://dx.doi.org/10.1016/j.mam.2008.05.004.
6. Daniel C, Sartory NA, Zahn N, et al. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther. 2008;324(1):23–33. DOI: http://dx.doi.org/10.1124/jpet.107.127209.
7. Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634–47. DOI: http://dx.doi.org/10.4049/jimmunol. 179.3.1634.
8. Zella LA, Kim S, Shevde NK, Pike JW. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol. 2006;20(6):1231–47. DOI: http://dx.doi.org/10.1210/me.2006-0015. Epub 2006 Feb 23.
9. Altmuller J, Palmer LJ, Fischer G, et al. Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet. 2001;69(5):936–50. DOI: http://dx.doi.org/10.1086/324069.
10. Agmon-Levin N, Blank M, Zandman-Goddard G, et al. Vitamin D: an instrumental factor in the anti-phospholipid syndrome by inhibition of tissue factor expression. Ann Rheum Dis. 2011;70(1):145–50. DOI: http://dx.doi.org/10.1136/ard.2010.134817.
11. Orbach H, Zandman-Goddard G, Amital H, et al. Novel biomarkers in autoimmune diseases prolactin, ferritin, vitamin D, and TPA levels in autoimmune diseases. Ann NY Acad Sci. 2007;1109:385–400. DOI: http://dx.doi.org/10.1196/annals.1398.044.
12. Broder AR, Tobin JN, Putterman C. Disease-specific definitions of vitamin D deficiency need to be established in autoimmune and non-autoimmune chronic diseases: a retrospective comparison of three chronic diseases. Arthritis Res Ther. 2010;12(5):R191. DOI: http://dx.doi.org/10.1186/ar3161.
13. Bell DS. Protean manifestations of vitamin D deficiency, part 2: deficiency and its association with autoimmune disease, cancer, infection, asthma, dermopathies, insulin resistance, and type 2 diabetes. South Med J. 2011;104(5):335–9. DOI: http://dx.doi.org/10.1097/01.SMJ. 0000397893.94525.0e.
14. Roth DE, Jones AB, Prosser C, et al. Vitamin D receptor polymorphisms and the risk of acute lower respiratory tract infection in early childhood. J Infect Dis. 2008;197(5):676–80. DOI: 10.1086/527488.
15. Bogunia-Kubik K, Middleton P, Norden J, et al. Association of vitamin D receptor polymorphisms with the outcome of allogeneic haematopoietic stem cell transplantation. Int J Immunogenet. 2008;35(3):207–13. DOI: http://dx.doi.org/10.1111/j.1744- 313X.2008.00758.x.
16. Haque UJ, Bartlett SJ. Relationships among vitamin D, disease activity, pain and disability in rheumatoid arthritis. Clin Exp Rheumatol. 2010:28(5):745–7.
17. Lemire JM, Ince A, Takashima M. 1,25-dihydroxyvitamin D3 attenuates the expression of experimental murine lupus of MRL/l mice. Autoimmunity. 1992;12(2):143–8. DOI: http://dx.doi.org/10.3109/08916939209150321.
18. Giulietti A, Gysemans C, Stoffels K, et al. Vitamin D deficiency in early life accelerates Type 1 diabetes in non-obese diabetic mice. Diabetologia. 2004;47(3):451–62. DOI: http://dx.doi.org/10.1007/s00125-004-1329-3.
19. Zella JB, McCary LC, DeLuca HF. Oral administration of 1,25-dihydroxyvitamin D3 completely protects NOD mice from insulindependent diabetes mellitus. Arch Biochem Biophys. 2003;417(1):77–80.
20. Vollmert C, Illig T, Altm?ller J, et al. Single nucleotide polymorphism screening and association analysis-exclusion of integrin beta 7 and vitamin D receptor (chromosome 12q) as candidate genes for asthma. Clin Exp Allergy. 2004;34(12):1841–50. DOI: http://dx.doi.org/10.1111/j.1365- 2222.2004.02047.x.
21. Santos BR, Mascarenhas LP, Satler F, et al. Vitamin D deficiency in girls from South Brazil: a cross-sectional study on prevalence and association with vitamin D receptor gene variants. BMC Pediatr. 2012 Jun 8;12:62. DOI: http://dx.doi.org/10.1186/1471-2431-12-62.
22. Swamy GK, Garrett ME, Miranda ML, Ashley-Koch AE. Maternal vitamin D receptor genetic variation contributes to infant birthweight among black mothers. Am J Med Genet A. 2011;155(6):1264–71. DOI: http://dx.doi.org/10.1002/ajmg.a.33583.
23. Ferrari SL, Bonjour JP, Rizzoli R. The vitamin D receptor gene and calcium metabolism. Trends Endocrinol Metab. 1998;9(7):259–65. DOI: http://dx.doi.org/10.1016/S1043- 2760(98)00065-4.
24. Salamone LM, Glynn NW, Black DM, et al. Determinants of premenopausal bone mineral density: the interplay of genetic and lifestyle factors. J Bone Miner Res. 1996;11(10):1557–65. DOI: http://dx.doi.org/10.1002/jbmr.5650111024.
25. San-Pedro JI, Bilbao JR, Perez de Nanclares G, et al. Heterogeneity of vitamin D receptor gene association with celiac disease and type 1 diabetes mellitus. Autoimmunity. 2005;38(6):439–44. DOI: http://dx.doi.org/10.1080/08916930500288455.
26. Li K, Shi Q, Yang L, et al. The association of vitamin D receptor gene polymorphisms and serum 25-hydroxyvitamin D levels with generalized vitiligo. Br J Dermatol. 2012;167(4):815–21. DOI: http://dx.doi.org/10.1111/j.1365-2133.2012.11132.x.
27. Ramos-Lopez E, Jansen T, Ivaskevicius V, et al. Protection from type 1 diabetes by vitamin D receptor haplotypes. Ann NY Acad Sci. 2006;1079:327–34. DOI: http://dx.doi.org/10.1196/annals.1375.050.
28. Aletaha D, Ward MM, Machold KP, et al. Remission and active disease in rheumatoid arthritis defining criteria for disease activity states. Arthritis Rheum. 2005;52(9):2625–36. DOI: http://dx.doi.org/10.1002/art.21235.
29. Prevoo ML, van’t Hof MA, Kuper HH, et al. Modified disease activity scores that include twenty-eight–joint counts: development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38(1):44–8. DOI: http://dx.doi.org/10.1002/art. 1780380107.
30. Consolaro A, Ruperto N, Bazso A, et al. Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum. 2009;61(5):658–66. DOI: http://dx.doi.org/10.1002/art.24516.
31. Aletaha D, Smolen J. The Simplified Disease Activity Index (SDAI) and the Clinical Disease Activity Index (CDAI): a review of their usefulness and validity in rheumatoid arthritis. Clin Exp Rheumatol. 2005;23(5 Suppl 39):S100–8.
32. Bazso A, Consolaro A, Ruperto N, et al. Development and testing of reduced joint counts in juvenile idiopathic arthritis. J Rheumatol. 2009;36(1):183–90.
33. Fransen J, van Riel PL. The Disease Activity Score and the EULAR response criteria. Clin Exp Rheumatol. 2005;23 (5 Suppl 39):S93–9.
34. Smolen JS, Breedveld FC, Schiff MH, et al. A simplified disease activity index for rheumatoid arthritis for use in clinical practice. Rheumatology (Oxford). 2003;42(2):244–57. DOI: http://dx.doi.org/ 10.1093/rheumatology/keg072.
35. Veit TD, Vianna P, Scheibel I, et al. Association of the HLA-G 14-bp insertion/deletion polymorphism with juvenile idiopathic arthritis and rheumatoid arthritis. Tissue Antigens. 2008;71(5):440–6. DOI: http://dx.doi.org/10.1111/j.1399-0039.2008.01019.x. Epub 2008 Mar 10.
36. Kostik MM, Klyushina AA, Moskalenko MV, et al. Glucocorticoid receptor gene polymorphism and juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2011 Jan 13;9(1):2. DOI: http://dx.doi.org/10.1186/1546-0096-9-2.
Review
For citations:
Kostik MM, Sheplyagina LA, Larionova VI. Role of vitamin D receptor (VDR) gene polymorphism in the pathogenesis of juvenile idiopathic arthritis: Theoretical and practical aspects. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2014;8(3):28-33. (In Russ.) https://doi.org/10.14412/1996-7012-2014-3-28-33