Preview

Современная ревматология

Расширенный поиск

Клеточно-молекулярные механизмы развития остеопороза: современные концепции и будущее направление терапии

https://doi.org/10.14412/1996-7012-2016-2-56-63

Полный текст:

Аннотация

В обзоре литературы представлены современные взгляды на клеточно-молекулярные механизмы развития ремоделирования кости и патогенез остеопороза. Открытие цитокиновой системы RANKL-RANK-OPG и значительной роли катепсина К в процессе ремоделирования костной ткани способствовало значительному прогрессу в понимание механизмов развития остеопороза и позволило разработать препараты нового поколения – деносумаб, полностью человеческое моноклональное антитело к RANKL (receptor activator nucleus factor kappa B ligand), и ингибитор катепсина К оданакатиб, угнетающие процесс резорбции костной ткани.

Об авторах

А. Т. Долженко
Институт молекулярной медицины, Университет им. Мартина Лютера Галле-Виттенберг, Германия
Россия


С. Сагаловски
Отдел ортопедии клиники Медиан, Бад Лаузик, Германия
Россия


Литература

1. Cauley JA. Public health impact of osteoporosis. J Gerontol A Biol Sci Med Sci. 2013 Oct;68(10):1243-51. doi: 10.1093/gerona/ glt093. Epub 2013 Jul 31.

2. Cauley JA, Chalhoub D, Kassem AM, et al. Geographic and etnic disparities in osteoporotic fractures. Nat Rev Endocrinol. 2014 Jun;10(6):338-51. doi: 10.1038/nrendo.2014.51. Epub 2014 Apr 22.

3. Dhanwal DK, Dennison EM, Harvey NC, et al.Epidemiology of hip fracture worldwide geographic variation. Indian J Orthop. 2011 Jan;45(1):15-22. doi: 10.4103/0019- 5413.73656.

4. Gallagher JC, Sai AJ. Molecular biology of bone remodeling: implications for new therapeutic target for osteoporosis. Maturitas. 2010 Apr;65(4):301-7. doi: 10.1016/j.maturitas. 2010.01.002. Epub 2010 Jan 29.

5. Tanaka Y, Nakayamada S, Okada Y. Osteoblasts and osteoclasts in bone remodeling and infalammation. Curr Drug Targets Inflamm Allergy. 2005 Jun;4(3):325-8.

6. Fakhry M, Hamade E, Badran B, et al. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells. 2013 Oct 26;5(4):136-48. doi: 10.4252/wjsc.v5.i4.136.

7. James AW. Review of signaling pathway governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013;2013:684736. doi: 10.1155/2013/ 684736. Epub 2013 Dec 12.

8. Komori T. Regulation of osteoblast differentiation by RUNX2. Adv Exp Med Biol. 2010;658:43-9. doi: 10.1007/978-1-4419-1050-9_5.

9. Martin IJ, Sims NA. Signaling in bone. In: Seibel MT, Robin SP, Bilezikian JP, editors. Dynamics of bone and cartilage metabolism. 2nd edition. Academic Press; 2010. P. 259-67.

10. Komori T. Cbfa1 is a master gene for osteoblast differentiation. In: Takahashi HE, editor. Mechanical loading of bone joints. 2nd edition. Springer Verlag; 2012. P. 295-305.

11. Zhu F, Friedman MS, Luo W, et al. The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J Cell Physiol. 2012 Jun;227(6):2677-85. doi: 10.1002/jcp.23010.

12. Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010 Jan;339(1):189-95. doi: 10.1007/s00441-009-0832-8. Epub 2009 Aug 1.

13. Carbonare D, Innamorati G, Valenti MT. Transcription factor RUNX2 and its application to bone tissue engineering. Stem Cell Rev. 2012 Sep;8(3):891-7. doi: 10.1007/s12015-011-9337-4.

14. Marie PJ, Kassem M. Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol. 2011 Jul;165(1):1-10. doi: 10.1530/EJE-11-0132. Epub 2011 May 4.

15. Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res. 2011 Feb;343(2):289-302. doi: 10.1007/s00441- 010-1086-1. Epub 2010 Dec 1.

16. Kruger T, Miller AH, Godwin AK, et al. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit Rev Oncol Hematol. 2014 Feb;89(2):330-41. doi: 10.1016/j.critrevonc.2013.08.013. Epub 2013 Sep 7.

17. Bouet G, Bouleftour W, Juignet L, et al. The impairment of osteogenesis in bone sialoprotein (BSP) knockout calvaria cell cultures in cell dependent. PLoS One. 2015 Feb 24;10(2):e0117402. doi: 10.1371/journal.pone. 0117402. eCollection 2015.

18. Lee YM, Fujukado N, Manaka H, et al. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010 Oct;22(10):805-16. doi: 10.1093/intimm/dxq431. Epub 2010 Aug 2.

19. Lombardi G, DiSomma C, Rubino M, et al. The roles of parathyroid hormone in bone remodeling: prospects for novell therapeutics. J Endocrinol Invest. 2011 Jul;34 (7 Suppl):18-22.

20. Van de Peppel J, Van Leeuwen JP. Vitamin D gene networks in human osteoblasts. Front Physiol. 2014 Apr 9;5:137. doi: 10.3389/fphys.2014.00137. eCollection 2014.

21. Almedia M, Iyer S, Martin-Millan M, et al. Estrogen receptor-α signaling in osteoblast progenitors stimulates control bone accrual. J Clin Invest. 2013 Jan;123(1):394-404. doi: 10.1172/JCI65910. Epub 2012 Dec 10.

22. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010 Aug 13;285(33):25103-8. doi: 10.1074/jbc.R109.041087. Epub 2010 May 25.

23. Sagalovsky S. Bone remodeling:cellularmolecular biology and cytokine RANKRANKL- osteoprotegerin (OPG) system and growth factors. Cream J Exptl Clin Med. 2013; 3(1-2):36-44

24. Hofbauer L, Rachner T. Die rolle des RANKL-RANK-OPG-Sygnalwegs in Knochenstoffwechsel. Forbildung Osteologie. 2010; 3(8):118-21

25. Rucci N. Molecular biology of bone remodeling. Clin Cases Miner Bone Metab. 2008 Jan;5(1):49-56.

26. Wright HL, McCarthy HS, Middleton J, et al. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med. 2009 Mar;2(1):56-64. doi: 10.1007/s12178-009-9046-7. Epub 2009 Mar 10.

27. Kohli SS, Kohli VS. Role of RANKLRANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab. 2011 Jul;15(3):175-81. doi: 10.4103/2230-8210.83401.

28. Weitzmann MN. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo). 2013;2013:125705. doi: 10.1155/ 2013/125705. Epub 2013 Feb 3.

29. Takahashi N, Udagawa N, Suda T. Vitamin D, endocrine system and osteoclast. Bonekey Rep. 2014 Feb 5;3:495. doi: 10.1038/bonekey.2013.229. eCollection 2014.

30. Marie PJ, Miraoui H, Severe N. FGF/FGFR signaling in bone formation: progress and perspectives. Growth Factors. 2012 Apr;30(2):117-23. doi: 10.3109/089 77194.2012.656761. Epub 2012 Feb 1.

31. Kato S. Hormones and osteoporosis update. Estrogen and bone remodeling. Clin Calcium. 2009 Jul;19(7):951-6. doi: CliCa0907951956.

32. Chen G, Dong C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272-88. doi: 10.7150/ijbs.2929. Epub 2012 Jan 21.

33. Lee K, Kim H, Park HS, et al. Targeting of the osteoclastogenesis RANKL-RANK axis prevents osteoporotic bone loss and soft tissue calcification in C oxsackievirus B3-ifected mice. J Immunol. 2013 Feb 15;190(4):1623-30. doi: 10.4049/jimmunol. 1201479. Epub 2013 Jan 9.

34. Lee MS, Kim HS, Yeon JT, et al. GM-CSF regulates fusion og mononuclear osteoclasts into bone-resorbing osteoclasts by activating the Ras/ERK pathway. J Immunol. 2009 Sep 1;183(5):3390-9. doi: 10.4049/jimmunol. 0804314. Epub 2009 Jul 29.

35. Sims NA, Martin J. Coupling the activaties of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014 Jan 8;3:481. doi: 10.1038/bonekey.2013.215. eCollection 2014.

36. Takayanagi H. The role of NFAT in osteoclast formation. Ann N Y Acad Sci. 2007 Nov;1116:227-37.

37. Datta HK, Ng WF, Walker JA, et al. The cell biology of bone metabolism. J Clin Pathol. 2008 May;61(5):577-87. doi: 10.1136/jcp.2007.048868.

38. Kang MA, Jo SA, Yoon YD, et al. Agelasine D suppresses RANKL-induced osteoclastogenesis via down-regulation of cfos, NFATc1 and NF-kB. Mar Drugs. 2014 Nov 24;12(11):5643-56. doi: 10.3390/md 12115643.

39. Marino S, Logan JG, Mellis D, et al. Generation and culture of osteoclasts. Bonekey Rep. 2014 Sep 10;3:570. doi: 10.1038/bonekey.2014.65. eCollection 2014.

40. Zou W, Teitelbaum SL. Integrins, growth factors, and the osteoclast cytoskeleton. Ann N Y Acad Sci. 2010 Mar;1192:27-31. doi: 10.1111/j.1749-6632.2009.05245.x.

41. Baron R, Horne W. Regulation of osteoclast activity. In: Bronner F, Farach-Carson MC, Rubin J, editors. Bone resorption. Topics in bone biology. Vol 2. London; Springer Verlag; 2005. P. 34-57

42. Ross FP. Osteoclast biology and bone resorption. Bone Miner Res. 2008;12(1):16-22

43. Florencio-Silva R, Sasso GR, Sasso-Cerri E, et al. Biology of bone tissue: structure, function, and factors that influence bone cell. Biomed Res Int. 2015;2015:421746. doi: 10.1155/2015/421746. Epub 2015 Jul 13.

44. Shinohara C, Yamashita K, Matsuo T, et al. Effects of carbonic anhydrase inhibitor acetazolamide (AZ) on osteoclasts and bone structure. J Hard Tissue Biol. 2007;16(3):115-23

45. Nampoothiri S, Anikster Y. Carbonic anhydrase II deficiency: a novel mutation. Indian Pediatr. 2009 Jun;46(6):532-4.

46. Turk V, Stoka V, Vasiljeva O, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 2012 Jan;1824(1):68-88. doi: 10.1016/j.bbapap.2011.10.002. Epub 2011 Oct 12.

47. Xue Y, Cai T, Shi S, et al. Clinical and animal research findings in pycnodysostosis and gene mutation of cathepsin K from 1996 to 2011. Orphanet J Rare Dis. 2011 May 10;6:20. doi: 10.1186/1750-1172-6-20.

48. Sobacchi C, Schulz A, Coxon FP, et al. Osteopetrosis: genetics,treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013 Sep;9(9):522-36. doi: 10.1038/nrendo.2013.137. Epub 2013 Jul 23.

49. Nikitinskaya OA, Toroptsova NV. Denosumab is the first gene engineered agent for the treatment of osteoporosis. Modern Rheumatology Journal. 2012;6(3):68-73. DOI: http://dx.doi.org/10.14412/1996-7012-2012-751

50. Gamsjä ger M, Resch H. Cathepsin K antagonists: preclinical and clinical data. Wien Med Wochenschr. 2015 Feb;165(3-4):65-70. doi: 10.1007/s10354-014-0336-3. Epub 2015 Jan 9.

51. Papapoulos S, Chapurlat R, Libanati C, et al. Five years of denosumab exposure in women with postmenopausal osteoporosis: results from the first two years of FREEDOM extension. J Bone Miner Res. 2012 Mar;27(3):694-701. doi: 10.1002/jbmr.1479.

52. Chapurlat RD. Odanacatib: a review of its potential in the management of osteoporosis in postmenopausal women. Ther Adv Musculoskelet Dis. 2015 Jun;7(3):103-9. doi: 10.1177/1759720X15580903.

53. Ng KW. Potential role of odanacatib in the treatment of osteoporosis. Clin Interv Aging. 2012;7:235-47. doi: 10.2147/CIA. S26729. Epub 2012 Jul 12.

54. Bonnick S, De Villiers T, Odio A, et al. Effects of odanacatib on BMD and safety in the treatment of osteoporosis in postmenopausal women previously treated with alendronate: a randomized placebo-controlled trial. J Clin Endocrinol Metab. 2013 Dec;98(12):4727-35. doi: 10.1210/jc.2013- 2020. Epub 2013 Sep 24.

55. Engelke K, Fuerst T, Dardzinski B, et al. Odanacatib treatment trabecular and cortical bone in the femur of postmenopausal women: results of a two-year placebo-controlled trial. J Bone Miner Res. 2015 Jan;30(1):30-8. doi: 10.1002/jbmr.2292.

56. Langdahl B, Binkley N, Bone H, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase II study. J Bone Miner Res. 2012 Nov;27(11):2251-8. doi: 10.1002/jbmr.1695.

57. Shiwaku Y, Neff L, Nagano K, et al. The crosstalk between osteoclasts and osteoblasts in dependent upon the composition and structure of biphasic calcium phosphates. PLoS One. 2015 Jul 20;10(7):e0132903. doi: 10.1371/journal. pone.0132903. eCollection 2015.

58. Cusick T, Chen CM, Pennypacker BL, et al. Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in ovariectomized adult rhesus monkey. J Bone Miner Res. 2012 Mar;27(3):524-37. doi: 10.1002/jbmr.1477.

59. Bone HG, Dempster DW, Eisman JA, et al. Odanacatib for the treatment of postmenopausal osteoporosis: development hystory and desing and participant characteristics of LOFT, the long-term odanacatib fracture trial. Osteoporos Int. 2015 Feb;26(2):699-712. doi: 10.1007/s00198-014-2944-6. Epub 2014 Nov 29.

60. Zerbini CAF, McClung MR. Odanacatib in postmenopausal women with low bone mineral density: a review of current clinical evidence. Ther Adv Musculoskelet Dis. 2013 Aug;5(4):199-209. doi: 10.1177/1759720X 13490860.


Для цитирования:


Долженко А.Т., Сагаловски С. Клеточно-молекулярные механизмы развития остеопороза: современные концепции и будущее направление терапии. Современная ревматология. 2016;10(2):56-63. https://doi.org/10.14412/1996-7012-2016-2-56-63

For citation:


Dolzhenko A.T., Sagalovsky S. Cellular and molecular mechanisms of osteoporosis: current concepts and future direction treatment. Modern Rheumatology Journal. 2016;10(2):56-63. https://doi.org/10.14412/1996-7012-2016-2-56-63

Просмотров: 596


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)