Регуляторы роста паннуса при ревматоидном артрите, являющиеся потенциальными мишенями биологической терапии
https://doi.org/10.14412/1996-7012-2018-1-55-59
Аннотация
Основной целью лечения ревматоидного артрита (РА) является подавление воспаления с помощью базисной и симптоматической терапии. При этом указанная стратегия значимо не останавливает деструкцию сустава, ведущую к инвалидизации пациентов. В обзоре представлен анализ публикаций, посвященных поиску регуляторов межклеточного взаимодействия среди основных эффекторных клеток паннуса – фибробластоподобных синовиоцитов (ФПС). Представлены оценка влияния факторов агрессии ФПС на инвазивное «поведение» паннуса, возможность их прицельной дезактивации в рамках биологической терапии, а также предварительные результаты подобного лечения на примерах животных моделей. Показано, что наиболее перспективными мишенями биологической терапии могут являться молекулы адгезии ФПС: трансмембранный рецептор кадгерин 11, интегрины α5/β1, VCAM1, ICAM1, активно участвующие в процессах прикрепления ФПС к поверхности хряща и активирующие выработку ими цитокинов, факторов роста и агрессии.
Об авторах
А. С. МихайловаРоссия
620028, Екатеринбург, ул. Репина, 3
О. М. Лесняк
Россия
191015, Санкт-Петербург, ул. Кирочная, 41
Литература
1. Чичасова НВ. Деструкция хряща при ревматоидном артрите, связь с функциональными нарушениями. Современная ревматология. 2014;8(4):60–71. [Chichasova NV. Cartilage destruction in rheumatoid arthritis, its association with functional impairments. Sovremennaya revmatologiya = Modern Rheumatology Journal. 2014;8(4):60– 71.] doi: 10.14412/1996-7012-2014-4-60-71
2. Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010 Jan;233(1):233-55. doi: 10.1111/j.0105-2896.2009.00859.x.
3. Edwards JC, Willoughby DA. Demonstration of bone marrow derived cells in synovial lining by means of giant intracellular granules as genetic markers. Ann Rheum Dis. 1982 Apr;41(2):177-82.
4. Bustamante MF, Garcia-Carbonell R, Whisenant KD, Guma M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther. 2017 May 31;19(1):110. doi: 10.1186/s13075-017-1303-3.
5. Kiener HP, Lee DM, Agarwal SK, Brenner MB. Cadherin-11 induces rheumatoid arthritis fibroblast-like synoviocytes to form lining layers in vitro. Am J Pathol. 2006 May;168(5):1486-99.
6. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003 May 15; 423(6937):356-61.
7. Hirohata S, Nagai T, Asako K, et al. Induction of type B synoviocyte-like cells from plasmacytoid dendritic cells of the bone marrow in rheumatoid arthritis and osteoarthritis. Clin Immunol. 2011 Sep;140(3): 276-83. doi: 10.1016/j.clim.2011.04.008. Epub 2011 Apr 20.
8. Lande R, Giacomini E, Serafini B, et al. Characterization and recruitment of plasmacytoid dendritic cells in synovial fluid and tissue of patients with chronic inflammatory arthritis. J Immunol. 2004 Aug 15;173(4): 2815-24.
9. Korb-Pap A, Bertrand J, Sherwood J, Pap T. Stable activation of fibroblasts in rheumatic arthritis-causes and consequences. Rheumatology (Oxford). 2016 Dec;55(suppl 2): ii64-ii67.
10. Jamora C., Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat. Cell Biol. 2002; 4: E101-108.
11. Rosengren S, Boyle DL, Firestein GS. Acquisition, culture, and phenotyping of synovial fibroblasts. Methods Mol Med. 2007; 135:365-75.
12. Szekanecz Z, Haines GK, Lin TR, et al. Differential distribution of intercellular adhesion molecules (ICAM-1, ICAM-2, and ICAM-3) and the MS-1 antigen in normal and diseased human synovia. Their possible pathogenetic and clinical significance in rheumatoid arthritis. Arthritis Rheum. 1994 Feb;37(2):221-31.
13. Korb A, Pavenstä dt H, Pap T. Cell death in rheumatoid arthritis. Apoptosis. 2009 Apr; 14(4):447-54. doi: 10.1007/s10495-009-0317-y.
14. Agarwal SK, Brenner MB. Role of adhesion molecules in synovial inяammation. Curr Opin Rheumatol. 2006 May;18(3):268-76.
15. Werb Z, Tremble PM, Behrendtsen O, et al. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol. 1989 Aug;109(2):877-89.
16. Valencia X, Higgins JM, Kiener HP, et al. Cadherin-11 provides speciёc cellular adhesion between fibroblast-like synoviocytes. J Exp Med. 2004 Dec 20;200(12):1673-9.
17. Kiener HP, Lee DM, Agarwal SK, et al. Cadherin-11 induces rheumatoid arthritis fibroblast-like synoviocytes to form lining layers in vitro. Am J Pathol. 2006 May;168(5): 1486-99.
18. Kiener HP, Niederreiter B, Lee DM, et al. Cadherin 11 promotes invasive behavior of fibroblast-like synoviocytes. Arthritis Rheum. 2009 May;60(5):1305-10. doi: 10.1002/art.24453.
19. Patel SD, Ciatto C, Chen CP, et al. Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell. 2006 Mar 24;124(6):1255-68.
20. Kawaguchi J, Azuma Y, Hoshi K, et al. Targeted disruption of cadherin-11 leads to a reduction in bone density in calvaria and long bone metaphyses. J Bone Miner Res. 2001 Jul; 16(7):1265-71.
21. Matsusaki T, Aoyama T, Nishijo K, et al. Expression of the cadherin-11 gene is a discriminative factor between articular and growth plate chondrocytes. Osteoarthritis Cartilage. 2006 Apr;14(4):353-66. Epub 2006 May 2.
22. Lee DM, Kiener HP, Agarwal SK, et al. Cadherin-11 in synovial lining formation and pathology in arthritis. Science. 2007 Feb 16; 315(5814):1006-10. Epub 2007 Jan 25.
23. Richardson SH, Starborg T, Lu Y, et al. Tendon development requires regulation of cell condensation and cell shape via cadherin-11-mediated cell-cell junctions. Mol Cell Biol. 2007 Sep;27(17):6218-28. Epub 2007 Jun 11.
24. Sfikakis P, Christopoulos PF, Vaiopoulos AG, et al. Cadherin-11 mRNA transcripts are frequently found in rheumatoid arthritis peripheral blood and correlate with established polyarthritis. Clin Immunol. 2014 Nov;155(1): 33-41. doi: 10.1016/j.clim.2014.08.008. Epub 2014 Aug 27.
25. Chang SK, Gu Z, Brenner MB. Fibroblast-like synoviocytes in inяammatory arthritis pathology: the emerging role of cadherin11. Immunol Rev. 2010 Jan;233(1): 256-66. doi: 10.1111/j.0105-2896.2009.00854.x.
26. Pishvaian MJ, Feltes CM, Thompson P, et al. Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res. 1999 Feb 15;59(4):947-52.
27. Farina AK, Bong YS, Feltes CM, Byers SW. Post-transcriptional regulation of cadherin-11 expression by GSK-3 and betacatenin in prostate and breast cancer cells. PLoS One. 2009;4(3):e4797. doi: 10.1371/journal.pone.0004797. Epub 2009 Mar 10.
28. Chang SK, Noss EH, Chen M, et al. Cadherin-11 regulates fibroblast inflammation. Proc Natl Acad Sci U S A. 2011 May 17; 108(20):8402-7. doi: 10.1073/pnas.1019437108. Epub 2011 May 2.
29. Park YE, Woo YJ, Park SH, et al. IL-17 increases cadherin-11 expression in a model of autoimmune experimental arthritis and in rheumatoid arthritis. Immunol Lett. 2011 Oct 30;140(1-2):97-103. doi: 10.1016/j.imlet.2011.07.003. Epub 2011 Jul 20.
30. Posthumus M, Limburg P, Westra J, et al. Serum levels of matrix metalloproteinase-3 in relation to the development of radiological damage in patients with early rheumatoid arthritis. Rheumatology (Oxford). 1999 Nov; 38(11):1081-7.
31. Noss E, Chang S, Watts G, Brenner M. Modulation of matrix metalloproteinase production by rheumatoid arthritis synovial fibroblasts after cadherin 11 engagement. Arthritis Rheum. 2011 Dec;63(12):3768-78. doi: 10.1002/art.30630.
32. Smith HR, Diamond HS. Rheumatoid arthritis treatment & management. 2017. https://emedicine.medscape.com/article/331715-treatment#d13
33. Verstappen SM, Albada-Kuipers GA, Bijlsma JW, et al. A good response to early DMARD treatment of patients with rheumatoid arthritis in the first year predicts remission durion follow up. Ann Rheum Dis. 2005 Jan;64(1):38-43. Epub 2004 May 6.
34. Dou C, Yan Y, Dong S. Role of cadherin-11 in synovial joint formation and rheumatoid arthritis pathology. Mod Rheumatol. 2013 Nov;23(6):1037-44. doi: 10.1007/s10165-012-0806-7. Epub 2012 Dec 14.
35. Sfikakis PP, Vlachogiannis NI, Christopoulos PF. Cadherin-11 as a therapeutic target in chronic, inflammatory rheumatic diseases. Clin Immunol. 2017 Mar;176: 107-113. doi: 10.1016/j.clim.2017.01.008. Epub 2017 Jan 21.
36. Xing R, Jin Y, Yang L, et al. Interleukin-21 induces migration and invasion of fibroblast-like synovicytes from patients with rheumatoid arthritis. Clin Exp Immunol. 2016 May;184(2):147-58. doi: 10.1111/cei.12751. Epub 2016 Feb 15.
37. Xiao CY, Pan YF, Guo XH, et al. Expression of β-catenin in rheumatoid arthritis fibroblast- like synovicytes. Scand J Rheumatol. 2011 Jan;40(1):26-33. doi: 10.3109/03009742.2010.486767. Epub 2010 Sep 15.
38. Xiao W, Ding S, Duan H, et al. CTGF promotes articular damage by increased proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Scand J Rheumatol. 2016 Jul;45(4):282-7. doi: 10.3109/03009742.2015.1092581. Epub 2016 Apr 4.
39. Wang JG, Ruan J, Li CY, et al. Connective tissue growth factor, a regulator related with 10-hydroxy-2-decenoic acid down-regulate MMPs in rheumatoid arthritis. Rheumatol Int. 2012 Sep;32(9):2791-9. doi: 10.1007/s00296-011-1960-5. Epub 2011 Aug 18.
40. Nozawa K, Fujishiro M, Kawasaki M, et al. Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis. Arthritis Res Ther. 2009;11(6):R174. doi: 10.1186/ar2863. Epub 2009 Nov 18.
41. Polakis P. Casein kinase 1: a Wnt'er of disconnect. Curr Biol. 2002 Jul 23;12(14): R499-R501.
42. Polakis P. Wnt signaling and cancer. Genes Dev. 2000 Aug 1;14(15):1837-51.
43. Arregui CO, Balsamo J, Lilien J. Impaired integrin-mediated adhesion and signaling in fibroblasts expressing a dominantnegative mutant PTP1B. J Cell Biol. 1998 Nov 2;143(3):861-73.
44. Morinobu A, Tanaka S, Nishumira K, et al. Expression and Functions of Immediate Early Response Gene X-1 (IEX-1) in Rheumatoid Arthritis Synovial Fibroblasts. PLoS One. 2016 Oct 13;11(10):e0164350. doi: 10.1371/journal.pone.0164350.eCollection 2016.
45. Shekhani MT, Forde TS, Adilbayeva A, et al. Collagen triple helix repeat containing 1 is a new promigratory marker of arthritic pannus. Arthritis Res Ther. 2016 Jul 19;18:171. doi: 10.1186/s13075-016-1067-1.
Рецензия
Для цитирования:
Михайлова АС, Лесняк ОМ. Регуляторы роста паннуса при ревматоидном артрите, являющиеся потенциальными мишенями биологической терапии. Современная ревматология. 2018;12(1):55-59. https://doi.org/10.14412/1996-7012-2018-1-55-59
For citation:
Mikhaylova AS, Lesnyak OM. Pannus growth regulators as potential targets for biological therapy in rheumatoid arthritis. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2018;12(1):55-59. (In Russ.) https://doi.org/10.14412/1996-7012-2018-1-55-59