Preview

Modern Rheumatology Journal

Advanced search

The results of postgenomic analysis of a glucosamine sulfate molecule indicate the prospects of treatment for comorbidities

https://doi.org/10.14412/1996-7012-2018-4-129-136

Abstract

Postgenomic analysis of the effects of active ingredients of drugs involves the evaluation of the effects of relevant molecules on the transcription of genes (transcriptomes), on the changes in the activity of proteins (proteomes), and on the activity of molecular cascades (reactomes). The paper gives the results of applying the current chemoinformational approaches to the postgenomic analysis of the effects of glucosamine sulfate (GS). The main result of the investigation is to simultaneously establish the synergistic effect of GS on transcriptomes, proteomes, and reactomes. In particular, GS assists in reducing not only the transcription of genes involved in the NF-κB proinflammatory signaling cascade (NFKB2, TNFRSF1B, PYCARD, TRAF2, TNFSF12, etc.), but also the activity of proteomic proteins that transmit a signal at different levels of the NF-κB cascade (CD44, TLR4, ICAM1, NF-κB, JAK/STAT, etc.). The complex anti-inflammatory effect of GS in reducing the synthesis of proinflammatory cytokines and weakening their effects on the cells is pathogenetic in the treatment of not only osteoarthritis, but also comorbidities accompanied by chronic inflammation.

About the Authors

I. Yu. Torshin
Institute of Pharmacoinformatics, Federal Research Center «Informatics and Control», Russian Academy of Sciences.
Russian Federation
40, Vavilov St., Moscow 119333.


O. A. Gromova
Institute of Pharmacoinformatics, Federal Research Center «Informatics and Control», Russian Academy of Sciences.
Russian Federation

Olga Alekseevna Gromova.

40, Vavilov St., Moscow 119333.



A. M. Lila
V.A. Nasonova Research Institute of Rheumatology.
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522.


A. V. Naumov
Russian Gerontology Research and Clinical Center.
Russian Federation
16, First Leonov St., Moscow 129226.


M. A. Sorokina
Dmitry Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology.
Russian Federation
1, Samory Mashela St., Moscow 117997.


K. V. Rudakov
Institute of Pharmacoinformatics, Federal Research Center «Informatics and Control», Russian Academy of Sciences.
Russian Federation
40, Vavilov St., Moscow 119333.


References

1. Gromova OA, Torshin IYu. Magnii i «bolezni tsivilizatsii» [Magnesium and «diseases of civilization »]. Moscow: GEOTAR-Media; 2018. 800 p.

2. Gromova OA, Kalacheva AG, Torshin IYu, et al. Deficiency of magnesium – a significant risk factor of comorbid conditions: results of a large-scale screening of magnesium status in the regions of Russia. Farmateka. 2013;(6):115-29. (In Russ.)

3. Jimenez G, Cobo-Molinos J, Antich C, Lopez-Ruiz E. Osteoarthritis: Trauma vs Disease. Adv Exp Med Biol. 2018;1059:63-83. doi: 10.1007/978-3-319-76735-2_3.

4. Peshekhonova LK, Peshekhonov DV, Krasyukov PA, Chubarov TV. Current trends in the treatment of osteoarthritis in comorbid patients. Russkii meditsinskii zhurnal. 2014;22(28):2025-7. (In Russ.)

5. Magnusson K, Turkiewicz A, Timpka S, Englund M. Prediction of midlife hand osteoarthritis in young men. Osteoarthritis Cartilage. 2018 Aug;26(8):1027-1032. doi: 10.1016/j.joca.2018.05.010. Epub 2018 May 21.

6. Lee CJ, Levitt RC, Felix ER, et al. Evidence that dry eye is a comorbid pain condition in a U.S. veteran population. Pain Rep. 2017 Nov 20;2(6):e629. doi: 10.1097/PR9.0000000000000629. eCollection 2017 Nov.

7. Calandre EP, Rico-Villademoros F, Slim M. Suicidal behaviors in patients with rheumatic diseases: a narrative review. Rheumatol Int. 2018 Apr;38(4):537-548. doi: 10.1007/s00296-017-3909-9. Epub 2017 Dec 20.

8. Torshin IYu. Sensing the change from molecular genetics to personalized medicine. New York: Nova Biomedical Books; 2009.

9. Torshin IY, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs. part 1: fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2014; 24(1):11-23.

10. Torshin IY, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs: part 2. local completeness of invariants of chemographs in view of the combinatorial theory of solvability. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2014;24(2):196-208.

11. Torshin IYu, Gromova OA, Fedotova LE, et al. Chemical and information analysis of orotic acid molecule indicates anti-inflammatory, neuroprotective and cardioprotective properties of magnesium ligand. Farmateka. 2013;(13):95-104. (In Russ.)

12. Torshin IY, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. part 1: factorization approach. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017;27(1):16-28.

13. Torshin IY. The study of the solvability of the genome annotation problem on sets of elementary motifs. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2011;21(4): 652-62.

14. Gromova OA, Torshin IYu, Lila AM, et al. Differential chemoreactome analysis of glucosamine sulfate and nonsteroidal anti-inflammatory drugs: promising synergistic drug combinations. Sovremennaya revmatologiya = Modern Rheumatology Journal. 2018;12(2):36–43. (In Russ.) doi: 10.14412/1996-7012-2018-2-36-43

15. Gromova OA, Torshin IYu. Connective tissue dysplasia, magnesium and nucleotide polymorphisms. Kardiologiya. 2008;(10):57-64. (In Russ.)

16. Samuel T, Okada K, Hyer M, et al. cIAP1 Localizes to the nuclear compartment and modulates the cell cycle. Cancer Res. 2005 Jan 1;65(1):210-8.

17. Campo GM, Avenoso A, Campo S, et al. Chondroitin-4-sulphate inhibits NF-kB translocation and caspase activation in collagen-induced arthritis in mice. Osteoarthritis Cartilage. 2008 Dec;16(12):1474-83. doi: 10.1016/j.joca.2008.04.002. Epub 2008 May 23.

18. Volpi N. Anti-inflammatory activity of chondroitin sulphate: new functions from an old natural macromolecule. Inflammopharmacology. 2011 Dec;19(6):299-306. doi: 10.1007/s10787-011-0098-0. Epub 2011 Nov 1.

19. Largo R, Alvarez-Soria MA, Diez-Ortego I, et al. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage. 2003 Apr;11(4):290-8.

20. Wu D, Huang Y, Gu Y, Fan W. Efficacies of different preparations of glucosamine for the treatment of osteoarthritis: a meta-analysis of randomised, double-blind, placebocontrolled trials. Int J Clin Pract. 2013 Jun; 67(6):585-94. doi: 10.1111/ijcp.12115.

21. Poolsup N, Suthisisang C, Channark P, Kittikulsuth W. Glucosamine long-term treatment and the progression of knee osteoarthritis: systematic review of randomized controlled trials. Ann Pharmacother. 2005 Jun; 39(6):1080-7. Epub 2005 Apr 26.


Review

For citations:


Torshin IY, Gromova OA, Lila AM, Naumov AV, Sorokina MA, Rudakov KV. The results of postgenomic analysis of a glucosamine sulfate molecule indicate the prospects of treatment for comorbidities. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2018;12(4):129-136. (In Russ.) https://doi.org/10.14412/1996-7012-2018-4-129-136

Views: 929


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)