Preview

Modern Rheumatology Journal

Advanced search

Cryoglobulinemia and cryoglobulinemic vasculitis: etiological aspects and pathophysiological associations

https://doi.org/10.14412/1996-7012-2020-1-78-84

Abstract

The term cryoglobulinemia (CG) is used when detecting serum immunoglobulins that reversibly precipitate and form a gel at a temperature below 37 °C and dissolve when the temperature rises above 37 °C. Type I CG consists of only one isotype or a subclass of monoclonal immunoglobulins, while types II and III are classified as mixed CG (MCG) that is primarily characterized by the presence of immunoglobulins G and M. Types II and II-III MCG can result in cryoglobulinemic vasculitis (CGV) more frequently, whereas type III can lead to this condition less frequently. The presence of type I cryoglobulins is always associated with B-cell lymphoproliferative diseases. On the contrary, type II or type III MCG is more commonly associated with systemic autoimmune diseases and chronic infections. Thus, hepatitis C virus infection contributes to the development of MCG in 80–90% of cases. CGV is considered a rare disease worldwide (<5 cases per 10,000 people in the general European and North American populations). Among autoimmune diseases, primary Sjögren's syndrome (Sjögren's disease), systemic lupus erythematosus, and rheumatoid arthritis are most often associated with MCG. The pathogenetic role of cryoglobulins in inducing vasculitis is associated with both leukocyte recruitment to the vessels and deposition of immune complexes, with complement system activation and microvascular damage. The pathogenesis of MCG is associated with B-cell lymphoproliferation, autoantibody production, immunoglobulin synthesis, rheumatoid factor activity and the subsequent formation of cryoprecipitated immune complexes in conjunction with ineffective cryoglobulin clearance by monocytes and/or macrophages. This review contains updated information on the epidemiology, etiology, and pathogenesis of CG, with particular emphasis on MCG and CGV.

About the Authors

I. Yu. Golovach
Feofaniya Clinical Hospital, State Administration of Affairs
Ukraine
21, Academician Zabolotnyi St., Kyiv 03143


Ye. D. Yegudina
Modern Rheumatology Clinic
Ukraine
5, Spasskaya St., Kyiv 04071


References

1. Cacoub P, Comarmond C, Domont F, et al. Cryoglobulinemia vasculitis. Am J Med. 2015;128(9):950-5. doi: 10.1016/j.amjmed.2015.02.017

2. Roccatello D, Saadoun D, Ramos-Casals M, et al. Cryoglobulinaemia. Nat Rev. 2018; 4(1):11. doi: 10.1038/s41572-018-0009-4

3. Sidana S, Rajkumar SV, Dispenzieri A, et al. Clinical presentation and monoclonal cryoglobulinemia. Am J Hematol. 2017;92: 668-73. doi: 10.1002/ajh.24745

4. Tulio M, Carvalho L, Bana e Costa T, Chagas C. Mixed cryoglobulinemia: a diagnostic and therapeutic challenge. BMJ Case Rep. 2017;2017:bcr2017219768. doi: 10.1136/bcr-2017-219768

5. Ferri C, Antonelli A, Mascia MT, et al. B cells and mixed cryoglobulinemia. Autoimmun Rev. 2007;7(2):114-20. doi: 10.1016/j.autrev.2007.02.019

6. Ramos-Casals M, Stone JH, Cid MC, et al. The cryoglobulinaemias. Lancet. 2012; 379(9813):348-60. doi: 10.1016/S0140-6736(11)60242-0

7. Jennette J, Falk RJ, Bacon PA, et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1-11. doi: 10.1002/art.37715

8. Monti G, Saccardo F, Castelnovo L, et al. Prevalence of mixed cryoglobulinaemia syndrome and circulating cryoglobulins in a population-based survey: the Origgio study. Autoimmun Rev. 2014;13(6):609-14. doi: 10.1016/j.autrev.2013.11.005

9. Lauletta G, Russi S, Conteduca V, Sansonno L. Hepatitis C virus infection and mixed cryoglobulinemia. Clin Dev Immunol. 2012;2012:502156. doi: 10.1155/2012/502156

10. Mohd HK, Groeger J, Flaxman AD, et al. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology. 2013;57(4):133-42. doi: 10.1002/hep.26141

11. Minopetrou M, Hadziyannis E, Deutsch M, et al. Hepatitis C virus (HCV)- related cryoglobulinemia: cryoglobulin type and anti-HCV profile. Clin Vaccine Immunol. 2013;20(5):698-703. doi: 10.1128/CVI.00720-12

12. Terrier B, Marie I, Lacraz A, et al. Non HCV-related infectious cryoglobulinemia vasculitis: results from the French nationwide CryoVas survey and systematic review of the literature. J Autoimmun. 2015; 65:74-81. doi: 10.1016/j.jaut.2015.08.008

13. Mazzaro C, Dal Maso L, Urraro T, et al. Hepatitis B virus related cryoglobulinemic vasculitis: A multicentre open label study from the Gruppo Italiano di Studio delle Crioglobulinemie – GISC. Dig Liver Dis. 2016;48(7):780-4. doi: 10.1016/j.dld.2016.03.018

14. Rogalska-Plonska M, Lapinski TW, Grzeszczuk A, et al. Influence of HCV and HIV on development of cryoglobulinemia. Viral Immunol. 2015;28(3):145-52. doi: 10.1089/vim.2014.0114

15. Karimifar M, Pourajam S, Tahmasebi A, Mottaghi P. Serum cryoglobulins and disease activity in systematic lupus erythematosus. J Res Med Sci. 2013;18(3):234-8.

16. Brito-Zeron P, Baldini C, Bootsma H, et al. Sjö gren syndrome. Nat Rev Dis Primers. 2016;7(2):16047. doi: 10.1038/nrdp.2016.47

17. Desbois AC, Cacoub P, Saadoun D. Cryoglobulinemia: An update in 2019. Joint Bone Spine. 2019;4: pii: S1297-319X(19) 30014-4. doi: 10.1016/j.jbspin.2019.01.01

18. Shimamura Y, Takizawa H, Ogawa Y, et al. Lymphoproliferative disease-related mixed cryoglobulinemia treated with rituximab and prednisolone. CEN Case Rep. 2015; 4(1):6-13. doi: 10.1007/s13730-014-0130-5

19. Besson C, Canioni D, Lepage E, et al. Characteristics and outcome of diffuse large B cell lymphoma in hepatitis C virus-positive patients in LNH 93 and LNH 98 Groupe d'Etude des Lymphomes de l'Adulte programs. J Clin Oncol. 2006;24(6):953-60. doi: 10.1200/JCO.2005.01.5016

20. Neel A, Perrin F, Decaux O, et al. Longterm outcome of monoclonal (type 1) cryoglobulinemia. Am J Hematol. 2014;89(2): 156-61. doi: 10.1002/ajh.23608

21. Strait RT, Posgai MT, Mahler A, et al. IgG1 protects against mouse model of cryoglobulinaemia. Nature. 2015;517:501-4. doi: 10.1038/nature13868

22. Davis C, Harris HJ, Hu K, et al. In silico directed mutagenesis identifies the CD81/claudin-1 hepatitis C virus receptor interface. Cell Microbiol. 2012;14(12): 1892-903. doi: 10.1111/cmi.12008

23. Oliviero B, Mantovani S, Ludovisi S, et al. Skewed B cells in chronic hepatitis C virus infection maintain their ability to respond to virus-induced activation. J Viral Hepat. 2015;22(4):391-8. doi: 10.1111/jvh.12336

24. Khaled H, Abu-Taleb F, Haggag R. Hepatitis C virus and non-Hodgkin's lymphomas: A minireview. J Adv Res. 2017;8(2): 131-7. doi: 10.1016/j.jare.2016.11.005

25. Mahale P, Engels EA, Li R. The effect of sustained virological response on the risk of extrahepatic manifestations of hepatitis C virus infection. Gut. 2018;67:553-61. doi: 10.1136/gutjnl-2017-313983

26. Gulli F, Santini SA, Napodano C, et al. Cryoglobulin test and cryoglobulinemia hepatitis C-virus related. Mediterr J Hematol Infect Dis. 2017;9(1):e2017007. doi: 10.4084/MJHID.2017.007

27. Roccatello D, Isidoro C, Mazzucco G, et al. Role of monocytes in cryoglobulinemiaassociated nephritis. Kidney Int. 1993;43: 1150-5. doi: 10.1038/ki.1993.161

28. Thorarinsdottir K, Camponeschi A, Cavallini N, et al. CD21-/low B cells in human blood are memory cells. Clin Exp Immunol. 2016;185(2):252-62. doi: 10.1111/cei.12795

29. Ferri C, Sebastiani M, Giuggioli D, et al. Hepatitis C virus syndrome: a constellation of organ- and non-organ specific autoimmune disorders, B cell non-Hodgkin's lymphoma, and cancer. World J Hepatol. 2015;7(3): 327-43 doi: 10.4254/wjh.v7.i3.327

30. Kartha V, Franco L, Coventry S, et al. Hepatitis C mixed cryoglobulinemia with undetectable viral load: A case series. JAAD Case Rep. 2018;4(7):684-7. doi: 10.1016/j.jdcr.2018.04.004

31. De Sanjose S, Benavente Y, Vajdic CM, et al. Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. Clin Gastroenterol Hepatol. 2008;6(4):451-8. doi: 10.1016/j.cgh.2008.02.011

32. Menegatti E, Messina M, Oddone V, et al. Immunogenetics of complement in mixed cryoglobulinaemia. Clin Exp Rheumatol. 2016;34(3 Suppl.97):S12-S15.

33. Ozkok A, Yildiz A. Hepatitis C virus associated glomerulopathies. World J Gastroenterol. 2014;20(24):7544-54. doi: 10.3748/wjg.v20.i24.7544

34. Guo S, Wietecha TA, Hudkins KL, et al. Macrophages are essential contributors to kidney injury in murine cryoglobulinemic membranoproliferative glomerulonephritis. Kidney Int. 2011;80:946-58. doi: 10.1038/ki.2011.249


Review

For citations:


Golovach IY, Yegudina YD. Cryoglobulinemia and cryoglobulinemic vasculitis: etiological aspects and pathophysiological associations. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2020;14(1):78-84. https://doi.org/10.14412/1996-7012-2020-1-78-84

Views: 21595


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)