Preview

Современная ревматология

Расширенный поиск

Молекулярные аспекты управления ревматической болью

https://doi.org/10.14412/1996-7012-2020-1-93-100

Аннотация

Ревматические заболевания (РЗ), в том числе остеоартрит и ревматоидный артрит, – это неинфекционные медленно прогрессирующие неизлечимые воспалительные заболевания, приводящие к длительной инвалидности вследствие поражения опорно-двигательного аппарата. Боль является доминирующим симптомом на любой стадии этих заболеваний, непосредственно связана с функционированием суставов и определяет качество жизни больных. При этом, несмотря на значительные успехи в исследовании роли воспаления и регуляции аутоиммунных процессов, патогенетические механизмы развития и сохранения боли при РЗ малоизученны. В развитии ревматической боли участвуют ноцицептивные механизмы, обусловленные воспалением и/или нарушением структуры сустава. Кроме того, ревматическая боль также связана с нарушениями при передаче сигналов нервной системой и психологическими проблемами больных.

На современном этапе лечение боли включает нефармакологические методы, а также использование некоторых фармакологических средств, в частности опиоидов и наркотических средств. Однако, несмотря на значительные успехи в создании препаратов, купирующих боль, в настоящее время у значительной части больных РЗ боль сохраняется и после терапии. При создании новых препаратов для лечения боли необходимо учитывать молекулярные механизмы формирования боли при РЗ. В данном обзоре рассмотрены особенности ее проявлений, молекулярные маркеры и механизмы боли на разных стадиях заболевания у больных двумя наиболее распространенными РЗ – ревматоидным артритом и остеоартритом. 

Об авторах

Е. В. Четина
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия
115522, Москва, Каширское шоссе, 34А


Е. П. Шарапова
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия
115522, Москва, Каширское шоссе, 34А


Литература

1. Tchetina EV, Semyonova LA. Genetic mechanisms of cartilage degradation in the development and osteoarthritis. In: Protein Purification and Analysis III – Methods and applications; edited by iConcept Press; ISBN 978-1-922227-65-2; iConcept Press Ltd.

2. Buckwalter JA, Saltzman C, Brown T. The impact of osteoarthritis: implications for research. Clin Orthop Relat Res. 2004;427(Suppl): S6-15. doi: 10.1097/01.blo.0000143938.30681.9d

3. Dean DD, Azzo W, Martel-Pelletier J, et al. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest. 1989;84(2): 678-85. doi: 10.1172/JCI114215

4. Muller B. Cytokine imbalance in nonimmunological chronic disease. Cytokine. 2002;18(6):334-9. doi: 10.1006/cyto.2002.0882

5. Aigner T, Rose J, Martin J, Buckwalter J. Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res. 2004;7(2):134-45. doi: 10.1089/1549168041552964

6. Lorenzo P, Bayliss MT, Heinegard D. Altered patterns and synthesis of extracellular matrix macromolecules in early osteoarthritis. Matrix Biol. 2004;23(6):381-91. doi: 10.1016/j.matbio.2004.07.007

7. Sharif M, Whitehouse A, Sharman P, et al. Increased apoptosis in human osteoarthritic cartilage corresponds to reduced cell density and expression of caspase 3. Arthritis Rheum. 2004;50(2):507-15. doi: 10.1002/art.20020

8. Clauw DJ, Witter J. Pain and rheumatology: thinking outside the joint. Arthritis Rheum. 2009;60(2):321-4. doi: 10.1002/art.24326

9. Stoppiello LA, Mapp PI, Wilson D, et al. Structural associations of symptomatic knee osteoarthritis. Arthritis Rheum. 2014;66(11): 3018-27. doi: 10.1002/art.38778

10. Poole AR, Guilak F, Abramson SB. Etiopathogenesis of osteoarthritis. In: Moskowitz RW, Altman RD, Hochberg MC, et al, eds. Osteoarthritis: Diagnosis and Medical/ Surgical Management. 4th ed. Lippincott, PA: Williams &Wilkins; 2007. P. 27-49.

11. Sofat N, Ejindu V, Kiely P. What makes osteoarthritis painful? The evidence for local and central pain processing. Rheumatology (Oxford). 2011;50(12):2157-65. doi: 10.1093/rheumatology/ker283

12. Lee AS, Ellman MB, Yan D, et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013; 527(2):440-7. doi: 10.1016/j.gene. 2013.05.069 13. Saito T. Neurogenic inflammation in osteoarthritis of the knee. Mod Rheumatol. 2003;13(4):301-4. doi: 10.3109/s10165-003-0253-6

13. Orita S, Ishikawa T, Miyagi M, et al. Pain-related sensory innervation in monoiodoacetate-induced osteoarthritis in rat knees that gradually develops neuronal injury in addition to inflammatory pain. BMC Musculoskelet Disord. 2011;12:134. doi: 10.1186/1471-2474-12-134

14. Moreton BJ, Tew V, das Nair R, et al. Pain phenotype in patients with knee osteoarthritis: classification and measurement properties of painDETECT and self-report Leeds assessment of neuropathic symptoms and signs scale in a cross-sectional study. Arthritis Care Res (Hoboken). 2015;67(4): 519-28. doi: 10.1002/acr.22431

15. Ordeberg G. Characterization of joint pain in human OA. Novartis Found Symp. 2004;260:105-15; discussion 115-21, 277-9.

16. Gossec L, Paternotte S, Aanerud GJ, et al. Finalization and validation of the rheumatoid arthritis impact of disease score, a patientderived composite measure of impact of rheumatoid arthritis: a EULAR initiative. Ann Rheum Dis. 2011;70(6): 935-42. doi: 10.1136/ard.2010.142901

17. Nijs J, Kosek E, van Oosterwijck J, Meeus M. Dysfunctional endogenous analgesia during exercise in patients with chronic pain: to exercise or not to exercise? Pain Physician. 2012;15(3):205-13.

18. Daien CI, Hua C, Combe B, Landewe R. Non-pharmacological and pharmacological interventions in patients with early arthritis: a systematic literature review informing the 2016 update of EULAR recommendations for the management of early arthritis. RMD Open. 2017;3(1):e000404. doi: 10.1136/rmdopen2016-000404

19. Ossipov MH. The perception and endogenous modulation of pain. Scientifica (Cairo). 2012;2012:561761. doi: 10.6064/2012/561761

20. Fitzcharles MA, Shir Y. Management of chronic pain in the rheumatic diseases with insights for the clinician. Ther Adv Musculoskelet Dis. 2011;3(4):179-90. doi: 10.1177/1759720X11408999

21. Kidd BL, Urban LA. Mechanisms of inflammatory pain. Br J Anaesth. 2001;87(1): 3-11. doi: 10.1093/bja/87.1.3

22. Treede RD, Jensen TS, Campbell JN, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630-5. doi: 10.1212/01.wnl.0000282763.29778.59

23. Walsh DA, Mapp PI, Kelly S. Calcitonin gene-related peptide in the joint: contributions to pain and inflammation. Br J Clin Pharmacol. 2015;80(5):965-78. doi: 10.1111/bcp.12669

24. Reichling DB, Green PG, Levine JD. The fundamental unit of pain is the cell. Pain. 2013;154(1):S2-9. doi: 10.1016/j.pain.2013.05.037

25. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52(1):77-92. doi: 10.1016/j.neuron.2006.09.021

26. Akinci A, Al Shaker M, Chang MH, et al. Predictive factors and clinical biomarkers for treatment in patients with chronic pain caused by osteoarthritis with a central sensitisation component. Int J Clin Pract. 2016;70(1):31-44. doi: 10.1111/ijcp.12749

27. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009; 10(8):895-926. doi: 10.1016/j.jpain.2009.06.012

28. Nijs J, van Houdenhove B, Oostendorp RA. Recognition of central sensitization in patients with musculoskeletal pain: Application of pain neurophysiology in manual therapy practice. Man Ther. 2010;15(2):135-41. doi: 10.1016/j.math.2009.12.001

29. Omoigui S. The biochemical origin of pain – proposing a new law of pain: the origin of all pain is inflammation and the inflammatory response. Part 1 of 3-a unifying law of pain. Med Hypotheses. 2007;69(1): 70-82. doi: 10.1016/j.mehy.2006.11.028

30. Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. 2010;16(11):1267-76. doi: 10.1038/nm.2234

31. Edwards RR, Wasan AD, Bingham CO 3rd, et al. Enhanced reactivity to pain in patients with rheumatoid arthritis. Arthritis Res Ther. 2009;11(3):R61. doi: 10.1186/ar2684

32. Jakobsson U, Hallberg IR. Pain and quality of life among older people with rheumatoid arthritis and/or osteoarthritis: a literature review. J Clin Nurs. 2002;11(4):430-43. doi: 10.1046/j.1365-2702.2002.00624.x

33. Davis MC, Zautra AJ, Younger J, et al. Chronic stress and regulation of cellular markers of inflammation in rheumatoid arthritis: implications for fatigue. Brain Behav Immun. 2008;22(1):24-32. doi: 10.1016/j.bbi. 2007.06.013

34. Lee YC, Frits ML, Iannaccone CK, et al. Subgrouping of patients with rheumatoid arthritis based on pain, fatigue, inflammation, and psychosocial factors. Arthritis Rheum. 2014;66(8):2006-14. doi: 10.1002/art.38682

35. Lee YC, Chibnik LB, Lu B, et al. The relationship between disease activity, sleep, psychiatric distress and pain sensitivity in rheumatoid arthritis: a cross-sectional study. Arthritis Res Ther. 2009;11(5):R160. doi: 10.1186/ar2842

36. Ranzolin A, Brenol JC, Bredemeier M, et al. Association of concomitant fibromyalgia with worse disease activity score in 28 joints, health assessment questionnaire, and short form 36 scores in patients with rheumatoid arthritis. Arthritis Rheum. 2009;61(6):794-800. doi: 10.1002/art.24430

37. Geenen R, van Middendorp H, Bijlsma JW. The impact of stressors on health status and hypothalamic-pituitary-adrenal axis and autonomic nervous system responsiveness in rheumatoid arthritis. Ann N Y Acad Sci. 2006; 1069:77-97. doi: 10.1196/annals.1351.007

38. Lee YC, Lu B, Edwards RR, et al. The role of sleep problems in central pain processing in rheumatoid arthritis. Arthritis Rheum. 2013;65(1):59-68. doi: 10.1002/art.37733

39. Stack RJ, van Tuyl LH, Sloots M, et al. Symptom complexes in patients with seropositive arthralgia and in patients newly diagnosed with rheumatoid arthritis: a qualitative exploration of symptom development. Rheumatology (Oxford). 2014;53(9):1646-53. doi: 10.1093/rheumatology/keu159

40. Altawil R, Saevarsdottir S, Wedren S, et al. Remaining pain in early rheumatoid arthritis patients treated with methotrexate. Arthritis Care Res (Hoboken). 2016;68(8):1061-8. doi: 10.1002/acr.22790

41. Lee YC, Nassikas NJ, Clauw DJ. The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis Res Ther. 2011;13(2): 211. doi: 10.1186/ar3306

42. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3):S2-15. doi: 10.1016/j.pain.2010.09.030

43. Di Franco M, Guzzo MP, Spinelli FR, et al. Pain and systemic lupus erythematosus. Reumatismo. 2014;66(1):33-8. doi: 10.4081/reumatismo.2014.762

44. Malfait AM, Schnitzer TJ. Towards a mechanism-based approach to pain management in osteoarthritis. Nat Rev Rheumatol. 2013;9(11):654-64. doi: 10.1038/nrrheum.2013.138

45. Zois CD, Katsanos KH, Kosmidou M, Tsianos EV. Neurologic manifestations in inflammatory bowel diseases: current knowledge and novel insights. J Crohns Colitis. 2010;4(2):115-24. doi: 10.1016/j.crohns.2009.10.005

46. Yunus MB. The prevalence of fibromyalgia in other chronic pain conditions. Pain Res Treat. 2012;2012:584573. doi: 10.1155/2012/584573

47. Abdelhamid RE, Sluka KA. ASICs mediate pain and inflammation in musculoskeletal diseases. Physiology (Bethesda). 2015;30(6): 449-59. doi: 10.1152/physiol.00030.2015

48. Westlund KN, Kochukov MY, Lu Y, McNearney TA. Impact of central and peripheral TRPV1 and ROS levels on proinflammatory mediators and nociceptive behavior. Mol Pain. 2010;6(1):46. doi: 10.1186/1744-8069-6-46

49. Yamaga M, Tsuji K, Miyatake K, et al. Osteopontin level in synovial fluid is associated with the severity of joint pain and cartilage degradation after anterior cruciate ligament rupture. PLoS One. 2012;7(11):e49014. doi: 10.1371/journal.pone.0049014

50. Walsh DA, McWilliams DF, Turley MJ, et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford). 2010;49(10):1852-61. doi: 10.1093/rheumatology/keq188

51. Barthel C, Yeremenko N, Jacobs R, et al. Nerve growth factor and receptor expression in rheumatoid arthritis and spondyloarthritis. Arthritis Res Ther. 2009;11(3):R82. doi: 10.1186/ar2716

52. O’Rourke KP, O’Donoghue G, Adams C, et al. High levels of Lymphotoxin-Beta (LT-Beta) gene expression in rheumatoid arthritis synovium: clinical and cytokine correlations. Rheumatol Int. 2008;28(10):979-86. doi: 10.1007/s00296-008-0574-z

53. Richardson D, Pearson RG, Kurian N, et al. Characterization of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther. 2008;10(2):R43. doi: 10.1186/ar2401

54. Mousa SA, Straub RH, Schä fer M, Stein C. Beta-endorphin, Met-enkephalin and corresponding opioid receptors within synovium of patients with joint trauma, osteoarthritis and rheumatoid arthritis. Ann Rheum Dis. 2007;66(7):871-9. doi: 10.1136/ard.2006.067066

55. Louati K, Berenbaum F. Fatigue in chronic inflammation – a link to pain pathways. Arthritis Res Ther. 2015;17:254. doi: 10.1186/s13075-015-0784-1

56. Clark AK, Staniland AA, Malcangio M. Fractalkine/CX3CR1 signalling in chronic pain and inflammation. Curr Pharm Biotechnol. 2011;12:1707-14. doi: 10.2174/138920111798357465

57. Chen YM, Chen HH, Lan JL, Chen DY. Improvement of cognition, a potential benefit of anti-TNF therapy in elderly patients with rheumatoid arthritis. Joint Bone Spine. 2010; 77(4):366-7. doi: 10.1016/j.jbspin.2010.01.017

58. Clark IA, Vissel B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation. 2016;13(1):236. doi: 10.1186/s12974-016-0708-2

59. Hess A, Axmann R, Rech J, et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci U S A. 2011;108(9):3731-6. doi: 10.1073/pnas.1011774108

60. Kosek E, Altawil R, Kadetoff D, et al. Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain – interleukin-8 in fibromyalgia and interleukin-1β in rheumatoid arthritis. J Neuroimmunol. 2015;280:49-55. doi: 10.1016/j.jneuroim.2015.02.002

61. Lisowska B, Maslinski W, Maldyk P, et al. The role of cytokines in inflammatory response after total knee arthroplasty in patients with rheumatoid arthritis. Rheumatol Int. 2008; 28(7):667-71. doi: 10.1007/s00296-007-0508-1

62. Attur MI, Belitskaya-Levy C, Krasnokutsky S, et al. Increased interleukin1β gene expression in peripheral blood leukocytes is associated with increased pain and predicts risk for progression of symptomatic knee osteoarthritis. Arthritis Rheum. 2011; 63(7):1908-17. doi: 10.1002/art.30360

63. Prochazkova M, Zanvit P, Dolezal T, et al. Increased gene expression and production of spinal cyclooxygenase 1 and 2 during experimental osteoarthritis pain. Physiol Res. 2009; 58(3):419-25.

64. Vardeh D, Wang D, Costigan M, et al. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. J Clin Invest. 2009;119(2):287-94. doi: 10.1172/JCI37098

65. Leichsenring A, Bä cker I, Wendt W, et al. Differential expression of Cathepsin S and X in the spinal cord of a rat neuropathic pain model. BMC Neurosci. 2008;9:80. doi: 10.1186/1471-2202-9-80

66. Kawasaki Y, Xu ZZ, Wang X, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008;14(3): 331-6. doi: 10.1038/nm1723

67. McDougall JJ, Schuelert N, Bowyer J. Cathepsin K inhibition reduces CTXII levels and joint pain in the guinea pig model of spontaneous osteoarthritis. Osteoarthritis Cartilage. 2010;18(10):1355-7. doi: 10.1016/ j.joca.2010.07.014

68. Ohtori S, Takahashi K, Moriya H, Myers RR. TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine (Phila Pa 1976). 2004;29(10):1082-8. doi: 10.1097/00007632-200405150-00006 7

69. Moon SJ, Woo YJ, Jeong JH, et al. Rebamipide attenuates pain severity and cartilage degeneration in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes. Osteoarthritis Cartilage. 2012;20(11): 1426-38. doi: 10.1016/j.joca.2012.08.002

70. Lee J, Hong YS, Jeong JH, et al. Coenzyme Q10 ameliorates pain and cartilage degradation in a rat model of osteoarthritis by regulating nitric oxide and inflammatory cytokines. PLoS One. 2013;8(7):e69362. doi: 10.1371/journal.pone.0069362

71. Ji RR, Xu ZZ, Wang X, Lo EH. Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol Sci. 2009;30(7): 336-40. doi: 10.1016/j.tips.2009.04.002

72. Tejima E, Guo S, Murata Y, et al. Neuroprotective effects of overexpressing tissue inhibitor of metalloproteinase TIMP-1. J Neurotrauma. 2009;26(11):1935-41. doi: 10.1089/neu.2009-0959

73. Franses RE, McWilliams DF, Mapp PI, Walsh DA. Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthritis Cartilage. 2010;18(4):563-71. doi: 10.1016/j.joca.2009.11.015

74. Lyu D, Yu W, Tang N, et al. The mTOR signaling pathway regulates pain-related synaptic plasticity in rat entorhinal-hippocampal pathways. Mol Pain. 2013;9:64. doi: 10.1186/1744-8069-9-64

75. Jiang F, Hua LM, Jiao YL, et al. Activation of mammalian target of rapamycin contributes to pain nociception induced in rats by BmK I, a sodium channel-specific modulator. Neurosci Bull. 2014;30(1):21-32. doi: 10.1007/s12264-013-1377-0

76. Melemedjian OK, Khoutorsky A, Sorge RE, et al. mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain. 2013;154(7):1080-91. doi: 10.1016/j.pain.2013.03.021

77. Geranton SM, Jimenez-Diaz L, Torsney C, et al. A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci. 2009;29(47):15017-27. doi: 10.1523/JNEUROSCI.3451-09.2009

78. Price TJ, Dussor G. AMPK: An emerging target for modification of injury-induced pain plasticity. Neurosci Lett. 2013;557(Pt A):9-18. doi: 10.1016/j.neulet.2013.06.060

79. Blaney Davidson EN, van Caam AP, Vitters EL, et al. TGF-β is a potent inducer of Nerve Growth Factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain? Osteoarthritis Cartilage. 2015; 23(3):478-86. doi: 10.1016/j.joca.2014.12.005

80. Lantero A, Tramullas M, Diaz A, Hurle MA. Transforming growth factor-β in normal nociceptive processing and pathological pain models. Mol Neurobiol. 2012;45(1):76-86. doi: 10.1007/s12035-011-8221-1

81. Echeverry S, Shi XQ, Haw A, et al. Transforming growth factor-beta1 impairs neuropathic pain through pleiotropic effects. Mol Pain. 2009;5:16. doi: 10.1186/1744-8069-5-16

82. Christiansen BA, Bhatti S, Goudarzi R, Emami S. Management of Osteoarthritis with Avocado/Soybean Unsaponifiables. Cartilage. 2015;6(1):30-44. doi: 10.1177/1947603514554992

83. Tramullas M, Lantero A, Diaz A, et al. BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) reveals the involvement of the transforming growth factor-beta family in pain modulation. J Neurosci. 2010;30(4):1502-01. doi: 10.1523/JNEUROSCI.2584-09.2010

84. Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 2012; 8(7):390-8. doi: 10.1038/nrrheum.2012.80

85. Brown RA, Weiss JB. Neovascularisation and its role in the osteoarthritic process. Ann Rheum Dis. 1988;47(11):881-5. doi: 10.1136/ard.47.11.881

86. Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford). 2005;44(1):7-16. doi: 10.1093/ rheumatology/keh344

87. Ashraf S, Wibberley H, Mapp PI, et al. Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann Rheum Dis. 2011; 70(3):523-9. doi: 10.1136/ard.2010.137844

88. Walker GD, Fischer M, Gannon J, et al. Expression of type-X collagen in osteoarthritis. J Orthop Res. 1995;13(1):4-12. doi: 10.1002/jor.1100130104

89. Ballara SC, Miotla JM, Paleolog EM. New vessels, new approaches: angiogenesis as a therapeutic target in musculoskeletal disorders. Int J Exp Pathol. 1999;80(5):235-50. doi: 10.1046/j.1365-2613.1999.00129.x

90. Kolostova K, Taltynov O, Pinterova D, et al. Tissue repair driven by two different mechanisms of growth factor plasmids VEGF and NGF in mice auricular cartilage: regeneration mediated by administering growth factor plasmids. Eur Arch Otorhinolaryngol. 2012;269(7):1763-70. doi: 10.1007/s00405-011-1821-6

91. Tchetina EV, Poole AR, Zaitseva EM, et al. Differences in mTOR (mammalian target of rapamycin) gene expression in the peripheral blood and articular cartilages of osteoarthritic patients and disease activity. Arthritis. 2013;2013:461486. doi: 10.1155/2013/461486

92. Четина ЕВ, Братыгина ЕА, Зайцева ЕМ и др. Прогнозирование течения остеоартроза по экспрессии гена mTOR (mammalian target of rapamycin). Научно-практическая ревматология. 2012;50(1):27-32. doi: 10.14412/1995-4484-2012-500 [Chetina EV, Bratygina EA, Zaitseva EM, et al. Prediction of the course of osteoarthrosis from mTOR (mammalian target of rapamycin) gene expression. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2012;50(1):27-32. doi: 10.14412/1995-4484-2012-500 (In Russ.)].

93. Четина ЕВ, Маркова ГА, Таскина ЕА и др. Молекулярные механизмы регуляции боли у больных остеоартрозом. Научно-практическая ревматология. 2016; 54(4):424-31. doi: 10.14412/1995-4484-2016-424-431 [Chetina EV, Markova GA, Taskina EA, et al. Molecular mechanisms for pain regulation in patients with osteoarthritis. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2016;54(4):424-31. doi: 10.14412/1995-4484-2016-424-431 (In Russ.)].

94. Wolfe F, Michaud K. Severe rheumatoid arthritis (RA), worse outcomes, comorbid illness, and sociodemographic disadvantage characterize RA patients with fibromyalgia. J Rheumatol. 2004;31(4):695-700.

95. Andersson ML, Svensson B, Bergman S. Chronic widespread pain in patients with rheumatoid arthritis and the relation between pain and disease activity measures over the first 5 years. J Rheumatol. 2013;40(12): 1977-85. doi: 10.3899/jrheum.130493

96. Rifbjerg-Madsen S, Christensen AW, Boesen M, et al. Can the painDETECT Questionnaire score and MRI help predict treatment outcome in rheumatoid arthritis: protocol for the Frederiksberg hospital's Rheumatoid Arthritis, pain assessment and Medical Evaluation (FRAME-cohort) study. BMJ Open. 2014;4(11):e006058. doi: 10.1136/bmjopen-2014-006058

97. Tchetina EV, Pivanova AN, Markova GA, et al. Rituximab down-regulates gene expression associated with cell proliferation, survival, and proteolysis in the peripheral blood from rheumatoid arthritis patients: a link between high baseline autophagy-related ULK1 expression and improved pain control. Arthritis. 2016;2016:4963950. doi: 10.1155/2016/4963950

98. Orhan CE, Onal A, Ulker S. Antihyperalgesic and antiallodynic effect of sirolimus in neuropathic pain and the role of cytokines in this effect. Neurosci Lett. 2010;481(1):17-20. doi: 10.1016/j.neulet.2010.06.039

99. Yan H, Zhou HF, Hu Y, Pham CT. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. J Rheum Dis Treat. 2015;1(1):5. doi: 10.23937/2469-5726/1510005

100. Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007; 89(4):780-5. doi: 10.2106/JBJS.F.00222

101. Lim AYN, Doherty M. What of guidelines for osteoarthritis? Rheum Dis. 2011; 14:136-44. doi: 10.1111/j.1756-185X.2011.01609.x

102. Hilton ME, Gioe T, Noorbaloochi S, Singh JA. Increasing comorbidity is associated with worsening physical function and pain after primary total knee arthroplasty. BMC Musculoskelet Disord. 2016;17(1):421. doi: 10.1186/s12891-016-1261-y

103. Liu SS, Buvanendran A, Rathmell JP, et al. Predictors for moderate to severe acute postoperative pain after total hip and knee replacement. Int Orthop. 2012;36(11):2261-7. doi: 10.1007/s00264-012-1623-5

104. Judge A, Arden NK, Cooper C, et al. Predictors of outcomes of total knee replacement surgery. Rheumatology (Oxford). 2012;51: 1804-13. doi: 10.1093/rheumatology/kes075

105. Wylde V, Dixon S, Blom AW. The role of preoperative self-efficacy in predicting outcome after total knee replacement. Musculoskeletal Care. 2012;10(2):110-8. doi: 10.1002/msc.1008

106. Petersen KK, Arendt-Nielsen L, Simonsen O, et al. Presurgical assessment of temporal summation of pain predicts the development of chronic postoperative pain 12 months after total knee replacement. Pain. 2015;156(1):55-61. doi: 10.1016/j.pain.0000000000000022

107. Granot M, Lowenstein L, Yarnitsky D, et al. Postcesarean section pain prediction by preoperative experimental pain assessment. Anesthesiology. 2003;98:1422-6. doi: 10.1097/00000542-200306000-00018

108. Edwards RR, Mensing G, Cahalan C, et al. Alteration in pain modulation in women with persistent pain after lumpectomy: influence of catastrophizing. J Pain Symptom Manage. 2013;46:30-42. doi: 10.1016/j.jpainsymman.2012.06.016

109. Yarnitsky D, Crispel Y, Eisenberg E, et al. Prediction of chronic post-operative pain: preoperative DNIC testing identifies patients at risk. Pain. 2008;138:22-8. doi: 10.1016/j.pain.2007.10.033

110. Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13(7):533-48. doi: 10.1038/nrd4334

111. Pearle A, Scanzello C, George S, et al. Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthr Cartilage. 2007;15:516-23. doi: 10.1016/j.joca.2006.10.010

112. Gandhi R, Santone D, Takahashi M, et al. Inflammatory predictors of ongoing pain 2 years following knee replacement surgery. Knee. 2013;20(5):316-8. doi: 10.1016/j.knee.2012.10.015

113. Clark AK, Yip PK, Grist J, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A. 2007;104(25):10655-60. doi: 10.1073/pnas.0610811104

114. Clark AK, Yip PK, Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J Neurosci. 2009;29(21):6945-54. doi: 10.1523/ JNEUROSCI.0828-09.2009

115. Berta T, Park CK, Xu ZZ, et al. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-alpha secretion. J Clin Invest. 2014;124(3):1173-86. doi: 10.1172/JCI72230

116. Gardner J, Borgmann K, Deshpande MS, et al. Potential mechanisms for astrocyteTIMP-1 downregulation in chronic inflammatory diseases. J Neurosci Res. 2006;83(7): 1281-92. doi: 10.1002/jnr.20823

117. Tchetina EV, Makarov SA, Kuzin AN. Coordinated expression of the genes associated with cell growth (mTOR), collagen degradation (cathepsin K), and lipid metabolism (fatty acid synthase) in the peripheral blood and articular cartilage of the end-stage osteoarthritic patients. Ann Rheum Dis. 2013;72(3):694. doi: 10.1136/annrheumdis2013-eular.2051

118. Tchetina EV, Glemba KE, Markova GA, Makarov SA. Identification of postoperative pain biomarkers using gene expression analyses in the peripheral blood of osteoarthritic patients prior to joint replacement. Ann Rheum Dis. 2019;78(2):A520. doi: 10.1136/annrheumdis-2019-eular.5313


Рецензия

Для цитирования:


Четина ЕВ, Шарапова ЕП. Молекулярные аспекты управления ревматической болью. Современная ревматология. 2020;14(1):93-100. https://doi.org/10.14412/1996-7012-2020-1-93-100

For citation:


Chetina EV, Sharapova EP. Rheumatic pain management: molecular aspects. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2020;14(1):93-100. (In Russ.) https://doi.org/10.14412/1996-7012-2020-1-93-100

Просмотров: 854


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1996-7012 (Print)
ISSN 2310-158X (Online)